JPS59116593A - Method of solidifying radioactive waste - Google Patents
Method of solidifying radioactive wasteInfo
- Publication number
- JPS59116593A JPS59116593A JP22587882A JP22587882A JPS59116593A JP S59116593 A JPS59116593 A JP S59116593A JP 22587882 A JP22587882 A JP 22587882A JP 22587882 A JP22587882 A JP 22587882A JP S59116593 A JPS59116593 A JP S59116593A
- Authority
- JP
- Japan
- Prior art keywords
- radioactive waste
- agent
- durability
- water
- solidifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Sludge (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は原子力発電所なでから発生する放射性廃棄物の
処理方法に係り、特にペレット状放射性廃棄物に好適な
固化方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for treating radioactive waste generated from a nuclear power plant, and particularly to a solidification method suitable for pelletized radioactive waste.
原子力発電所などの運転に伴ない種々の放射性廃棄・吻
が発生するが、これらの放射性廃棄物を減容し、さらに
ドラム缶等の固化容器に安定に固化することは施設内の
保管スペースを確保する点で改装であるのみならず、安
全上の点や、将来の最終処分法の1つである陸地保管、
陸地処分上不可欠な技術である。Various types of radioactive waste are generated as a result of the operation of nuclear power plants, etc., but reducing the volume of these radioactive wastes and stably solidifying them in solidification containers such as drums is an effective way to secure storage space within the facility. This is not only a renovation in terms of safety, but also safety issues and land storage, which is one of the future final disposal methods.
This is an essential technology for land disposal.
例えば、放射性廃棄物を減容する方法の1つとして、B
WR型原子力発1所から発生する主要な廃棄物である再
生廃液(主成分は硫酸ナトリウム)や廃イオン交換樹脂
スラリーを遠心薄膜乾燥機等の乾燥機で乾燥粉体とした
後、ブリケラティングマシン等の造粒1幾を用いてペレ
ット化し、このペレット状放射性廃棄物を適学な固化剤
と共メトラム缶内に固化することにより廃棄′物量を大
幅に減容することが試みられている。上記ペレット状廃
棄物の固化剤としでは、アスファルト・プラスチック・
ケイ酸アルカリ等を用いることが可能であるが、操作性
が良く、かつ安価な材料として、ケイ酸アルカリ(いわ
ゆる水ガラス)を用いた固化方法の開発が行なわれてい
る、
硬化した水ガラスの機械的性質は、硬化したセメントの
性質とほぼ同じで、プラスチック等に比べ耐久性あるい
は耐候性にすぐれていることがよく知られている、しか
し、セメントモルタル又はコンクリートを用いた建築物
にみられるように、水ガラス固化体でも数10年以上の
時間が経つと、徐々に風化作用を受け、固化体が劣化す
ると考えられる。しだがって、水ガラスにより放射性廃
棄物を固化する1祭には、現在以上の耐候性あるいは耐
久性を有する固化体を作成することが望ましい。For example, one way to reduce the volume of radioactive waste is to
The recycled waste liquid (mainly composed of sodium sulfate) and waste ion exchange resin slurry, which are the main wastes generated from one WR nuclear power plant, are turned into dry powder using a dryer such as a centrifugal thin film dryer, and then subjected to briquerating. Attempts have been made to significantly reduce the volume of waste material by pelletizing it using a granulation machine, etc., and solidifying this pelleted radioactive waste in a Metrum can with an appropriate solidifying agent. . As a solidifying agent for the above pelleted waste, asphalt, plastic,
It is possible to use alkali silicate, etc., but a solidification method using alkali silicate (so-called water glass) is being developed as it is an easy-to-use and inexpensive material. The mechanical properties are almost the same as those of hardened cement, and it is well known that it has superior durability and weather resistance compared to plastics, etc. However, it is found in buildings using cement mortar or concrete. Thus, it is thought that even water vitrified material gradually undergoes weathering action and deteriorates after several decades or more. Therefore, in order to solidify radioactive waste using water glass, it is desirable to create a solidified material that has greater weather resistance or durability than currently available.
