JP4018767B2 - Method for producing grain-oriented electrical steel sheets with excellent magnetic properties and glass coating properties - Google Patents

Method for producing grain-oriented electrical steel sheets with excellent magnetic properties and glass coating properties Download PDF

Info

Publication number
JP4018767B2
JP4018767B2 JP00664897A JP664897A JP4018767B2 JP 4018767 B2 JP4018767 B2 JP 4018767B2 JP 00664897 A JP00664897 A JP 00664897A JP 664897 A JP664897 A JP 664897A JP 4018767 B2 JP4018767 B2 JP 4018767B2
Authority
JP
Japan
Prior art keywords
mgo
annealing
oriented electrical
electrical steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00664897A
Other languages
Japanese (ja)
Other versions
JPH10204531A (en
Inventor
和年 竹田
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP00664897A priority Critical patent/JP4018767B2/en
Publication of JPH10204531A publication Critical patent/JPH10204531A/en
Application granted granted Critical
Publication of JP4018767B2 publication Critical patent/JP4018767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は方向性電磁鋼板の製造に際し、高温仕上げ焼鈍工程において極めて均ーで、優れた密着性を有する被膜をコイル全面に形成するとともに、優れた磁気特性を持つ方向性電磁鋼板を得るための製造方法に関する。
【0002】
【従来の技術】
通常、方向性電磁鋼板はSi2.5〜4.0%を含有するスラブを熱延し、冷延、焼鈍した後、MgOを主成分とする焼鈍分離剤を鋼板に塗布乾燥してから巻き取り、高温仕上げ焼鈍を行い、絶縁被膜とフラットニング処理を行って最終製品とされる。この際焼鈍分離剤として使用されるMgOは鋼板の焼き付きを防止するだけでなく、高温焼鈍中に鋼板中のSiO2 主体の酸化膜と反応してグラス被膜と称されるフォルステライト被膜層を形成する。フォルステライト被膜層には絶縁性、密着性などが要求されており、グラス被膜形成反応には高温仕上げ焼鈍条件、酸化膜性状とともに焼鈍分離剤の性状、不純物等が大きく影響することから、方向性電磁鋼板に適したMgOの開発がさかんに行われている。
【0003】
MgOは一般に少量の添加剤とともに水に懸濁させてスラリー状として鋼板に塗布した後乾燥させ、その後鋼板をコイル状に巻き取った後高温仕上げ焼鈍するという工程がとられている。この時使用される添加剤としては、金属酸化物、ホウ素化合物等が用いられている。
【0004】
上記工程によりMgOには微量の水分が含有されることから、高温仕上げ焼鈍中の雰囲気は露点が高くなり、また不均一になる問題がある。また、添加物の反応性も添加剤の種類によっては雰囲気露点の影響を受けることから、部分的に被膜形成が早くなったりしてグラス被膜が不均一に生成する問題がある。方向性電磁鋼板の磁気特性に大きな影響を及ぼす鋼中のインヒビターは、グラス被膜の生成時期、被膜性状と密接な関係があり、高温仕上げ焼鈍中のグラス被膜が低温から生成することにより、インヒビターを安定させて磁気特性を向上させるものである。
【0005】
しかし、反応性の高いMgOを用いた場合には、低温からグラス被膜形成が可能であるものの、MgOと水との反応性も高くなることから高温仕上げ焼鈍中の雰囲気露点は高く、不均一になったり、またグラス被膜が過剰に生成することにより占積率が悪化するといった問題があり、反応性の低いMgOを用いた場合には、低温でのグラス被膜形成反応の進行が抑制されることからインヒビターが不安定になって磁気特性が劣化したり、ひどい場合にはグラス被膜が形成されないといった問題点がある。
【0006】
このような問題点を解決する手段としては、例えば特開昭62−156226号公報に記載された方法がある。この方法では、高温焼成したMgOの最表層のみを気相中で処理することで水和層を形成することによりMgOの反応性を高め、しかも含有水分を減らすことが可能となり、グラス被膜と磁気特性を向上させるものである。
【0007】
