JPH024878B2 - - Google Patents

Info

Publication number
JPH024878B2
JPH024878B2 JP3892583A JP3892583A JPH024878B2 JP H024878 B2 JPH024878 B2 JP H024878B2 JP 3892583 A JP3892583 A JP 3892583A JP 3892583 A JP3892583 A JP 3892583A JP H024878 B2 JPH024878 B2 JP H024878B2
Authority
JP
Japan
Prior art keywords
solidifying
waste
temperature
radioactive waste
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3892583A
Other languages
Japanese (ja)
Other versions
JPS59165000A (en
Inventor
Hiroko Mizuno
Shin Tamada
Yoshimasa Kiuchi
Jun Kikuchi
Susumu Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP3892583A priority Critical patent/JPS59165000A/en
Publication of JPS59165000A publication Critical patent/JPS59165000A/en
Publication of JPH024878B2 publication Critical patent/JPH024878B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、放射性廃棄物の固化方法に係り、特
に、可溶性塩を含む放射性廃棄物を水硬性の固化
材によつて固化する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for solidifying radioactive waste, and particularly to a method for solidifying radioactive waste containing soluble salts using a hydraulic solidifying material.

〔従来技術〕[Prior art]

原子力発電所から発生する放射性廃棄物を減容
固化することは、施設内の保管スペースを確保す
るとともに廃棄物を安定化する上で重要であり、
またこれらの廃棄物を、最終処分に処するに当つ
ては、何らかの形で固化する必要がある。放射性
廃棄物を減容する方法の一つとして濃縮廃液(主
成分Na2SO4)および粒状イオン交換樹脂スラリ
ーを乾燥粉末化して放射性廃棄物の体積の大部分
を占める水を除去し、固化する方法が検討されて
いる。
Reducing the volume and solidifying radioactive waste generated from nuclear power plants is important in securing storage space within the facility and stabilizing the waste.
In addition, these wastes need to be solidified in some form before final disposal. One way to reduce the volume of radioactive waste is to dry and powder concentrated waste liquid (main component Na 2 SO 4 ) and granular ion exchange resin slurry to remove water, which accounts for most of the volume of radioactive waste, and solidify it. Methods are being considered.

この方法によつて、廃液やスラリーを直接セメ
ント化する従来の方法にくらべ数分の1に減容で
きることが確認されている。このように減容に対
して効果の大きなこの方法において、セメントや
ケイ酸アルカリなどの水硬性の固化材では必ずし
も安定な固化体を作成できないという欠点があ
る。これは水硬性の固化材は固化材と水と混練し
て用いるため、この水が乾燥廃棄物に再吸水され
乾燥廃棄物が体積膨張し、固化体に破損が生ずる
ものがあるためである。
It has been confirmed that this method can reduce the volume to a fraction of that of the conventional method of directly turning waste liquid or slurry into cement. This method, which is highly effective in volume reduction, has the drawback that a stable solidified body cannot necessarily be created using a hydraulic solidifying agent such as cement or alkali silicate. This is because the hydraulic solidifying material is used by kneading the solidifying material with water, and this water is reabsorbed by the dry waste, causing the dry waste to expand in volume and causing damage to the solidified material.

例えば、ケイ酸アルカリ組成物を固化材とし
て、Na2SO4を主成分とするペレツトを、固化材
温度及び養生温度を常温で固化した場合、固化材
ペーストの自由水及び硬化に伴ない経時的に発生
する反生成水をペレツトが吸水し、ペレツトが膨
潤して、固化体にクラツクが発生するため健全な
固化体が形成されないという欠点があつた。
For example, when pellets containing Na 2 SO 4 as the main component are solidified using an alkali silicate composition as a solidification agent, the solidification material temperature and curing temperature are room temperature. The problem is that the pellets absorb the reaction water generated during the process, causing the pellets to swell and causing cracks in the solidified product, resulting in a failure to form a healthy solidified product.

一方、公開特許公報、特開昭53−8880として知
られている、ペレツトの吸水を防止するために、
プラスチツクなどをペレツトに含浸もしくくはコ
ーテイングする方法は、処理プロセスが複雑とな
り、また均一コーテイング化等の技術的問題点が
ある。さらに、コーテイング材の厚みに起因する
充填量の低減、及び高コスト等の問題点もあるた
め実用的方法とは言えない。
On the other hand, in order to prevent water absorption of pellets, known as the published patent publication, JP 53-8880,
The method of impregnating or coating pellets with plastic etc. requires a complicated treatment process and has technical problems such as uniform coating. Furthermore, there are other problems such as a reduction in the amount of filling due to the thickness of the coating material and high cost, so it cannot be said to be a practical method.

