JPS59116326A - Production installation for grain oriented silicon steel sheet - Google Patents

Production installation for grain oriented silicon steel sheet

Info

Publication number
JPS59116326A
JPS59116326A JP22637682A JP22637682A JPS59116326A JP S59116326 A JPS59116326 A JP S59116326A JP 22637682 A JP22637682 A JP 22637682A JP 22637682 A JP22637682 A JP 22637682A JP S59116326 A JPS59116326 A JP S59116326A
Authority
JP
Japan
Prior art keywords
annealing
equipment
steel sheet
decarburization
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22637682A
Other languages
Japanese (ja)
Inventor
Yoshinori Kobayashi
小林 義紀
Yoshiaki Iida
飯田 嘉明
Katsuo Iwamoto
岩本 勝生
Isao Matoba
的場 伊三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22637682A priority Critical patent/JPS59116326A/en
Publication of JPS59116326A publication Critical patent/JPS59116326A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To provide an installation for cold rolling a hot rolled silicon steel sheet to a final thickness and subjecting the same to decarburization annealing, coating of an annealing separating agent and finish annealing which can reduce considerably energy cost by incorporating dry coating for said coating and retaining the temp. in the installation array between at least the decarburizing and coating. CONSTITUTION:A steel sheet 1 finished to a final thickness by cold rolling is annealed continuously in a decarburization annealing furnace 5 and is coated thereon with an annealing separating agent by a coater 7, whereafter it is finish-annealed in a finish annealing furnace 16. The installation array from the outlet of the furnace 5 to the device 7 or up to the inlet of the furnace 16 is held under a cover 8 so that the temp. thereof is retained and the inside is made airtight. A dry coater which sticks powder of the annealing separating agent on the surface of the steel sheet in a dry state, that is, without preparing the same into a water slurry, is used for the coater 7. The loss of energy owing to cooling after the decarburization annealing is thus averted, and the need for part of the heating energy for drying or baking after the coating of the annealing separating agent and the heating energy in the finish annealing is eliminated.

Description

【発明の詳細な説明】 この発明は方向性珪素鋼板を製造するための一連の製造
設備に関し、特にその脱炭焼鈍から焼鈍分離剤塗布、お
よび仕上焼鈍までの製造設備に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a series of manufacturing equipment for manufacturing grain-oriented silicon steel sheets, and in particular to manufacturing equipment from decarburization annealing to application of an annealing separator and final annealing.

一般に方向性珪素鋼板は、磁気特性として磁化特性およ
び鉄損特性が優れていることが要求されており、これら
の磁気特性が優れた方向性珪素銅板を得るためには、圧
延方向に(110)[001]方位の2次再結晶が先鋭
に揃った2次再結晶集合組織、すなわち所謂ゴス組織を
形成することが必要不可欠である。このように(110
)[001]方位の先鋭な2次再結晶粒を発達さけるた
めには、一般にインヒビターとしてMnS、1.4n 
S 8等の微細析出物が使用され、必要に応じて粒界偏
析型元I’i テアルS 11 、△s、Bl、Pb、
Snなどが併用されている。
In general, grain-oriented silicon steel sheets are required to have excellent magnetic properties such as magnetization characteristics and iron loss characteristics, and in order to obtain grain-oriented silicon copper sheets with excellent magnetic properties, (110) It is essential to form a secondary recrystallization texture in which secondary recrystallization in the [001] orientation is sharply aligned, that is, a so-called Goss texture. Like this (110
) [001] In order to avoid the development of sharp secondary recrystallized grains, MnS, 1.4n as an inhibitor is generally used.
Fine precipitates such as S 8 are used, and if necessary, grain boundary segregation type elements I'i teal S 11 , △s, Bl, Pb,
Sn etc. are used together.

ところで上述のような方向性珪素鋼板を製造するにあた
っては、先ずインヒビターを均一に微細分散させるため
にスラブ加熱を1250℃以上の高温で行ってインヒビ
ターを隔離固溶させておく必要があるとされている。そ
して適切な集合組織の形成のために適当量のCを含有さ
せておき、上記スラブ加熱に引続く熱延工程と、1回の
冷間圧延、または中間焼鈍を挾む2回以上の冷間圧延に
よって適切な集合組織の形成を図り、また必要に応じて
熱延板の焼鈍を行うこともある。上記冷間圧延により最
終板厚となった珪素鋼板に対しては、m性に有害なCの
除去と1次再結晶を目的としだ脱炭焼鈍を施し、次いで
1490を主成分とする焼鈍分離剤を塗布してこれを乾
燥させた後、2次再結晶と絶縁性のグラス被膜生成のた
めの長時間仕上焼鈍を行う。この後には、余分な焼鈍分
離剤を除去し、必要に応じて張力コーティングの付与や
形状の矯正を行い、製品とする。
By the way, in manufacturing the above-mentioned grain-oriented silicon steel sheet, it is said that it is first necessary to heat the slab at a high temperature of 1250°C or higher to isolate and dissolve the inhibitor in order to uniformly and finely disperse the inhibitor. There is. Then, an appropriate amount of C is contained in order to form an appropriate texture, and a hot rolling process subsequent to the above slab heating, one cold rolling, or two or more cold rolling steps sandwiching intermediate annealing are performed. An appropriate texture is formed by rolling, and the hot-rolled sheet may be annealed if necessary. The silicon steel plate that has reached its final thickness through the cold rolling described above is subjected to decarburization annealing for the purpose of removing C that is harmful to the m properties and primary recrystallization, and then is annealed and separated using 1490 as the main component. After applying the agent and drying it, a long-term finishing annealing is performed to perform secondary recrystallization and to form an insulating glass film. After this, excess annealing separation agent is removed, tension coating is applied and the shape is corrected as necessary, and the product is made into a product.