また、添加剤を用いる手段としては、例えば特開昭63−3022号公報に記載されるように、MgO:100重量部に対して、Sb,Sr,Ti,Zrの塩化物を一定量含有する、硫酸アンチモン0.5〜2.0重量部を添加する技術が提案されており、これによりグラス被膜形成の反応性が向上し、グラス被膜特性と磁気特性が向上するものである。
【0008】
これらの公報に記載された技術は、MgOに特別の処理を施したり、特定の添加物を配合することによりMgOの反応性を高め、グラス被膜特性と磁気特性を向上させるものである。
【0009】
【発明が解決しようとする課題】
しかし、これらの従来技術では、脱炭焼鈍条件や高温仕上げ焼鈍条件等によっては、グラス被膜が薄くなり過ぎたり、厚くなり過ぎたりして、より一層の技術改善が必要とされており、グラス被膜を安定して最適量形成することが課題である。
グラス被膜が薄過ぎる場合には、絶縁性が低下したり、張力効果が少なくて磁気特性が低下したりする問題が有り、グラス被膜が厚すぎた場合には、占積率が悪化したり、ひどい場合には密着性が低下して被膜が剥離するといった問題が有り、最適量のグラス被膜を均一に安定形成する技術が求められている。
【0010】
本発明は、方向性電磁鋼板のグラス被膜形成をより一層低温から均一に反応させて最適量にするための焼鈍分離剤と脱炭焼鈍条件の新規な方法を提供し、これにより、グラス被膜の均一化と密着性向上及び磁気特性を向上させるための方向性電磁鋼板の製造方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明の要旨とするところは下記の通りである。
(1)仕上げ冷延した鋼板を脱炭焼鈍した後に焼鈍分離剤を塗布し、高温仕上げ焼鈍する工程を含む公知の工程による方向性電磁鋼板の製造方法において、脱炭焼鈍を800℃〜870℃で1〜10分の酸化性雰囲気に保持した後に、900℃〜990℃で10〜60秒間非酸化性雰囲気に保持して行い、かつ焼鈍分離剤として用いるMgOとして、MgOのクエン酸活性度CAAが上記脱炭焼鈍における非酸化性雰囲気中での保持温度t(℃)との間に、(5/3)×t−1425≦CAA≦(5/3)×t−1325の関係を満足するMgOを選択し、グラス被膜量が2〜3.5g/m 2 であることを特徴とする方向性 電磁鋼板の製造方法。
(2)前項(1)の方法において、脱炭焼鈍後の非酸化性雰囲気に保持する温度を900℃〜930℃とし、かつ焼鈍分離剤として用いるMgOとして、MgOのクエン酸活性度CAAと保持温度t(℃)との間に(5/3)×t−1375≦CAA≦(5/3)×t−1325の関係を満足するMgOを選択し、グラス被膜量が2〜3.5g/m 2 である ことを特徴とする方向性電磁鋼板の製造方法。
【0012】
本発明により、従来技術では達成できなかった均一で、密着性に優れた最適量のグラス被膜が得られ、さらに、グラス被膜形成反応が安定して得られるために鋼中のインヒビターが適切に保たれ、磁気特性に優れた方向性電磁鋼板が得られるものである。
【0013】
一般に、方向性電磁鋼板は、熱延後焼鈍して1回あるいは中間焼鈍を含む2回以上の冷延にて最終板厚まで圧延された鋼板を脱炭焼鈍し、その後焼鈍分離剤が塗布され、コイル状に巻き取られ、高温仕上げ焼鈍される。
【0014】
鋼板表面に塗布されたMgOは、高温仕上焼鈍時に鋼板表面にあるシリカ層と反応してグラス被膜を形成するが、この際には高温仕上げ焼鈍条件のみならず、MgOの粒径、活性度、表面状態とともに鋼板の酸化層も大きな影響を及ぼしているが、さらに鋼板酸化層は脱炭焼鈍時のヒートサイクルや雰囲気条件の影響を大きく受けている。
【0015】
本発明者らは、グラス被膜形成反応に及ぼすこれら様々な要因の中で、MgOの活性度と鋼板酸化層が大きな影響を及ぼしており、更にMgOの活性度と脱炭焼鈍時の焼鈍条件を最適化することにより、優れたグラス被膜を最適量形成すると同時に優れた磁気特性が得られることを見出し、本発明を完成させた。
【0016】
すなわち、本発明においては、脱炭焼鈍後に900℃〜990℃で10秒から60秒間の非酸化性雰囲気中で加熱焼鈍することにより最適な鋼板の酸化層が形成され、さらにこの酸化層と反応させるMgOの活性度との関係を規定することにより、グラス被膜特性のみならず、優れた磁気特性も発現するものである。
【0017】
なお、本発明でいうグラス被膜の最適量とは、板厚、鋼成分などによって変化するものの、2〜3.5g/m2 程度をいい、2g/m2 未満では絶縁性や張力効果が劣り、3.5g/m2 以上では不均一になったり、密着性が劣化したりしてやはり特性が劣化する。
【0018】
【発明の実施の形態】
以下、本発明を実施する具体的形態について説明する。
まず、本発明の限定理由について述べる。本発明では、最終冷延した後に行われる脱炭焼鈍において800℃〜870℃で1分〜10分間の酸化性雰囲気に保持した後、900℃〜990℃で10秒〜60秒間非酸化性雰囲気中で加熱焼鈍処理することが必須である。酸化性雰囲気での保持温度については、800℃より低いと脱炭速度が著しく低下し、870℃を超えると脱炭完了以前に鋼板表面に酸化被膜が形成されることにより脱炭速度が低下するものである。保持時間については、1分より短いと脱炭が完了せず、上限の10分は生産性が悪化するためである。
【0019】
非酸化性雰囲気での保持温度については900℃未満や、990℃を超えると鋼板の集合組織の制御が困難で磁気特性が得られない。保持時間については10秒未満では酸化層が必要量得られず、60秒を超えると形成量が多すぎる。
【0020】