また、ペレツトの吸水を防止する対策として、
硬化時間を短縮するため、ペースト温度を上げる
方法が考えられているが、硬化が加速されて粘性
が高くなり、注入が困難となり実用的方法とは言
えない。
In addition, as a measure to prevent water absorption of pellets,
In order to shorten the curing time, a method of increasing the paste temperature has been considered, but this is not a practical method because the curing is accelerated and the viscosity increases, making injection difficult.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、一旦乾燥させた放射性廃棄物
を、水硬性の固化材で固化する際に、上述のよう
な廃棄物の膨潤を防止し、健全な固化体を形成す
る固化方法を提供することにある。
An object of the present invention is to provide a solidification method that prevents the waste from swelling as described above and forms a healthy solidified body when solidifying once dried radioactive waste with a hydraulic solidification material. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、廃棄物膨潤の原因が、廃棄物
が固化材中の自由水や反応生成水を吸水して結晶
水として取り込み水和物を形成させる点にあるこ
とを見出し、その防止法として硬化温度を上記結
晶水形成温度以上で硬化反応させる点にある。
The present invention is characterized by the discovery that the cause of waste swelling is that the waste absorbs free water and reaction product water in the solidifying material and incorporates it as crystal water to form hydrates. The point is that the curing reaction is carried out at a curing temperature equal to or higher than the crystal water formation temperature.

本発明は、以下の検討によつてなされた。例と
して、廃棄物の主成分がNa2SO4、固化材がケイ
酸アルカリ組成物の場合について、以下に説明す
る。
The present invention was made through the following considerations. As an example, a case where the main component of the waste is Na 2 SO 4 and the solidifying material is an alkali silicate composition will be described below.

Na2SO4は吸水し、Na2SO4・10H2Oの水和物
を形成する特徴がある発明者等は固化体における
クラツク形成の原因は、この水和物形成によるペ
レツトの膨潤であることを確認した。
Na 2 SO 4 absorbs water and forms hydrates of Na 2 SO 4 .10H 2 O. The inventors believe that the cause of crack formation in the solidified material is swelling of the pellets due to the formation of hydrates. It was confirmed.

Na2SO4の溶解度曲線を第1図に示す。これに
よれば、水和物は32.4℃以上であれば、理論的に
生成されないことがわかる。
The solubility curve of Na 2 SO 4 is shown in Figure 1. According to this, it can be seen that hydrates are theoretically not produced at temperatures above 32.4°C.

一方、アルカリ組成物の固化時間は、固化環境
温度に支配されている。その特性を第2図に示
す。ペレツトを加温した場合(例えば60℃)、ペ
レツト周辺の固化材は高温のため硬化時間は、第
2図の様にかなり短時間で硬化し、ペレツトから
離れた場所での固化材(例えば32.5℃)の硬化時
間の1/7である。したがつてペレツトの温度を事
前に加温しておくことによりペレツトの付近の固
化材を急速に硬化し、選択的にペレツト表層に固
化材の硬化物層を形成させることができる。
On the other hand, the solidification time of the alkaline composition is controlled by the solidification environmental temperature. Its characteristics are shown in Figure 2. When the pellets are heated (e.g. 60°C), the solidifying material around the pellets is at a high temperature, so the curing time is quite short as shown in Figure 2, and the solidifying material at a place away from the pellets (e.g. 32.5 ℃) is 1/7 of the curing time. Therefore, by warming the temperature of the pellet in advance, it is possible to rapidly harden the solidifying material near the pellet and selectively form a layer of cured material on the surface layer of the pellet.

