JPS5911652B2 - Alloy for hydrogen storage - Google Patents
Alloy for hydrogen storageInfo
- Publication number
- JPS5911652B2 JPS5911652B2 JP57039554A JP3955482A JPS5911652B2 JP S5911652 B2 JPS5911652 B2 JP S5911652B2 JP 57039554 A JP57039554 A JP 57039554A JP 3955482 A JP3955482 A JP 3955482A JP S5911652 B2 JPS5911652 B2 JP S5911652B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hydrogen
- hydrogen storage
- amount
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Description
【発明の詳細な説明】
本発明は、水素貯蔵用合金に関し、さらに詳しくは、2
50℃以上の温度で容易に水素を吸蔵および放出するこ
とができ、かつ、この吸蔵および放出の特性が長時間に
亘って変化しない工業的規模で使用可能な水素貯蔵用合
金に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to hydrogen storage alloys, and more particularly to hydrogen storage alloys.
The present invention relates to a hydrogen storage alloy that can easily store and release hydrogen at temperatures of 50° C. or higher, and whose storage and release characteristics do not change over a long period of time and can be used on an industrial scale.
従来、水素貯蔵用合金としてはMg、希土類金属、Ti
等を基本とするものが知られている。Conventionally, hydrogen storage alloys include Mg, rare earth metals, and Ti.
Those based on the above are known.
例えば、Mg2Ni 、LaNi5.TiFe等であり
、これらは水素を金属単体においても吸蔵あるいは放出
する金属(Mg 、La 、Ti等)と水素を活性化す
る゛触媒能を有する金属(Ni、Fe等)から成ってい
る。For example, Mg2Ni, LaNi5. TiFe, etc., and these are made of metals (Mg, La, Ti, etc.) that occlude or release hydrogen even in a single metal, and metals (Ni, Fe, etc.) that have a catalytic ability to activate hydrogen.
近来、金属水素化物を工業化・実用化することを目標と
する研究が進んできた。In recent years, research has been progressing with the goal of industrializing and putting metal hydrides into practical use.
その結果、比較的高温において水素を吸収・放出するM
gを基本とする合金では、作業温度(約250〜400
℃)が合金そのものの融解温度(例えば、Mg−23,
3重量%Ni合金においては503°C)に近く、長期
間、水素貯蔵用材料として使用した場合に合金と水素と
の反応の進行速度が減少することが見い出された。As a result, M absorbs and releases hydrogen at relatively high temperatures.
For alloys based on g, the working temperature (approximately 250-400
°C) is the melting temperature of the alloy itself (for example, Mg-23,
It was found that the reaction rate between the alloy and hydrogen decreases when used as a hydrogen storage material for a long period of time (approximately 503°C) for a 3 wt% Ni alloy.
この現象は完全に解明されてはいないが、作業温度が融
解温度に近いために、合金粒子が焼結を起して水素との
接触面積が減少する効果と、反応の活性点と考えられて
いる構造的な乱れを持つ合金表面の部位が徐々に規則的
表面にもどる効果との一方あるいはこれら両者の相乗作
用によるものと考えられる。Although this phenomenon is not completely understood, it is thought that the working temperature is close to the melting temperature, which causes the alloy particles to sinter, reducing the contact area with hydrogen, and also as active sites for the reaction. This is thought to be due to the effect that the structurally disordered parts of the alloy surface gradually return to a regular surface, or the synergistic effect of both.
本発明は、上述した事情にかんがみてなされたもので、
Mgを基本金属とはするが比較的高温度領域における作
業温度でも水素との反応活性を長時間に亘って保持し得
る水素貯蔵用合金を提供することを目的とする。The present invention was made in view of the above-mentioned circumstances, and
The object of the present invention is to provide a hydrogen storage alloy that uses Mg as a basic metal and can maintain reaction activity with hydrogen for a long time even at working temperatures in a relatively high temperature range.
このため、本発明の水素貯蔵用合金は、一般式Mg−A
−Thで表わされるものであって、式中、Aは第■族遷
移金属を表わし、Aの量は全体に対し1〜55重量%で
、Thの量は全体に対し1〜40重量%の範囲であるこ
とを特徴とする。Therefore, the hydrogen storage alloy of the present invention has the general formula Mg-A
-Th, where A represents a Group II transition metal, the amount of A is 1 to 55% by weight based on the total, and the amount of Th is 1 to 40% by weight based on the total. It is characterized by a range.