次にMgOの活性度CAAと非酸化性雰囲気中での保持温度t(℃)との関係であるが、(5/3)×t−1425≦CAA≦(5/3)×t−1325であることが必要である。このことは、後述する実施例およびその総合評価を各種の非酸化性雰囲気での脱炭焼鈍保持温度とCAAとの関係を示す図1から明かであり、CAAが(5/3)×t−1425よりも小さい場合にはグラス被膜量が過多で占積率、密着性が悪く、(5/3)×t−1325よりも大きい場合には被膜量が少なく絶縁性や磁気特性が劣化することがわかる。
さらに図1に示すように、脱炭焼鈍後段の温度が900℃〜930℃で、CAAが(5/3)×t−1325から(5/3)×t−1375の範囲では、非常に美麗で特に密着性の良好なグラス被膜が形成されるものである。
【0021】
ところで、特公昭54−24686号公報には、脱炭焼鈍を750〜870℃の温度領域で行った後、890℃〜1050℃の温度で10分以下の時間、非酸化性雰囲気中で加熱焼鈍処理(以下後段保持温度と記す)を施す方法が開示されている。しかし上記公報の目的は1次再結晶粒の安定性をより強化することにより、磁気特性の向上を図るものであり、本発明が目的とする鋼板の酸化層を増加させ、加えて酸化層中のシリカ含有率を上げるというものとは異なるものである。
【0022】
一般に方向性電磁鋼板の焼鈍分離剤として使用されるMgOの活性度CAAの範囲は、75から350の範囲である。75未満では、MgOの持ち込み水分が多く被膜不良の発生が避けられないためであり、350を越えるとMgOの反応性が低く、十分な被膜量が得られないからである。
【0023】
【実施例】
重量%でSi;3.25%,C;0.08%,Mn;0.07%,S;0.024%,Al;0.028%,N;0.0078%,Cu;0.07%,Sn;0.06%で残部が実質的にFeである鋼塊を熱延して熱延板とした後、焼鈍、酸洗、冷延し最終板厚0.23mmの冷延板とした。その後水素含有量25%、露点50℃の水素−窒素雰囲気中で脱炭焼鈍を行い、その後露点−20℃以下の非酸化雰囲気中で種々の温度で20秒間焼鈍した。ついで後述するようなMgO調製剤を水に懸濁してスラリーとし、乾燥後の重量で6g/m2 になるように塗布乾燥し、コイルに巻き取った後、1200℃×20時間の高温仕上げ焼鈍を行った。ついで余剰のMgOを水洗除去し軽酸洗した後、りん酸アルミとシリカを主成分とする方向性電磁鋼板用の通常の絶縁被膜剤を塗布乾燥し、最終製品とした。
【0024】
本発明で使用するMgOについて表1に示す。
表1に示したMgOに重量%で3%の酸化チタンと0.2%の硼酸ナトリウムを添加し、MgO調整剤とした。
この試験におけるグラス被膜特性と磁気特性の結果を表2に示す。
【0025】
【表1】

Figure 0004018767
【0026】
【表2】
Figure 0004018767
【0027】
表2において、
(1) 密着性の評価は20mmφ曲げで評価し、セロハンテープにて剥離面を引き剥がして剥離量を評価した。剥離の殆どないものを◎、一部剥離するものを○、全面剥離を△、被膜剥離が激しく剥離量の多いものを×と評価した。
(2) 被膜量は蛍光X線測定法で算出した。
(3) 総合評価は表面外観、密着性、被膜量、磁気特性ともに良好なものを◎、磁気特性、密着性、被膜量は最適範囲であるが、表面外観がやや均一性に欠ける場合には○、被膜量は外れるが密着性のよいものは△、被膜量が外れ密着性のもよくない場合には×とした。
【0028】
図1に実施例と比較例の総合評価結果を図示した。
表2および図1から明らかなように、本発明範囲(表2の実施例1〜12、図1の枠内)は極めて優れた総合評価が得られ、特にCAAが本発明請求項2に示す範囲では極めて優れた総合評価が得られている。
【0029】
【発明の効果】
以上の説明から明らかなように、本発明により、均一で密着性に優れたグラス被膜が最適量得られ、さらに磁気特性にも優れた方向性電磁鋼板が得られる。
【図面の簡単な説明】
【図1】本発明の範囲と実施例、比較例の総合評価結果を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a grain-oriented electrical steel sheet having excellent magnetic properties as well as forming a coating film having excellent adhesion on the entire surface of the coil in the production of grain-oriented electrical steel sheets, which is extremely uniform in the high-temperature finish annealing process. It relates to a manufacturing method.
[0002]
[Prior art]