上)本のように方向性珪素鋼板の製造にあたっては極め
て複雑な工程を必要とし、特に加熱を伴う工程が多い。
Above) The production of grain-oriented silicon steel sheets requires extremely complex processes, especially those that involve heating.

すなわち加熱を伴う工程としては、少なくとも熱延前の
高温スラブ加熱、冷延後の脱炭焼鈍、塗布した焼鈍分離
剤の加熱乾燥、および最終長時間仕上焼鈍が必要であり
、このほか熱延板の焼鈍や、2回以上の冷間圧延を行う
場合の中間焼鈍等の工程もある。このように多数の加熱
を伴う工程を要するに加え、従来の方向性珪素鋼板の製
造設備においては焼鈍や乾燥のための設備が別個独立の
設備となっており、一つの工程を終了した鋼板は常温ま
で一旦冷却されてから次の工程に付されるのが通常であ
るから、焼鈍や乾燥などの各工程では鋼板を常温から必
要温度まで再加熱しているのが現状である。したがって
従来の方向性珪素鋼板の製造においてはエネルギー消費
量が著しく多く、そのためエネルギーコストが高騰しつ
つある近年においては方向性珪素鋼板の製造に占めるエ
ネルギーコストのウェイトが著しく大きくなっているか
ら、そのエネルギー消費量の低減が極めて重要な課題と
なっている。
In other words, the steps that involve heating include at least high-temperature slab heating before hot rolling, decarburization annealing after cold rolling, heating drying of the applied annealing separator, and final long finishing annealing. There are also processes such as annealing and intermediate annealing when cold rolling is performed two or more times. In addition to requiring multiple heating processes, conventional production equipment for grain-oriented silicon steel sheets has separate equipment for annealing and drying, and the steel sheets that have undergone one process are kept at room temperature. Normally, the steel sheet is cooled to a certain temperature before being subjected to the next process, so in each process such as annealing and drying, the steel plate is currently reheated from room temperature to the required temperature. Therefore, the amount of energy consumed in the production of conventional grain-oriented silicon steel sheets is extremely high.As a result, in recent years, as energy costs have been rising rapidly, the weight of energy costs in the production of grain-oriented silicon steel sheets has become significantly large. Reducing energy consumption has become an extremely important issue.

この発明は以上の事情に鑑みてなされたもので、方向性
珪素鋼板の製造におけるエネルギーコストを従来よりも
格段に低減し得る製造設備を提供することを目的とする
ものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide manufacturing equipment that can significantly reduce energy costs in manufacturing grain-oriented silicon steel sheets compared to conventional methods.

本発明者等は、前述のように従来設備では一つの工程を
終了した鋼板は常温まで一旦冷却されてから次の工程に
付され、改めて次工程で常温力)ら必要温度まで加熱し
ていることに着目し、各工程での冷却過程について検討
した結果、脱炭焼鈍やその後の各工程では冷却過程が特
に方向性珪素鋼板の特性に大きな影響を及ぼさないこと
、また脱炭焼鈍後の焼鈍分離剤の塗布は、必ずしも常温
まで冷却した状態で行う必要がなく、焼鈍分離剤を乾燥
状態のまま塗布することによって脱炭焼鈍後の冷却過程
を不要となし1qることを見出し、この発明をなづに至
ったのである。
The present inventors discovered that, as mentioned above, in conventional equipment, a steel plate that has undergone one process is once cooled to room temperature before being subjected to the next process, and then heated again from room temperature to the required temperature in the next process. Focusing on this, we investigated the cooling process in each process and found that the cooling process does not have a particularly large effect on the properties of grain-oriented silicon steel sheets during decarburization annealing and each subsequent process, and that the annealing process after decarburization annealing It was discovered that the application of the separating agent does not necessarily have to be carried out in a state cooled to room temperature, and that by applying the annealing separating agent in a dry state, the cooling process after decarburization annealing can be made unnecessary, and this invention has been achieved. I reached Nazu.

すなわちこの発明の製造設備は、珪素鋼の熱延板を1回
または中間焼鈍を挾む2回以上の冷間圧延により最終板
厚とした後脱炭焼鈍を行(X、さらに焼鈍分離剤を塗布
した後、仕上焼鈍を行うための一連の方向性鋼板の製造
設備において、焼鈍分離剤を塗布するための塗布装置を
、焼鈍分離剤粉末を乾燥状態で直接塗布する乾燥塗布装
置で構成し、かつ脱炭焼鈍を行うための焼鈍炉出口から
塗布装置出口までの間の一連の設備列を保温するととも
にその設備列を気密に構成したことを特徴とするもので
あり、このように構成することによって鋼板温度を少な
くとも焼鈍分離剤塗布後まで高温に保持して、塗布後の
乾燥や焼付けのための加熱を不要として省エネルギーを
図ったものである。
That is, the manufacturing equipment of the present invention performs decarburization annealing (X, and further applies an annealing separator) after cold rolling a hot rolled silicon steel sheet once or twice or more with intermediate annealing to achieve the final thickness. In a series of production equipment for grain-oriented steel sheets for finishing annealing after coating, the coating device for coating the annealing separator is configured with a dry coating device that directly applies the annealing separator powder in a dry state, Further, a series of equipment rows from the annealing furnace outlet to the coating device exit for performing decarburization annealing are kept warm, and the equipment rows are configured in an airtight manner. By this, the steel plate temperature is maintained at a high temperature at least until after the application of the annealing separator, thereby eliminating the need for heating for drying and baking after application, thereby saving energy.