本発明の目的は、耐久性あるいは面1個性にすぐれた水
ガラスの同化方法を提供することにある。An object of the present invention is to provide a method for assimilating water glass that is excellent in durability and individuality per surface.
水ガラス固化体の耐久性を向上させるため、まず同化体
の劣化要因を基礎的に検討した。In order to improve the durability of water vitrified products, we first fundamentally investigated the causes of deterioration of assimilated products.
(1)式は水ガラスの硬化反応を示す化学式である。Equation (1) is a chemical formula showing the hardening reaction of water glass.
Na、 o−5iO□−nr(204−P、0. ・5
in2→Na、 PO3−4−8i 02+nH7O(
1)スナワチ、水ガラス(Na、0−8i02・nH2
o)と硬化剤(P2O,・5102)を混合すると、水
和反応によりS10.のマトリクスが形成され固化体が
得られる。しかし、(1)式の反応の過程で遊離水(n
H2O)が生じ、これは固化体中を移動し、固化体表
面から大気中に放散される。このだめ、セメントと同様
、水ガラスでも固化体中に多くの連結した空隙(Qpe
n pore)を生じ、固化体の比表面積は見掛けの表
面積よりも桁違いに大きくなる。この比表面積の増加が
固化体耐久性低下の原因であることは、七メント工学の
分野での研究結果より容易に推察される。まずこの推察
が正しいことを第1図にその結果を示す耐久性試験によ
り確認した。Na, o-5iO□-nr (204-P, 0. ・5
in2→Na, PO3-4-8i 02+nH7O(
1) Sunawachi, water glass (Na, 0-8i02・nH2
o) and a curing agent (P2O, 5102), S10. A matrix is formed and a solidified body is obtained. However, free water (n
H2O) is produced, which moves through the solidified body and is dissipated from the solidified body surface into the atmosphere. Similar to cement, water glass also has many connected voids (Qpe) in the solidified material.
n pore), and the specific surface area of the solidified material is an order of magnitude larger than the apparent surface area. It can be easily inferred from the research results in the field of 7-ment engineering that this increase in specific surface area is the cause of the decrease in solidified product durability. First, we confirmed that this assumption was correct through a durability test whose results are shown in Figure 1.
才だ第1図横軸に示す比表面積Sは、(1)式中のnの
値(水ガラス中の水の廿)が異なる水ガラスを用いるこ
とにより変化できる。、(これは6セメントにおける水
・セメント比の変化に対応する。)捷た比表面積Sと共
に横軸に示した粘性nは、硬化前の水ガラスの粘性を示
し、固化操作を容易にするには、103CP以下の粘性
が必要である。The specific surface area S shown on the horizontal axis in FIG. 1 can be changed by using water glasses having different values of n (the amount of water in the water glass) in equation (1). , (This corresponds to the change in the water/cement ratio in 6 cement.) The viscosity n shown on the horizontal axis together with the specific surface area S of the broken water glass indicates the viscosity of the water glass before hardening, and is used to facilitate the hardening operation. requires a viscosity of 103CP or less.
なお、第1図に示l〜た固化実験の条件は大気圧中、2
0°Cである。The conditions for the solidification experiment shown in Figure 1 were: 2.
It is 0°C.
第1図より、固化体の比表面積−が減少すると共に、俳
久性も向上し、粘性103CPでは約100年の耐用年
:孜を有することがわかる。しかし、これ以上の耐用年
数をilるには、粘性103CP以上の水ガラスを用い
比表面イRをさらに減少する必要があるが、この時には
固化邊作が困lVになるという問題が生じる。同様の問
題は、セメント工学の分野でも生じ、減水剤等の添加物
を少F+(0,1〜2チ)加えることにより解決を計っ
ている(ASTN C494−71)う同様の方法は、
固化剤に水ガラスを用いた時にも可能であるが、少量の
減水剤を固化剤と吻−に1琵合する心外があり、システ
ムが若干薩雑化するという問題が残る。From FIG. 1, it can be seen that as the specific surface area of the solidified material decreases, its durability also improves, and with a viscosity of 103CP, it has a service life of about 100 years. However, in order to extend the service life beyond this, it is necessary to further reduce the specific surface by using water glass with a viscosity of 103 CP or more, but in this case, the problem arises that solidification becomes difficult. A similar problem occurs in the field of cement engineering, and a similar method is attempted by adding a small amount of F+ (0.1 to 2 t) of additives such as water reducing agents (ASTN C494-71).