Usually, a directional electrical steel sheet is rolled after hot-rolling, cold-rolling, and annealing a slab containing Si 2.5 to 4.0%, and then applying and drying an annealing separator mainly composed of MgO on the steel sheet. Then, high-temperature finish annealing is performed, and an insulating film and flattening treatment are performed to obtain a final product. In this case, MgO used as an annealing separator not only prevents the steel sheet from seizing, but also reacts with the SiO 2 -based oxide film in the steel sheet during high-temperature annealing to form a forsterite film layer called a glass film. To do. The forsterite coating layer is required to have insulating properties, adhesion, etc., and the glass coating formation reaction is influenced by high temperature finish annealing conditions, oxide film properties, annealing separator properties, impurities, etc. MgO suitable for electrical steel sheets has been developed extensively.
[0003]
In general, MgO is suspended in water together with a small amount of additive, applied to a steel sheet as a slurry, dried, then wound up in a coil, and then subjected to high-temperature finish annealing. As an additive used at this time, a metal oxide, a boron compound, or the like is used.
[0004]
Since MgO contains a small amount of moisture by the above process, the atmosphere during high-temperature finish annealing has a problem that the dew point becomes high and becomes non-uniform. In addition, since the reactivity of the additive is also affected by the atmospheric dew point depending on the type of the additive, there is a problem that the glass film is formed unevenly due to partial early film formation. Inhibitors in steel, which has a great influence on the magnetic properties of grain-oriented electrical steel sheets, are closely related to the time of glass film formation and the properties of the film. It stabilizes and improves magnetic properties.
[0005]
However, when highly reactive MgO is used, glass coating can be formed at low temperatures, but the reactivity between MgO and water is also high, so the atmospheric dew point during high-temperature finish annealing is high and uneven. In addition, there is a problem that the space factor deteriorates due to excessive generation of the glass coating, and when low-reactivity MgO is used, the progress of the glass coating formation reaction at a low temperature is suppressed. Therefore, there is a problem that the inhibitor becomes unstable and the magnetic properties are deteriorated, or if it is severe, a glass film is not formed.