以下、本発明の構成について詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.
本発明の合金を構成する金属のうちA成分は、F e
y Co t N Iなどのような長周期型周期律表の
第■族の遷移金属である。Among the metals constituting the alloy of the present invention, the A component is Fe
It is a transition metal of group Ⅰ of the long period periodic table, such as y Co t N I.
このA成分は、水素の気体分子(H2)を分解してH原
子(H)として合金表面に吸着する反応過程における反
応を速める働きをする触媒として加えられるものである
。This component A is added as a catalyst that acts to speed up the reaction in the reaction process of decomposing hydrogen gas molecules (H2) and adsorbing them to the alloy surface as H atoms (H).
そして、その量は、合金の全体量に対し1〜55重量%
の範囲であり、3〜30重量%の範囲であるこ瀝が好ま
しい。The amount is 1 to 55% by weight based on the total amount of the alloy.
It is preferably in the range of 3 to 30% by weight.
A成分の量が1%未満の場合には、触媒としての効果に
乏しい。When the amount of component A is less than 1%, the effect as a catalyst is poor.
一方、55重量%を越えるとA成分金属が単離あるいは
反応に関係ない相として存在するようになるから、1〜
55重量%であることが必要である。On the other hand, if the amount exceeds 55% by weight, the A component metal will be isolated or exist as a phase unrelated to the reaction.
It is necessary that the content be 55% by weight.
また、Th (トIJウム)は、Mgが水素を吸蔵・放
出する温度において安定な水素化物を形成する金属であ
る。Further, Th (Th) is a metal that forms a stable hydride at the temperature at which Mg absorbs and releases hydrogen.
このThはMgと金属間化合物を形成する。This Th forms an intermetallic compound with Mg.
したがって、Thは合金中において機械的に分散してい
るのではなく、金属間化合物の形態で存在するためその
分散が極めて良い。Therefore, since Th is not mechanically dispersed in the alloy but exists in the form of an intermetallic compound, its dispersion is extremely good.
Thの量は合金の全体量に対し1〜40重量%の範囲で
あり、5〜40重量%の範囲であるこ諒が好ましい。The amount of Th is in the range of 1 to 40% by weight, preferably in the range of 5 to 40% by weight, based on the total amount of the alloy.
Thの量が1%未満の場合には、量が少ないため効果が
表われないこととなり、一方、40重量%を越えた場合
には、MgとThよりなる金属間化合物のみで合金全体
を占めることとなるので、1〜40重量%でなけれはな
らないのである。If the amount of Th is less than 1%, the effect will not be exhibited due to the small amount; on the other hand, if it exceeds 40% by weight, only the intermetallic compound consisting of Mg and Th will occupy the entire alloy. Therefore, it must be between 1 and 40% by weight.
本発明の合金は、ルツボの中でMg金属を融解せしめ、
それに計算量のA、Th両酸成分金属を加え、完全に溶
解させた後に鋳型に注ぎ込むことによりきわめて容易に
製造できる。The alloy of the present invention melts Mg metal in a crucible,
It can be produced very easily by adding calculated amounts of both A and Th acid component metals, completely melting them, and then pouring them into a mold.
この場合のこれら使用金属は、不純物を1%程度含む工
業的品位のものでもよいが、得られる合金の吸蔵水素量
を大きくすることを考慮して、純度99%以上であるこ
とが好ましい。The metals used in this case may be of industrial grade containing about 1% of impurities, but in consideration of increasing the amount of absorbed hydrogen in the resulting alloy, it is preferable that the metals have a purity of 99% or more.
このようにして得られる合金は、適当な大きさに粗砕し
て容器内に収め、作業温度で排気した後、0.1〜4M
Pa程度の圧力の水素を容器内に導入することを数回繰
り返すことにより、水素を可逆的にかつ速やかに吸蔵・
放出するようになる。The alloy obtained in this way is roughly crushed to an appropriate size, placed in a container, and after being evacuated at working temperature, it is 0.1 to 4 M
By repeating the introduction of hydrogen at a pressure of about Pa several times into the container, hydrogen can be reversibly and quickly absorbed and absorbed.