さらにこの発明の設備列は、前記同様に焼鈍分離剤塗布
装置として乾燥塗布装置を用い、脱炭焼鈍炉出口から仕
上焼鈍炉入口までの間の一連の設備列のすべてを保湿し
、かつその設備列をすべて気密に構成し、これによって
脱炭焼鈍により鋼板に与えられた顕熱を仕上焼鈍にも有
効利用し、仕」二焼鈍のエネルギー消費間の低減をも図
ったものである。
Furthermore, the equipment row of the present invention uses a dry coating device as an annealing separator application device as described above, moisturizes all of the equipment row from the decarburization annealing furnace outlet to the finishing annealing furnace entrance, and All of the rows are constructed in an airtight manner so that the sensible heat imparted to the steel plate during decarburization annealing can be effectively used for finish annealing, thereby reducing energy consumption between the first and second annealing.

以下この発明の設備についてさらに具体的に説明する。The equipment of this invention will be explained in more detail below.

第1図はこの発明の一連の方向性珪素鋼板の製造設備の
一例を示すものであり、冷間圧延によりJNI?板厚に
仕上げられた鋼板1はペイオフリール2から繰出されて
溶接機3により連続化され、さらにルーパー4を軽てI
IR炭焼鈍炉5に連続的に装入される。この脱炭焼鈍炉
5は、連続炉にて構成されており、その出口側にはルー
パー6および塗布装置7がその順に配列されている。こ
こで前記脱炭焼鈍炉5の出口とルーパー6の入口との間
、およびルーパー6の出口と塗布装置7の入口との間は
それぞれ保温・気密カバー8A、8Bによって取囲まれ
ており、またルーパー6および塗布装@7自体もそれぞ
れ保温・気密カバー8c、8Dによって覆われている。
FIG. 1 shows an example of production equipment for a series of grain-oriented silicon steel sheets according to the present invention, in which JNI? A steel plate 1 finished to a certain thickness is fed out from a payoff reel 2, made continuous by a welding machine 3, and then passed through a looper 4.
The IR coal is continuously charged into the annealing furnace 5. This decarburization annealing furnace 5 is constituted by a continuous furnace, and a looper 6 and a coating device 7 are arranged in that order on the exit side thereof. Here, between the outlet of the decarburization annealing furnace 5 and the inlet of the looper 6, and between the outlet of the looper 6 and the inlet of the coating device 7 are surrounded by heat-retaining/airtight covers 8A and 8B, respectively. The looper 6 and the applicator @7 themselves are also covered with heat-insulating and airtight covers 8c and 8D, respectively.

的記塗布装置7は、焼鈍分離剤の粉末を乾燥状態のまま
、すなわち水スラリーとせずにm板表面に付着させるよ
うに構成されている。
The coating device 7 is configured to apply the annealing separation agent powder to the surface of the m-plate in a dry state, that is, without turning it into a water slurry.

前記塗布装置7によって焼鈍分離剤粉末が連続的に塗布
された網板は、剪断機〇を経て所定長さごとにテンショ
ンリール10により巻取られ、その巻取られたコイル1
1はリール10ごとコイルカー12により支持されて搬
送され、コイル反転装置13によってコイル10が直立
覆るように反転され、さらにインナーカバー着装櫟14
により± コイル10にインナーカバー15が被せられ、仕上焼鈍
炉16の入口16Aに至る。ここで塗布装W7の出口か
ら仕上焼鈍炉16の入口16Aまでの間の諸設備は、そ
の外側が連続一体化した保湿壁17によって覆われてお
り、この保温壁17により保温および気密化されている
。なお前記テンションリール10は、耐熱鋼あるいはセ
ラミック等の耐熱材料で形成されたものであり、巻取っ
たコイルの中心部を保持するための変形防止芯の酌きを
兼ねたカセット式のもので構成され、巻取ったコイルご
と後工程へ搬送されて仕上焼鈍後のペイオフリールと兼
用される。
The mesh plate to which the annealing separator powder has been continuously applied by the coating device 7 passes through a shearer 〇 and is wound up by a tension reel 10 every predetermined length, and the wound coil 1
1 is supported and conveyed along with the reel 10 by a coil car 12, and is reversed by a coil reversing device 13 so that the coil 10 is upright and covered, and is further transferred to an inner cover mounting rack 14.
As a result, the inner cover 15 is placed over the coil 10 and reaches the inlet 16A of the finishing annealing furnace 16. Here, the equipment between the outlet of the coating device W7 and the entrance 16A of the finishing annealing furnace 16 is covered on the outside by a continuous and integrated moisture retaining wall 17, and is kept warm and airtight by this heat retaining wall 17. There is. The tension reel 10 is made of heat-resistant material such as heat-resistant steel or ceramic, and is of a cassette type that also serves as a deformation-preventing core to hold the center of the wound coil. The coil is then transported to the subsequent process along with the wound coil, and is also used as a payoff reel after final annealing.