上記のアルカリ組成物の硬化物の透水性実験結
果を第3図に示す。この図からわかるように硬化
物は、コンクリートの約10倍ほどの耐水性を有し
ている。固化体が完全に硬化を完了するまでに発
生する固化材の自由水及び反応生成水に対し十分
ペレツトを保護しうる固化材硬化被膜をペレツト
表面に、固化注入後可能な限り早期に形成させる
必要がある。被膜を可能な限り早期に形成させる
には、ペレツト温度を可能な限り上げた方が良い
がその場合注入された固化材温度を間接的に上昇
させ、硬化反応が加速し固化材温度を上げるた
め、粘性上昇を起こしペレツト間隙への固化流入
性を悪くする。この為ペレツトの加温温度は、完
全硬化時間に十分に耐えうる厚さが得られる温度
である約60℃程度が良い。第4図にペレツトを60
℃に加温した場合の温度分布を示す。
The water permeability test results of the cured product of the above alkaline composition are shown in FIG. As you can see from this figure, the cured material has about 10 times the water resistance of concrete. It is necessary to form a hardening agent hardening film on the pellet surface as soon as possible after solidification injection, which can sufficiently protect the pellets from the free water of the solidification material and reaction product water generated until the solidified material is completely hardened. There is. In order to form a film as quickly as possible, it is better to raise the pellet temperature as much as possible, but in this case, the temperature of the injected solidifying agent will be indirectly increased, accelerating the curing reaction and increasing the temperature of the solidifying agent. This causes an increase in viscosity and impairs solidification flow into the pellet gaps. For this reason, the temperature at which the pellets are heated is preferably about 60°C, which is the temperature at which a thickness sufficient to withstand the complete curing time is obtained. Figure 4 shows 60 pellets.
The temperature distribution when heated to ℃ is shown.

以上の検討により、固化材が完全に硬化する時
間、十分水に耐えうる厚さの固化材被膜をペレツ
ト表面に形成させることにより、健全な固化体を
得ることができる。またこのペレツト表面被膜
は、事前にペレツトを加温しておくことにより形
成でき、その厚さはペレツト加温温度により調整
可能である。さらにペレツト表面に、固化材被膜
が形成される前に、ペレツト内へ吸われた水分に
対しては、この水がNa2SO4の結晶水として取り
込まれNa2SO4・10H2Oとなつて体積膨張を起す
のを防ぐ為、32.5℃の温度環境にて硬化養生させ
る。
As a result of the above studies, a healthy solidified product can be obtained by forming a hardening agent coating on the pellet surface that is thick enough to withstand water during the time it takes for the solidifying material to completely harden. Further, this pellet surface coating can be formed by heating the pellet in advance, and its thickness can be adjusted by adjusting the temperature at which the pellet is heated. Furthermore, before the solidifying agent film is formed on the pellet surface, water absorbed into the pellet is incorporated as crystal water of Na 2 SO 4 and becomes Na 2 SO 4・10H 2 O. In order to prevent volumetric expansion, the material is hardened and cured at a temperature of 32.5℃.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第5図により説明す
る。本実施例は、Na2SO4を主成分とする放射性
廃棄物ペレツトを、ケイ酸アルカリ組成物固化材
として200ドラム缶で固化するものである。ま
ず、ペレツトホツパー2に貯蔵されているペレツ
ト1のヒーター6で60℃に加温する。次に固化材
タンク4中の固化材3をヒーター6で32.5℃に加
温する。さらに200ドラム缶5に加温されたペ
レツト1を約310Kg充填し、次に加温された固化
材3を約120Kg注入する。ヒーター6で容器5を
32.5℃で加温養生し、固化させる。このようにし
て作成した固化体は、ペレツトの吸水膨潤による
クラツク発生もなく、健全である。
An embodiment of the present invention will be described below with reference to FIG. In this example, radioactive waste pellets containing Na 2 SO 4 as a main component are solidified in 200 drums as an alkali silicate composition solidifying material. First, the pellets 1 stored in the pellet hopper 2 are heated to 60°C using the heater 6. Next, the solidified material 3 in the solidified material tank 4 is heated to 32.5° C. by the heater 6. Furthermore, approximately 310 kg of heated pellets 1 are filled into a 200 drum can 5, and then approximately 120 kg of heated solidification material 3 is injected. Container 5 with heater 6
Heat and cure at 32.5℃ to solidify. The solidified product produced in this manner is sound and has no cracks due to water absorption and swelling of the pellets.

本実施例によれば、温度調整のみで、健全な放
射性廃棄物ペレツトの固化体を提供できる。
According to this embodiment, a healthy solidified body of radioactive waste pellets can be provided only by adjusting the temperature.

上記実施例においては、固化材としてケイ酸ア
ルカリ組成物を用いたが、高炉セメント、ポルト
ランドセメント尿素樹脂等を用いても同様の固化
方法を用いて、同様な効果が得られるが、廃棄物
の溶解性が大きいので、それを防止するための廃
棄物の不溶化処理等を施す必要がある。
In the above examples, an alkali silicate composition was used as the solidifying material, but the same solidifying method can be used with blast furnace cement, Portland cement urea resin, etc., and the same effect can be obtained, but Since it has a high solubility, it is necessary to insolubilize the waste to prevent this.