Although this is possible when water glass is used as the solidifying agent, there remains the problem that a small amount of the water reducing agent must be coupled to the solidifying agent at the proboscis, making the system somewhat sloppy.
を発弁存弁拍ヰ
本発明は、粘性1.0’CP以ドの水ガラスを用い、か
つ減水剤等の添カ旧勿を加えることなく、同化体の比表
面積を減少させて耐久性を向上させる一!゛あ
こと啼ヰ贈簑酌〒る。The present invention uses water glass with a viscosity of 1.0'CP or more, and reduces the specific surface area of the assimilate without adding additives such as water reducing agents to increase durability. One to improve!゛Akoto's voice is a gift.
亡晃祖(I目恥橿
種々の基礎実喚の結果、水ガラスが硬化する過程で、大
気圧を超える圧力を加えると良いことがわかった。As a result of various basic research, it was found that it is good to apply pressure exceeding atmospheric pressure during the hardening process of water glass.
第2図は基礎実験の結果の一例を示したものであり、水
ガラスの粘性は固化)条件が非常に容易な2X10”
CPである。これより、高圧で硬化を行うに従い、固化
体の比表面積は減少し、これと共に固化体の4久性は向
上することがわかる、すなわち、大気圧(1atm)中
で硬化した時の耐久性は40年程度と推定されるのに対
し、5atmでは70年、l Q atmでは100年
以上の耐久性を有すると推定される。さらに、高圧で硬
化を行うと同時に、先に述べた減水剤等の添加物を加え
ると、両者の相乗効果により、さらに耐久性にすぐれだ
固化体が1得られることもわかった。Figure 2 shows an example of the results of a basic experiment.The viscosity of water glass is 2
It is CP. From this, it can be seen that as curing is carried out at high pressure, the specific surface area of the solidified material decreases, and at the same time, the durability of the solidified material increases.In other words, the durability when hardened at atmospheric pressure (1 atm) is While it is estimated to last about 40 years, 5 ATM is estimated to have a durability of 70 years, and LQ ATM is estimated to have a durability of over 100 years. Furthermore, it has been found that when the above-mentioned water reducing agent and other additives are added at the same time as curing at high pressure, a solidified product with even better durability can be obtained due to the synergistic effect of the two.
(1)木7色明の主たる特徴は、ケイ酸アルカリ溶液と
これに作用する硬化剤との混合物を固化剤としで、放射
性廃棄物のペレットを固化する方法において、前記固化
剤の硬化時に大気圧以上の圧力を加えるにある。(1) The main feature of Mokishokumei is that in the method of solidifying radioactive waste pellets using a mixture of an alkaline silicate solution and a hardening agent acting on it as a hardening agent, a large amount of It involves applying pressure greater than atmospheric pressure.
(2)本発明の従朔する特徴は、同化剤中に、固化剤の
流動性を向上させうる減水剤を加えるにある。(2) An existing feature of the present invention is that a water reducing agent capable of improving the fluidity of the solidifying agent is added to the assimilating agent.
実施例
以上の結果に基づき、通常放射性廃棄物の固化に用いら
れる200tドラム缶で固化する場合の一実施例を第3
図により説明する。Example Based on the above results, a third example of solidifying radioactive waste in a 200-ton drum can, which is normally used for solidifying radioactive waste, was developed.
This will be explained using figures.