前記仕上焼鈍炉16にはコイルカー12上に載12上に
載置された状態で出口16Bから搬出され、インナーカ
バー1112却場18においてインナーカバー15が除
去され、ざらにコイルカー12により張力付加コーディ
ングや矯正等の後工程へ搬送され、その後工程では前記
テンションリール10がペイオフリールとして1能する
The final annealing furnace 16 is loaded on the coil car 12 and carried out from the outlet 16B, and the inner cover 15 is removed at the disposal area 18 for the inner cover 1112, and the coil car 12 roughly applies tension coating and The tension reel 10 is transported to a subsequent process such as straightening, and in the subsequent process, the tension reel 10 functions as a payoff reel.

以上の設備において、脱炭焼鈍炉5の出口から仕上焼鈍
炉16の入口16Aまでの間の諸設備はいずれも保温さ
れているから、脱炭焼鈍がなされた鋼板は冷却されるこ
となく高温に保持されたまま仕上焼鈍炉16に至る。
In the above equipment, all the equipment between the exit of the decarburization annealing furnace 5 and the entrance 16A of the finish annealing furnace 16 is kept warm, so the steel plate that has been decarburized and annealed is heated to a high temperature without being cooled. It reaches the finish annealing furnace 16 while being held.

脱炭焼鈍は前述の如く鋼中のCの除去と鋼板表面へのサ
ブスケールの付与および1次再結晶組織の形成を目的と
しており、その昇温速度、焼鈍温度および雰囲気が方向
性珪素m板の磁気特性に影響を及ばすことは良く知られ
ているところであるが、脱炭焼t’V!後に鋼板を常温
まで冷却する過程は方向性珪素鋼板の特性に特に影響を
与えず、したがって脱炭焼鈍後の冷却は省略できる。ま
た脱炭焼鈍後の焼鈍分離剤の鋼板表面への塗布は、従来
は銅板が常温まで冷却されているため水スラリーを用い
て塗布後乾燥させる工程が採用されているが、必ずしも
鋼板が常温に冷却された状態で塗布覆る必要はない。さ
らに仕上焼鈍も脱炭焼鈍と同一温度までは単に昇温すれ
ば良く、特に方向性珪素鋼板の特性に影響を与えないか
ら、この昇温過程は必要不可欠ではなく、省略できる、
そこで第1図に示される設備では、前述のように脱炭焼
鈍後、鋼板を冷却することなく保温したまま焼鈍分離剤
の塗布を行いかつその冷却を行わない鋼板をそのまま仕
上焼鈍に付すことによって、脱炭焼鈍後の冷却による無
駄なエネルギーロスを避け、焼鈍分離剤塗布後の乾燥や
焼付けのための加熱エネルギーおよび仕上焼鈍における
Mlのためのエネルギーの一部を不要とし、これにより
従来の設備と比して格段の省エネルギーを図ることがで
きたのである。
As mentioned above, the purpose of decarburization annealing is to remove C from the steel, add subscale to the surface of the steel sheet, and form a primary recrystallized structure. It is well known that decarburization affects the magnetic properties of t'V! The process of later cooling the steel sheet to room temperature does not particularly affect the properties of the grain-oriented silicon steel sheet, so cooling after decarburization annealing can be omitted. Furthermore, in order to apply an annealing separator to the steel plate surface after decarburization annealing, a process of applying and drying using a water slurry has traditionally been adopted since the copper plate is cooled to room temperature. There is no need to cover the coating in the cooled state. Furthermore, finish annealing can be simply heated to the same temperature as decarburization annealing, and it does not particularly affect the properties of the grain-oriented silicon steel sheet, so this heating process is not essential and can be omitted.
Therefore, in the equipment shown in Figure 1, after decarburization annealing as described above, an annealing separator is applied to the steel plate while keeping it warm without cooling it, and the steel plate without cooling is subjected to finish annealing as it is. This avoids wasted energy loss due to cooling after decarburization annealing, eliminates the need for heating energy for drying and baking after application of an annealing separation agent, and part of the energy for Ml during final annealing, and thereby eliminates the need for conventional equipment. This made it possible to achieve significant energy savings.

ここで焼鈍分離剤の塗布については、従来は水スラリー
を塗布後乾燥させて行うのが通常であったが、脱炭焼t
I!l後冷却を行わない高温の鋼板上に水スラリーを塗
布した場合、鋼板上でスラリーが沸騰し、均一な焼鈍分
離剤の塗布が困難となる。
Conventionally, the annealing separator was applied by applying a water slurry and then drying it.
I! When a water slurry is applied onto a high-temperature steel plate without post-cooling, the slurry boils on the steel plate, making it difficult to uniformly apply the annealing separator.