It starts to emit.
なお、上記のように水素の導入を数回繰り返すと、Th
とMgとの合金相が水素と反応してMgの水素化物とT
hの水素化物とに分相するため、非常に微細なTh水素
化物の安定な相が分散してMgの粒子の成長を防止する
。Note that if the introduction of hydrogen is repeated several times as described above, Th
The alloy phase of Mg and Mg reacts with hydrogen to form Mg hydride and T.
Since the phase is separated into Th hydride and Th hydride, a very fine stable phase of Th hydride is dispersed and prevents the growth of Mg particles.
そして、さらに水素圧力の印加および排気を繰り返して
もTh水素化物は分解しないで微細金属水素化物として
合金内に存在する。Even if hydrogen pressure application and evacuation are repeated, the Th hydride does not decompose and remains in the alloy as a fine metal hydride.
したがって、合金の融解温度に近い作業温度においても
Mgの微粒子は焼結しないので反応活性が長期間に亘っ
て維持される。Therefore, even at operating temperatures close to the melting temperature of the alloy, the Mg fine particles do not sinter, so that the reaction activity is maintained for a long period of time.
以上述べたように、本発明の水素貯蔵用合金は、公知の
合金製造法により容易に製造できるので安価であり、ま
た、比較的高温領域において可逆的にしかも長期間に亘
って水素の吸蔵・放出を繰り返すことが可能である。As described above, the hydrogen storage alloy of the present invention is inexpensive because it can be easily manufactured by a known alloy manufacturing method, and can absorb and absorb hydrogen reversibly and over a long period of time in a relatively high temperature range. It is possible to repeat the release.
したがって、本発明の水素貯蔵用合金は、水素の輸送材
料、水素化反応を用いた熱貯蔵材料等に好ましく利用で
きる。Therefore, the hydrogen storage alloy of the present invention can be preferably used as a hydrogen transport material, a heat storage material using a hydrogenation reaction, and the like.
以下、本発明を実施例にもとづき詳述する。Hereinafter, the present invention will be explained in detail based on examples.
実施例
ルツボ溶解法により、MgにNiを5重量%、Thを5
重量%加えた合金を製造した。Example By a crucible melting method, 5% by weight of Ni and 5% of Th were added to Mg.
An alloy containing % by weight was prepared.
合金を粗砕した後、耐圧容器に入れ、330℃で真空排
気と0.1〜40MPaの水素の導入とを数回繰り返し
た。After the alloy was crushed, it was placed in a pressure container, and evacuation at 330° C. and introduction of hydrogen at 0.1 to 40 MPa were repeated several times.
これにより、・合金は水素を速やかに吸蔵・放出し、か
つ、微粉化した。As a result, the alloy quickly absorbed and released hydrogen, and was pulverized.
つぎに、水素雰囲気下の熱重量分析法によって得られた
Mgと23.3重量%Niとからなる従来公知の合金と
、本発明の上記合金とについて、330℃における水素
との反応速度を水素雰囲気下において熱天秤によって測
定した。Next, we calculated the reaction rate with hydrogen at 330°C for a conventionally known alloy consisting of Mg and 23.3 wt% Ni obtained by thermogravimetric analysis in a hydrogen atmosphere and the above alloy of the present invention. It was measured using a thermobalance in an atmosphere.
この結果を下記表に示す。The results are shown in the table below.
上記表から明らかなように、活性化するための排気−水
素圧印加の繰り返し直後においては両者に差はみられな
いが、一方、138時間、作業温度で放置した場合には
、本発明の合金においては活性の劣化はみられないが従
来公知の合金では明白な劣化がみられることがわかる。As is clear from the above table, there is no difference between the two immediately after repeated application of exhaust gas and hydrogen pressure for activation, but on the other hand, when left at working temperature for 138 hours, the alloy of the present invention It can be seen that although no deterioration in activity is observed in the alloys, clear deterioration is observed in the conventionally known alloys.