′まf200tドラム缶1内に1jシけらjtだかと2
内に、 Na、 So、を主成分とする放射性廃棄物ペ
レット3を約250 kg充填する。次にケイ酸アルカ
リ溶液4と硬化剤5を混合機6で均一に混合した所、粘
性は2×102CPであった、このようにして混合しだ
固化剤8を上記200tドラム1内に流入させて放射性
ペレット3間の空隙をうめた後、200tドラム1を圧
力室7に移し、ここで乾燥W囲気10 atmの圧力F
で硬化さ硝た所、硬化は数時間で完了し、第4図に示す
ような固化体が得られた、
このようにして作成しだ固化体の耐久性指数は85であ
り、100〜200年の耐久年数を有すると推定される
。'There are 1 piece of paper in 1 f200t drum and 2 pieces.
Approximately 250 kg of radioactive waste pellets 3 containing Na and So as main components are filled into the container. Next, the alkali silicate solution 4 and the hardening agent 5 were uniformly mixed in a mixer 6, and the viscosity was 2 x 102 CP.After mixing in this way, the hardening agent 8 was flowed into the 200t drum 1. After filling the voids between the radioactive pellets 3, the 200t drum 1 is transferred to the pressure chamber 7, where the drying atmosphere is heated to a pressure F of 10 atm.
The hardening was completed in a few hours, and a solidified material as shown in Figure 4 was obtained. It is estimated to have a durable life of 20 years.
上記実施例では、固化剤にケイ酸アルカリ溶液と硬化剤
の混合′吻を用いだが、さらに固化剤中に減水剤として
ナフタリンスルホン酸ホルムアルデヒドを1重着バーセ
ント加えて2X102CPの固化剤に調製して放射性ペ
レット3をlOatmで固化した所、固化体の耐久性指
数は92であり、200年以上の耐久年数を有すると推
定される。In the above example, a mixture of an alkaline silicate solution and a hardening agent was used as the solidifying agent, but a single weight percent of naphthalene sulfonic acid formaldehyde was added as a water reducing agent to the solidifying agent to prepare a 2X102CP solidifying agent. When the radioactive pellet 3 was solidified at 1 Oatm, the solidified product had a durability index of 92, and is estimated to have a lifespan of 200 years or more.
これは高圧硬化と減水剤の相乗効果によりさらに耐久性
にすぐれた同化体が得られたことを示す。This indicates that the synergistic effect of high-pressure curing and water-reducing agent resulted in a more durable assimilate.
寸だ、減水剤としてリグニンスルホン酸、又はオキ・/
カルボン酸又はこれらの塩を用いても、同様の効果のあ
ることがわかった、
さらに、上記実施例では、乾燥雰囲気の圧力室を用いた
が、高圧水槽を用い水中養生を行っても、同等の効果が
得られる。As a water reducing agent, use ligninsulfonic acid or oxygen.
It was found that similar effects can be obtained by using carboxylic acids or their salts.Furthermore, in the above examples, a pressure chamber with a dry atmosphere was used, but even if a high-pressure water tank is used for underwater curing, the same effect can be obtained. The effect of this can be obtained.
本発明によれば、次のような効果を奏することができる
。すなわち、固化操作が容易な水ガラスの、l′lli
性範囲で、耐久性にすぐれた固化体を得ることができる
。According to the present invention, the following effects can be achieved. In other words, l'lli of water glass that is easy to solidify
A solidified product with excellent durability can be obtained within the range of properties.