そこでこの発明の設備においては粉末状の焼鈍分゛ 鎖
側を乾燥状態のまま直接m板表面上に付着させることと
したのである。このように粉末状の焼鈍分離剤を直接t
Pl板表面に付着させることによって高温のt141表
面上に焼鈍分離剤を均一に塗布することができ、またも
ちろん塗布後の乾燥も不要でり、しかも高温の円板表面
に塗布するため特に別工程で焼付けを行うことも不要で
ある。なお粉末状の焼鈍分離剤を直接WI板表面に付着
させるための具体的手段としては、特公昭39−122
11号公報、あるいは特開昭54−106009号公報
記載の手段など、公知の静電粉体塗装手段その他いずれ
の手段を用いても良く、この発明は特にその具体的手段
を限定するものではない。
Therefore, in the equipment of the present invention, it was decided that the powdered annealed part chain side was directly attached to the surface of the m-plate in a dry state. In this way, the powdered annealing separator can be directly
By adhering it to the Pl plate surface, the annealing separator can be applied uniformly on the high-temperature T141 surface, and of course there is no need for drying after application, and since it is applied to the high-temperature disk surface, a separate process is required. It is also unnecessary to perform baking. In addition, as a specific means for directly attaching the powdered annealing separator to the surface of the WI plate, there is
Any known electrostatic powder coating means, such as the means described in Japanese Patent Application Laid-open No. 11 or 1983-106009, may be used, and the present invention does not particularly limit the specific means. .

第1図に示される設備を用いて実際に珪素鋼板の脱炭焼
鈍から仕上焼鈍までの工程を行う場合には、脱炭焼鈍か
ら仕上焼鈍開始までの間の雰囲気をアルゴンガスあるい
は窒素ガス等の不活性ガス雰囲気に保持する。すなわち
、第1図に示される設備を用いる場合、前述の如く脱炭
焼鈍後の鋼板を冷却せず1円板を高温に保持するから、
従来法の如く空気中に鋼板を曝した場合には空気との反
応により1板が酸化され、被膜不良や磁性不良を生じが
、脱炭焼鈍から仕上焼鈍開始までを不活性雰囲気で行う
ことにより酸化を6効に防止すことができる。このよう
に不活性雰囲気に保持し得るように第1図の設備では前
述の如く脱炭焼鈍炉5の出口から仕上焼鈍炉16の入口
16Aまでの各設備が気密に構成されている。
When actually carrying out the process from decarburization annealing to finish annealing of silicon steel sheets using the equipment shown in Figure 1, the atmosphere from decarburization annealing to the start of finish annealing must be changed to argon gas, nitrogen gas, etc. Maintain under inert gas atmosphere. That is, when using the equipment shown in FIG. 1, as mentioned above, the steel plate after decarburization annealing is not cooled and one circular plate is maintained at a high temperature.
When a steel plate is exposed to the air as in the conventional method, one plate is oxidized due to reaction with the air, resulting in film defects and magnetic defects, but by performing the decarburization annealing to the start of finish annealing in an inert atmosphere. Oxidation can be prevented in six ways. In order to maintain the inert atmosphere in this manner, in the equipment shown in FIG. 1, each equipment from the outlet of the decarburization annealing furnace 5 to the inlet 16A of the finishing annealing furnace 16 is constructed in an airtight manner as described above.

脱炭焼鈍炉5の出口から仕上gAtiI!炉入口16A
までの綱板の保温の程度は、その間において綱板温度が
常に100℃以上を保つように設定することが望ましい
。仕上焼鈍前に100℃未満の低温に降温してしまった
場合には、従来と比較しての省エネルギー効果がさほど
大きくなくなるからである。またこのように100℃以
上の鋼板温度を保つためには、脱炭焼鈍終了から仕上焼
KA開始までに要する時間を可及的に短くすることが望
ましく、具体的には脱炭焼鈍終了時から仕上焼鈍炉入口
までの時間を24時間以内とすることが望ましい。
Finishing gAtiI from the outlet of the decarburization annealing furnace 5! Furnace inlet 16A
It is desirable to set the degree of heat retention of the steel plate so that the temperature of the steel plate is always maintained at 100° C. or higher during this period. This is because if the temperature is lowered to a low temperature of less than 100° C. before final annealing, the energy saving effect compared to the conventional method will not be so great. In addition, in order to maintain the steel plate temperature above 100°C, it is desirable to shorten the time required from the end of decarburization annealing to the start of finish annealing as much as possible. It is desirable that the time up to the entrance of the final annealing furnace be within 24 hours.

第2図には第1図に示されるこの発明の設備を用いて脱
炭焼鈍から仕上焼鈍までを行った場合の鋼板温度の変化
の一例を、従来設備を用いた場合と比較して示ず。
Figure 2 shows an example of changes in steel plate temperature when the equipment of the present invention shown in Figure 1 is used to perform decarburization annealing to finish annealing, compared to when conventional equipment is used. .

第2図から、第1図に示されるこの発明の設備を用いた
場合には、脱炭焼鈍終了温して仕上焼鈍に付すこによっ
て従来と比較して格段の省エネルギーが図られることが
明らかである。
From FIG. 2, it is clear that when the equipment of the present invention shown in FIG. 1 is used, significant energy savings can be achieved compared to the conventional method by subjecting the finishing annealing to the decarburization annealing completion temperature. be.