上記実施例においては、廃棄物の形状がペレツ
トであつたが、粉状でも同様の効果が得られる。
ただし第7図に示すように、混合機10をシステ
ムに付け加える必要がある。
In the above embodiments, the waste was in the form of pellets, but the same effect can be obtained even if it is in the form of powder.
However, as shown in FIG. 7, it is necessary to add a mixer 10 to the system.

上記実施例においては、廃棄物としてNa2SO4
を用いたが、PWRブラントの廃棄物であるホウ
酸ソーダ(Na2B4O7)や他の廃棄物(例えば硫
酸カルシウム、リン酸ナトリウム等)において
も、それぞれの結晶水結合温度以上に加温温度を
調整することにより、同様な取り扱いが可能であ
る。
In the above example, Na 2 SO 4 was used as waste.
However, sodium borate (Na 2 B 4 O 7 ), which is waste from PWR blunts, and other wastes (e.g., calcium sulfate, sodium phosphate, etc.) cannot be heated above their respective crystal water binding temperatures. Similar handling is possible by adjusting the temperature.

上記実施例においては、廃棄物ペレツトを60℃
に加温したが、32.5℃であつても同様な効果を奏
する。さらに温度制御システムが簡略化される
が、被膜が形成されないため制御の失敗によりペ
レツトが膨潤を起こす可能性がある。
In the above example, the waste pellets were heated to 60°C.
Although the temperature was heated to 32.5°C, the same effect was obtained. Additionally, the temperature control system is simplified, but since no coating is formed, pellets may swell due to failure of control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ペレツトを加温するため、固
化材注入後、ペレツトの表面で固化材が急速に硬
化し、硬化物のち密な層を形成する。その層が硬
化前の自由水、硬化過程での反応生成水をペレツ
トが吸収するのを防止するので、ペレツト膨潤防
止の効果がある。
According to the present invention, since the pellets are heated, after the solidifying agent is injected, the solidifying agent rapidly hardens on the surface of the pellet, forming a dense layer of the hardened material. This layer prevents the pellets from absorbing free water before curing and reaction product water during the curing process, and is therefore effective in preventing swelling of the pellets.

さらに、養生温度を結晶水結合温度以上にする
ことにより、廃棄物の水和物形成による変質を防
止する効果がある。
Furthermore, by setting the curing temperature to be equal to or higher than the crystal water binding temperature, there is an effect of preventing deterioration of the waste due to the formation of hydrates.

また、ペレツトをコーテイングすることなく、
養生条件のみで健全な固化体が得られるので、シ
ステムの簡単化、減容性向上、経済性向上に効果
がある。
Also, without coating the pellets,
Since a healthy solidified body can be obtained only under curing conditions, it is effective in simplifying the system, improving volume reduction performance, and improving economic efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Na2SO4の溶解度と温度との関係を
示す特性図、第2図はアルカリ組成物の固化時間
と固化環境温度との関係を示す特性図、第3図は
アルカリ組成物とコンクリートの透水性を示す特
性図、第4図はペレツトを加温した場合の温度分
布を示す特性図、第5図は本実施例によるペレツ
ト固化方法を示す模式図、第6図は本実施例の変
形例による粉状廃棄物固化方法を示す模式図であ
る。 1……ペレツト、2……ペレツトホツパー、3
……固化材、4……固化材タンク、5……200
ドラム缶、6……ヒーター、7……廃棄物、8…
…廃棄物タンク、9……ミキサー、10……混合
タンク、11……固化体。
Figure 1 is a characteristic diagram showing the relationship between the solubility of Na 2 SO 4 and temperature, Figure 2 is a characteristic diagram showing the relationship between the solidification time of the alkaline composition and the solidification environment temperature, and Figure 3 is the characteristic diagram showing the relationship between the solidification time of the alkaline composition and the solidification environment temperature. Figure 4 is a characteristic diagram showing the temperature distribution when pellets are heated, Figure 5 is a schematic diagram showing the pellet solidification method according to this example, and Figure 6 is a characteristic diagram showing the concrete water permeability. It is a schematic diagram which shows the powdery waste solidification method by the modification of an example. 1...Pellet, 2...Pellet hopper, 3
...Solidifying material, 4...Solidifying material tank, 5...200
Drum, 6...Heater, 7...Waste, 8...
...Waste tank, 9...Mixer, 10...Mixing tank, 11...Solidified material.