第1図は、従来法による実1験結果を示す線図、第2図
は、本発明の詳細な説明する線図、第3図は、本発明の
一実施しリによる固化法を実施する装置の溝成図、第4
メは、本発明によって作成されだ固化体の一列を示す斜
イ、12図である。
1・・・ドラム缶、3・・・ペレット状、“&射IJi
−廃棄′吻、7・・・圧力室、8・・・固化剤。
代哩人 弁理士 高僑明芳
某1 目
坊妊q (c−P)
θ fρl171θρθ虻表f
D橿5(笥2/勺ジ
第2 目
0 .5″/θ ノ5万更4
に絣−圧力 (d柚ジ
茅3 目
牟 4 虐Fig. 1 is a diagram showing the results of an experiment according to the conventional method, Fig. 2 is a diagram explaining the present invention in detail, and Fig. 3 is a diagram showing the solidification method according to one embodiment of the present invention. Groove diagram of the device, 4th
FIG. 12 is a diagonal diagram showing a row of solidified bodies produced according to the present invention. 1... Drum, 3... Pellet, "&
- Disposal' proboscis, 7...pressure chamber, 8...solidifying agent. Representative Patent attorney High-class Akira 1 Mebo Prefecture q (c-P) θ fρl171θρθf
D 5 (2nd / 2nd 0.5″/θ 50,000 4
ni Kasuri - Pressure (d Yuzujimo 3 Memu 4)
Claims (1)
混合物を固化剤として、放射性廃棄物のペレットを固化
する方法において、前記同化剤の硬化時に大気圧以上の
子方を加えることを特徴とする放射性廃棄物の同化方法
。1. In a method of solidifying radioactive waste pellets using a mixture of a silicic acid-r alkali solution and a hardening agent acting on it as a hardening agent, adding a force of pressure equal to or higher than atmospheric pressure during hardening of the assimilating agent is Characteristic radioactive waste assimilation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22587882A JPS59116593A (en) | 1982-12-24 | 1982-12-24 | Method of solidifying radioactive waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22587882A JPS59116593A (en) | 1982-12-24 | 1982-12-24 | Method of solidifying radioactive waste |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59116593A true JPS59116593A (en) | 1984-07-05 |
Family
ID=16836274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22587882A Pending JPS59116593A (en) | 1982-12-24 | 1982-12-24 | Method of solidifying radioactive waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59116593A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178698A (en) * | 1985-02-05 | 1986-08-11 | 株式会社日立製作所 | Method of hardening water glass |
JPS62278499A (en) * | 1986-05-28 | 1987-12-03 | 株式会社日立製作所 | Water glass solidified body of radioactive waste and manufacture thereof |
-
1982
- 1982-12-24 JP JP22587882A patent/JPS59116593A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61178698A (en) * | 1985-02-05 | 1986-08-11 | 株式会社日立製作所 | Method of hardening water glass |
JPS62278499A (en) * | 1986-05-28 | 1987-12-03 | 株式会社日立製作所 | Water glass solidified body of radioactive waste and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4530723A (en) | Encapsulation of ion exchange resins | |
EP2784039B1 (en) | Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor | |
JPH0631850B2 (en) | How to dispose of radioactive liquid waste | |
US4732705A (en) | Process for the improvement of the stability properties of solidified radioactive ion exchange resin particles | |
JP2801517B2 (en) | Curable inorganic slurry and method for solidifying waste using the inorganic slurry | |
JPS58155398A (en) | Method of solidifying radioactive waste | |
US4904416A (en) | Cement solidification treatment of spent ion exchange resins | |
JPS59116593A (en) | Method of solidifying radioactive waste | |
CN108585722B (en) | Cement-based curing material for curing waste liquid containing high-concentration boric acid nuclei and curing method thereof | |
FR2525803A1 (en) | METHOD FOR IMPROVING THE RETENTION OF RADIONUCLEIDS BY SOLIDIFIED RADIOACTIVE WASTE | |
JP2781566B2 (en) | Cement solidification method and solidified body of radioactive waste | |
KR20200125129A (en) | A method of solidifying radioactive waste and the solidified waste form thereof | |
JPH0422238B2 (en) | ||
JPH03150499A (en) | Solidification of radioactive waste | |
JP7126580B2 (en) | Method for treating borate waste liquid | |
JPS6186692A (en) | Method of solidifying spent radioactive ion exchange resin | |
JPS623698A (en) | Solidifying processing method of radioactive waste | |
JPH08285995A (en) | Method for solidification process of radioactive waste | |
JPS58186099A (en) | Method of solidifying radioactive liquid waste | |
JPS62267699A (en) | Method of solidifying and processing radioactive waste | |
JPH0672955B2 (en) | Solidification method for powder waste | |
JPH024878B2 (en) | ||
CN118206349A (en) | Full-solid waste phosphogypsum-based aggregate and preparation method and application thereof | |
JPS60120299A (en) | Method of solidifying radioactive waste | |
CN118609878A (en) | Efficient solidifying method for mixing radioactive sludge and concentrated solution |