なお、第1図の例においては、脱炭焼鈍炉5の出口から
仕上焼鈍炉16の入口16Aまでの一連の設備列をすべ
て保温し、かつその一連の設備列をすべて気密に構成し
たが、脱炭焼鈍炉5の出口から塗布装置7の出口までの
間の設備列を保温しただけでもかなりの省エネルギーが
図られる。すなわち、塗布装置7の出口までを保温した
だけでも、従来のような脱炭焼鈍終了直後の冷却を行わ
ないことにより、従来塗布後の乾燥・焼付けのための加
熱に要したエネルギーが不要となり、その分省エネルギ
ーが図られる。したがって本願では塗布装置7の出口ま
で保温することを第1発明とし、仕上焼鈍炉入口16A
まで一連に保温することを第2発明とした。なおまた、
第1発明の如く塗布装置7ま出口まで保温する場合、脱
炭焼鈍炉5の出口から塗布装置7の出口までを気密に構
成し、その間を非酸化性雰囲気に保つことは勿論である
In the example shown in FIG. 1, the entire series of equipment rows from the outlet of the decarburization annealing furnace 5 to the entrance 16A of the finishing annealing furnace 16 are kept warm, and all of the equipment rows are configured to be airtight. Even if the equipment line between the outlet of the decarburization annealing furnace 5 and the outlet of the coating device 7 is kept warm, considerable energy savings can be achieved. In other words, even if only the temperature is maintained up to the exit of the coating device 7, the energy required for heating for drying and baking after coating is not needed, as conventional cooling is not performed immediately after decarburization annealing is completed. Energy savings can be achieved accordingly. Therefore, in the present application, the first invention is to maintain the temperature up to the outlet of the coating device 7, and the final annealing furnace entrance 16A is
The second invention is to continuously keep the temperature up to the temperature. Furthermore,
When maintaining heat up to the outlet of the coating device 7 as in the first invention, it goes without saying that the area from the outlet of the decarburization annealing furnace 5 to the outlet of the coating device 7 is constructed airtight, and a non-oxidizing atmosphere is maintained therebetween.

第1図の例においては粉末状焼鈍分離剤塗布後の巻取り
手段として、耐熱材料からなる変形防止芯を有するカセ
ット式テンションリール10を、用い、これにコイルを
巻取ったまま後工程へ搬送することとしたが、その理由
は次の通りである。
In the example shown in Fig. 1, a cassette-type tension reel 10 having a deformation-preventing core made of a heat-resistant material is used as a winding means after applying the powdered annealing separator, and the coil is transported to the subsequent process while being wound thereon. The reason for this decision is as follows.

すなわち、この発明の設備の場合には高温の鋼板を巻取
り、しかも高温を保ったままコイルを搬送するため、コ
イル中心にスリーブとなる芯が存在しなければコイルが
変形してしまうおそれがある。
In other words, in the case of the equipment of this invention, a high-temperature steel plate is wound up and the coil is conveyed while maintaining the high temperature, so if there is no core that serves as a sleeve at the center of the coil, there is a risk that the coil will be deformed. .

また従来一般に使用されているテンションリールはコイ
ルを脱着するためリール径を変化させる複雑なa造をと
っており、また高温で巻取るためにはリールの冷却が必
要となるから、リールからの放熱が大きくなってコイル
の温度が低下してしまうおそれがある等の理由から従来
一般のテンションリールはこの発明の設備には)り当で
はない。−そこでこの発明の設備では前述のように巻取
り直後にリールをコイルからFllt脱させず、耐熱材
料からなる変形防止芯の役目を兼ねるリールをコイルご
と搬送することにより高温コイルの変形を防止し、しか
も耐熱材r1を使用することによりリールの冷却を不要
としてコイルの放熱を防止することとしたのである。
In addition, the tension reels commonly used in the past have a complicated A structure that changes the reel diameter in order to attach and detach the coil, and the reel needs to be cooled to wind at high temperatures, so the heat dissipation from the reel is difficult. Conventional tension reels are not suitable for the equipment of the present invention because of the risk that the coil temperature may drop due to an increase in the coil temperature. - Therefore, in the equipment of this invention, as mentioned above, the deformation of the high-temperature coil is prevented by not removing the reel from the coil immediately after winding, but by transporting the reel, which also serves as a deformation prevention core made of heat-resistant material, together with the coil. Moreover, by using the heat-resistant material r1, cooling of the reel is not necessary and heat radiation from the coil is prevented.

以下に第1図に示されるこの発明の設備を用いて方向性
珪素n板を製造した具体例を記す。
A specific example of manufacturing a oriented silicon n-plate using the equipment of the present invention shown in FIG. 1 will be described below.

Si 3.45%、CO,070%、IAn 0 、0
85%、3e0゜025%、3bO,015%、残部実
質的に「eからなる珪素m熱延横板を1000℃×10
分の中間焼鈍を挾む2回の冷間圧延により板厚0.30
mmに仕上げた。次いでその冷延板を試料Aについては
、本発明設備により、850℃の湿潤水素中において3
分間脱炭焼鈍した後冷却せずに直ちに静電塗布法により
M(I Oを主成分とする粉末焼鈍分離剤を塗布してコ
イル状に巻取り、前述の脱炭焼鈍の完了後1時間経過し
て鋼板温度が5oo℃となった時点で仕上焼鈍を開始し
た。仕上焼鈍は、アルゴンガス雰囲気中で900℃X7
0時間焼鈍した後、水素ガス中にて1200℃×10時
間焼鈍した。
Si 3.45%, CO, 070%, IAn 0, 0
85%, 3e0°, 025%, 3bO, 015%, and the remainder essentially ``e''.
The plate thickness is 0.30 by two times of cold rolling with intermediate annealing for 30 minutes.
Finished in mm. Then, for Sample A, the cold-rolled sheet was heated in wet hydrogen at 850°C for 3 hours using the equipment of the present invention.
After decarburizing annealing for 1 minute, immediately without cooling, a powder annealing separator containing M(IO as the main component) was applied by electrostatic coating and wound into a coil. Finish annealing was started when the steel plate temperature reached 50°C.Final annealing was performed at 900°C x 7 in an argon gas atmosphere.
After annealing for 0 hours, it was annealed in hydrogen gas at 1200°C for 10 hours.