Claims (1)

【特許請求の範囲】 1 可溶性塩を含む乾燥した放射性廃棄物を容器
に入れ、水硬性の固化剤を加えて固化する方法に
おいて、前記廃棄物および前記固化材の温度を、
前記廃棄物の結晶水形成温度以上に維持して固化
することを特徴とする放射性廃棄物の固化方法。 2 前記放射性廃棄物が、ペレツト状の乾燥体で
あることを特徴とする特許請求の範囲第1項記載
の放射性廃棄物の固化方法。 3 前記固化材および前記放射性廃棄物をそれぞ
れ前記放射性廃棄物の結晶水形成温度以上に加熱
して混合することを特徴とする特許請求の範囲第
1項または第2項に記載の放射性廃棄物の固化方
法。 4 前記放射性廃棄物の可溶性塩の主成分が硫酸
ソーダである場合に、前記固化材がケイ酸アルカ
リを主成分とするものであることを特徴とする特
許請求の範囲第1項乃至第3項のいずれかに記載
の放射性廃棄物の固化方法。
[Claims] 1. A method in which dry radioactive waste containing soluble salts is placed in a container and solidified by adding a hydraulic solidifying agent, wherein the temperature of the waste and the solidifying material is
A method for solidifying radioactive waste, characterized by solidifying the waste by maintaining the waste at a temperature equal to or higher than the water-of-crystal formation temperature. 2. The method for solidifying radioactive waste according to claim 1, wherein the radioactive waste is a dried pellet-like material. 3. The radioactive waste according to claim 1 or 2, characterized in that the solidification material and the radioactive waste are heated to a temperature higher than the crystallization water formation temperature of the radioactive waste and mixed. Solidification method. 4. Claims 1 to 3, characterized in that when the main component of the soluble salt of the radioactive waste is sodium sulfate, the solidifying material is mainly composed of an alkali silicate. A method for solidifying radioactive waste as described in any of the above.
JP3892583A 1983-03-11 1983-03-11 Method of solidfying radioactive waste Granted JPS59165000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3892583A JPS59165000A (en) 1983-03-11 1983-03-11 Method of solidfying radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3892583A JPS59165000A (en) 1983-03-11 1983-03-11 Method of solidfying radioactive waste

Publications (2)

Publication Number Publication Date
JPS59165000A JPS59165000A (en) 1984-09-18
JPH024878B2 true JPH024878B2 (en) 1990-01-30

Family

ID=12538799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3892583A Granted JPS59165000A (en) 1983-03-11 1983-03-11 Method of solidfying radioactive waste

Country Status (1)

Country Link
JP (1) JPS59165000A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646236B2 (en) * 1985-04-17 1994-06-15 株式会社日立製作所 How to dispose of radioactive waste
AU593303B2 (en) * 1985-11-19 1990-02-08 Konishiroku Photo Industry Co., Ltd. Method for evaporation treatment of photographic processing waste solution and device therefor

Also Published As

Publication number Publication date
JPS59165000A (en) 1984-09-18

Similar Documents

Publication Publication Date Title
US4363757A (en) Method for noncontaminating solidification for final storage of aqueous, radioactive waste liquids
JP3002525B2 (en) Solidified radioactive waste and method of treating radioactive waste
CA1207807A (en) Process for storing radioactive waste in the ground
JPS60166898A (en) Method and device for solidifying and treating radioactive waste
JPH0631850B2 (en) How to dispose of radioactive liquid waste
JPH0531120B2 (en)
JPS60218100A (en) Method of kneading cement
JPH024878B2 (en)
JP2781566B2 (en) Cement solidification method and solidified body of radioactive waste
JPS61178698A (en) Method of hardening water glass
KR900000341B1 (en) Solidified radioactive wastes and process for producing the same
JPH032280B2 (en)
JPH03150499A (en) Solidification of radioactive waste
JP2993486B2 (en) Radioactive waste filling container and solidified radioactive waste
JPH0672955B2 (en) Solidification method for powder waste
JPH0760198B2 (en) Method for solidifying radioactive waste
JP2993485B2 (en) Solidification material for radioactive waste and method for solidifying radioactive waste
JPS62267699A (en) Method of solidifying and processing radioactive waste
JPS5871499A (en) Cement-solidified material of radioactive waste and its manufacture
JPS60122398A (en) Method of solidifying radioactive waste
JPS623698A (en) Solidifying processing method of radioactive waste
JPS60120299A (en) Method of solidifying radioactive waste
JPH02162298A (en) Solidification of waste
JPH0631851B2 (en) How to dispose of radioactive waste
JPH0224360B2 (en)