したがって、本発明の合金は、従来のMgを基本金属さ
する水素貯蔵用合金の欠点であった反応活性の時間経過
に伴なう劣化が発生しないので、繰り返し使用を長期間
に亘って行なうことが可能である。Therefore, the alloy of the present invention does not suffer from deterioration of reaction activity over time, which was a drawback of conventional hydrogen storage alloys using Mg as the basic metal, and therefore can be used repeatedly over a long period of time. is possible.
Claims (1)
。 ただし、式中、Aは第■族遷移金属を表わし、Aの量は
全体に対し1〜55重量%であり、Thの量は全体に対
し1〜40重量%の範囲である。[Claims] 1. A hydrogen storage alloy represented by the general formula Mg-A-Th. However, in the formula, A represents a Group Ⅰ transition metal, the amount of A is 1 to 55% by weight based on the total, and the amount of Th is in the range of 1 to 40% by weight based on the total.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57039554A JPS5911652B2 (en) | 1982-03-15 | 1982-03-15 | Alloy for hydrogen storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57039554A JPS5911652B2 (en) | 1982-03-15 | 1982-03-15 | Alloy for hydrogen storage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58157943A JPS58157943A (en) | 1983-09-20 |
JPS5911652B2 true JPS5911652B2 (en) | 1984-03-16 |
Family
ID=12556281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57039554A Expired JPS5911652B2 (en) | 1982-03-15 | 1982-03-15 | Alloy for hydrogen storage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5911652B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2511526B2 (en) * | 1989-07-13 | 1996-06-26 | ワイケイケイ株式会社 | High strength magnesium base alloy |
US6682609B1 (en) * | 1994-07-22 | 2004-01-27 | Kabushiki Kaisha Toshiba | Hydrogen absorbing alloy, method of surface modification of the alloy, negative electrode for battery and alkaline secondary battery |
US6726783B1 (en) * | 2000-05-18 | 2004-04-27 | Energy Conversion Devices, Inc. | High storage capacity alloys having excellent kinetics and a long cycle life |
CN111996429A (en) * | 2020-09-27 | 2020-11-27 | 钢铁研究总院 | La-Y-Mg-Ni quaternary hydrogen storage alloy with high hydrogen absorption and desorption rate and preparation method thereof |
-
1982
- 1982-03-15 JP JP57039554A patent/JPS5911652B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS58157943A (en) | 1983-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4368143A (en) | Composition for the storage of hydrogen and method of making the composition | |
EP1129027B1 (en) | Lithium-based hydrogen storage compositions | |
JP3528599B2 (en) | Hydrogen storage alloy | |
JP5300265B2 (en) | Magnesium alloy for hydrogen storage | |
GB1593764A (en) | Nickel mischmetal calcium alloys for hydrogen storage | |
JP4280816B2 (en) | Hydrogen storage material and manufacturing method thereof | |
JPS5911652B2 (en) | Alloy for hydrogen storage | |
US4783329A (en) | Hydriding solid solution alloys having a body centered cubic structure stabilized by quenching near euctectoid compositions | |
JPS626739B2 (en) | ||
JPS5938293B2 (en) | Titanium-chromium-vanadium hydrogen storage alloy | |
JPS61199045A (en) | Hydrogen occluding alloy | |
US4576639A (en) | Hydrogen storage metal material | |
JPH0713274B2 (en) | Reversible storage / release material for hydrogen | |
EP0106333B1 (en) | Hydrogen storage metal material | |
JPS5947022B2 (en) | Alloy for hydrogen storage | |
JP2000239703A (en) | Manufacture of hydrogen storage alloy powder excellent in oxidation resistance | |
JPS61143544A (en) | Material for reversibly occluding and releasing hydrogen | |
JPS5841334B2 (en) | Quaternary hydrogen storage alloy | |
JP2008095172A (en) | Hydrogen storage material and manufacturing method therefor | |
JPH11264041A (en) | Hydrogen absorption alloy | |
JP2002060804A (en) | Hydrogen storage alloy excellent in durability and its production method | |
US4350673A (en) | Method of storing hydrogen | |
JP2002105511A (en) | Hydrogen storage alloy having excellent durability and its production method | |
JP2006028632A (en) | Hydrogen storage alloy and hydrogen storage vessel | |
JPS5939493B2 (en) | Titanium-cobalt multi-component hydrogen storage alloy |