一方前記冷延板の試料Bについては、従来設備により、
850℃の湿潤水素中において3分間脱炭焼鈍した後一
旦常温まで鋼板を冷却し、MIIOを主成分とする水ス
ラリーを焼鈍分離剤として塗布し、次いで鋼板温度が2
50℃となるまで加熱して焼鈍分離剤を乾燥させ、コイ
ル状に巻き取った。さらに前述の脱炭焼鈍完了後30時
間を経過して鋼板温度が再度常温となったコイルに対し
アルゴンガス雰囲気中での900℃X70時間の焼鈍お
よび水素ガス中での1200℃xl 0時間の焼鈍から
なる仕上焼鈍を施した。これらの各試料A、Bについて
磁気特性を調べた結果を第1表に示す。
On the other hand, regarding sample B of the cold-rolled sheet, using conventional equipment,
After decarburizing and annealing in wet hydrogen at 850°C for 3 minutes, the steel plate was cooled to room temperature, and a water slurry containing MIIO as the main component was applied as an annealing separator.
The annealing separator was dried by heating to 50° C. and wound into a coil. Furthermore, after 30 hours had passed after the completion of the above-mentioned decarburization annealing, the steel plate temperature returned to room temperature again, and the coil was annealed at 900°C for 70 hours in an argon gas atmosphere and at 1200°C for 0 hours in hydrogen gas. Finish annealing was performed. Table 1 shows the results of examining the magnetic properties of each of these samples A and B.

第1表から明らかなように本発明設備により脱炭焼鈍後
冷却せずに短時間で仕上焼鈍に付した試料Δは、従来設
備により脱炭焼鈍後冷却して焼鈍分離剤を塗布しさらに
加熱乾燥後常温まで冷却してから仕上焼鈍に付した試料
Bと比較して、磁気特性はなんら遜色なく、優れた特性
を示すことが確認された。
As is clear from Table 1, sample Δ, which was subjected to finish annealing in a short time without cooling after decarburization annealing using the equipment of the present invention, was decarburized and annealed using the conventional equipment, then cooled, coated with an annealing separator, and further heated. It was confirmed that the magnetic properties were comparable to Sample B, which was cooled to room temperature after drying and then subjected to final annealing, and exhibited excellent properties.

以上の説明で明らかなように第1発明の設備によれば、
焼鈍分前剤の塗布後の乾燥、焼付けのために要するエネ
ルギーが不要どなり、また第2発明の設備によれば、焼
鈍分断剤の塗布後の乾燥、焼付けのために要するエネル
ギーが不要となるばかりでなく、仕上焼鈍時の昇温に要
するエネルギーの一部が不要となり、いずれの場合も脱
炭焼鈍により与えられた鎖板の顕熱が有効利用されるか
ら、従来と比較して格段の省エネルギーが図られ、した
がって方向性珪素銅板の製造コストが低減される顕著な
効果が轡られる。
As is clear from the above explanation, according to the equipment of the first invention,
The energy required for drying and baking after applying the annealing dividing agent is unnecessary, and according to the equipment of the second invention, the energy required for drying and baking after applying the annealing dividing agent is unnecessary. However, part of the energy required to raise the temperature during final annealing is no longer required, and in both cases, the sensible heat of the chain plates provided by decarburization annealing is effectively used, resulting in significant energy savings compared to conventional methods. Therefore, a significant effect of reducing the manufacturing cost of the oriented silicon copper plate is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の設備の一例を示す略解図、第2図は
第1図に示される設備および従来の設備により鋼板を処
理した場合のn板の温度と経過時間との関係を示すグラ
フである。 1・・・鋼板、 5・・・l152炭焼鈍炉、 7・・
・乾燥塗布装置、 16・・・仕上焼鈍炉。 出願人  川崎製鉄株式会社 代理人  弁理士 豊田底入 (ほか1名)
Fig. 1 is a schematic diagram showing an example of the equipment of the present invention, and Fig. 2 is a graph showing the relationship between the temperature of the n-plate and the elapsed time when steel plates are processed using the equipment shown in Fig. 1 and conventional equipment. It is. 1... Steel plate, 5... l152 charcoal annealing furnace, 7...
-Drying coating device, 16...finish annealing furnace. Applicant: Kawasaki Steel Co., Ltd. Agent Patent Attorney: Soiri Toyoda (and 1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)珪素鋼熱延板を、1回または中間焼鈍を挾む2回
以上の冷間圧延により最終板厚とした後、脱炭焼鈍を行
い、さらに焼鈍分離剤を塗布した後、仕上焼鈍を行うた
めの一連の方向性珪素m板の製造設備において、 焼鈍分離剤を塗布するための塗布装置を、その焼鈍分離
剤の粉末を乾燥状態で鋼板表面に付着させる乾燥塗布装
置で構成し、かつ前記脱炭焼鈍を行うための脱炭焼鈍炉
の出口から少なくとも前記塗布装置出口までの間の設備
列を保温するとともにその設備列を気密に構成したこと
を特徴とする方向性珪素鋼板の製造設備。
(1) A silicon steel hot-rolled plate is cold-rolled once or twice or more with intermediate annealing to achieve the final thickness, then decarburized annealed, further coated with an annealing separator, and then finished annealed. In a series of production facilities for grain-oriented silicon m-plates, a coating device for applying an annealing separator is configured with a dry coating device that attaches powder of the annealing separator to the surface of the steel sheet in a dry state, and manufacturing a grain-oriented silicon steel sheet, characterized in that the equipment row from the exit of the decarburization annealing furnace for performing the decarburization annealing to at least the exit of the coating device is kept warm, and the equipment row is configured to be airtight. Facility.
(2)珪素円熟延板を、1回または中間焼鈍を挾む2回
以上の冷間圧延により最終板厚とした後、脱炭焼鈍を行
い、さらに焼鈍分離剤を塗布した後、仕上焼鈍を行うた
めの一連の方向性珪素鋼板の製造設備において、 焼鈍分離剤を塗布するための塗布装置を、その焼鈍分離
剤の粉末を乾燥状態で鋼板装置に付着させる乾燥塗布装
置で構成し、かつ前記脱炭焼鈍を行うための脱炭焼鈍炉
の出口から仕上焼鈍を行うための仕上焼鈍炉入口までの
間の設備列を保温するとともにその設備列を気密に構成
したことを特徴とする方向性珪素鋼板の製造設備。
(2) After the silicon round plate is cold-rolled once or twice or more with intermediate annealing to achieve the final thickness, decarburization annealing is performed, and an annealing separator is further applied, followed by final annealing. In a series of production facilities for grain-oriented silicon steel sheets, a coating device for applying an annealing separator is configured with a dry coating device that attaches powder of the annealing separator to the steel sheet device in a dry state, and A oriented silicon material characterized in that a row of equipment between the outlet of a decarburization annealing furnace for performing decarburization annealing and the entrance of a final annealing furnace for performing finish annealing is kept warm and that the row of equipment is configured to be airtight. Steel sheet manufacturing equipment.
JP22637682A 1982-12-24 1982-12-24 Production installation for grain oriented silicon steel sheet Pending JPS59116326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22637682A JPS59116326A (en) 1982-12-24 1982-12-24 Production installation for grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22637682A JPS59116326A (en) 1982-12-24 1982-12-24 Production installation for grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS59116326A true JPS59116326A (en) 1984-07-05

Family

ID=16844157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22637682A Pending JPS59116326A (en) 1982-12-24 1982-12-24 Production installation for grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS59116326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105054A1 (en) * 2010-02-24 2011-09-01 Jfeスチール株式会社 Process for producing grain-oriented magnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105054A1 (en) * 2010-02-24 2011-09-01 Jfeスチール株式会社 Process for producing grain-oriented magnetic steel sheet
JP2011174138A (en) * 2010-02-24 2011-09-08 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
JP5994981B2 (en) Method for producing grain-oriented electrical steel sheet
US20240327942A1 (en) Method for producing grain-oriented electrical steel sheet and cold-rolling facility
JPS59116326A (en) Production installation for grain oriented silicon steel sheet
CS204951B2 (en) Method of producing electromagnetic oriented silicon steel
US6679957B1 (en) Process for thermal treatment of steel strip
JP2693690B2 (en) Method and device for transporting unidirectional electrical steel sheet coil
JP4604369B2 (en) Method for producing grain-oriented electrical steel sheet
JP5896097B2 (en) Finishing annealing method and finishing annealing equipment for grain-oriented electrical steel sheet
JP2703695B2 (en) Manufacturing method of thin grain oriented electrical steel sheet
JP4569007B2 (en) Method for producing grain-oriented electrical steel sheet
JPS5974222A (en) Production of non-directional electrical steel sheet having excellent electromagnetic characteristic
JP6376360B2 (en) Method for producing grain-oriented electrical steel sheet
JPH05140642A (en) Method for dehydrogenizing hot rolled steel material
JPS60138014A (en) Manufacture of nonoriented silicon steel sheet
JP2002266030A (en) Method for manufacturing grain-oriented silicon steel sheet
JP3311027B2 (en) Finish annealing method for grain-oriented electrical steel sheets with excellent coating properties
JPS5837128A (en) Manufacture of al killed steel plate for continuous annealing
JPH0328320A (en) Finish annealing method for grain-oriented magnetic steel sheet
JP4018767B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties and glass coating properties
JPS6050117A (en) Method for annealing hot rolled coil of nonoriented electrical steel
JPS63114981A (en) Production of grain oriented silicon steel sheet having excellent glass film and magnetic characteristic
JPH0686629B2 (en) Method and apparatus for manufacturing ultra-thin ribbon of low-loss directional silicon steel
JPH0693337A (en) Manufacture of grain-oriented electrical steel sheet having excellent surface characteristic
JPS60131921A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPS6075519A (en) Manufacture of cold rolled steel sheet for continuous annealing