[0006]
As means for solving such problems, there is a method described in, for example, Japanese Patent Application Laid-Open No. 62-156226. In this method, only the outermost layer of MgO that has been fired at high temperature is processed in the gas phase to form a hydrated layer, thereby increasing the reactivity of MgO and reducing the water content. The characteristic is improved.
[0007]
Further, as a means for using the additive, for example, as described in JP-A-63-3022, a certain amount of chlorides of Sb, Sr, Ti and Zr are contained with respect to 100 parts by weight of MgO. In addition, a technique for adding 0.5 to 2.0 parts by weight of antimony sulfate has been proposed, whereby the reactivity of forming a glass film is improved, and the glass film characteristics and magnetic characteristics are improved.
[0008]
The techniques described in these publications improve the glass coating properties and magnetic properties by applying special treatment to MgO or adding specific additives to increase the reactivity of MgO.
[0009]
[Problems to be solved by the invention]
However, in these conventional technologies, depending on the decarburization annealing conditions and high-temperature finish annealing conditions, the glass coating becomes too thin or too thick, and further technical improvements are required. It is a problem to form an optimal amount stably.
If the glass film is too thin, there is a problem that the insulation properties are reduced, or the magnetic effect is reduced due to less tension effect, and if the glass film is too thick, the space factor deteriorates, In severe cases, there is a problem that the adhesiveness is lowered and the film is peeled off, and a technique for uniformly and stably forming an optimum amount of the glass film is required.
[0010]
The present invention provides a novel method of annealing separator and decarburization annealing conditions for making glass film formation of grain-oriented electrical steel sheets react evenly from a lower temperature to an optimum amount, and thereby, The present invention provides a method for producing a grain-oriented electrical steel sheet for improving uniformity, adhesion, and magnetic properties.
[0011]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) In the manufacturing method of the grain-oriented electrical steel sheet by the well-known process including the process of apply | coating an annealing separating agent after carrying out the decarburization annealing of the finish cold-rolled steel plate, and carrying out a high temperature finish annealing, decarburization annealing is performed at 800 to 870 degreeC. After being held in an oxidizing atmosphere for 1 to 10 minutes at 900 ° C. to 990 ° C. for 10 to 60 seconds in a non-oxidizing atmosphere, and MgO used as an annealing separator , MgO citric acid activity CAA Satisfies the relationship of (5/3) × t-1425 ≦ CAA ≦ (5/3) × t-1325 with the holding temperature t (° C.) in the non-oxidizing atmosphere in the decarburization annealing. select MgO, method for producing oriented electrical steel sheets towards you, wherein the glass film weight of 2~3.5g / m 2.
(2) In the method of the above item (1), the temperature maintained in the non-oxidizing atmosphere after decarburization annealing is set to 900 ° C. to 930 ° C., and MgO used as an annealing separator is retained with the citric acid activity CAA of MgO. MgO satisfying the relationship of (5/3) × t-1375 ≦ CAA ≦ (5/3) × t-1325 between the temperature t (° C.) and a glass coating amount of 2 to 3.5 g / method for producing oriented electrical steel sheets towards you being a m 2.
[0012]
According to the present invention, it is possible to obtain an optimum amount of a glass film having a uniform and excellent adhesion which cannot be achieved by the prior art, and further, because the glass film forming reaction is stably obtained, the inhibitor in the steel is appropriately maintained. Therefore, a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained.
[0013]
In general, grain-oriented electrical steel sheets are annealed after hot rolling and decarburized and annealed steel sheets rolled to the final thickness by one or more cold rolling processes including intermediate annealing, and then an annealing separator is applied. , Coiled up and annealed at high temperature.
[0014]
MgO applied to the surface of the steel plate reacts with the silica layer on the surface of the steel plate during high-temperature finish annealing to form a glass film. In this case, not only the high-temperature finish annealing conditions but also the MgO particle size, activity, The oxidation layer of the steel sheet has a great influence as well as the surface state, but the oxidation layer of the steel sheet is greatly influenced by the heat cycle and the atmospheric conditions during the decarburization annealing.
[0015]
Among these various factors affecting the glass film formation reaction, the inventors of the present invention have a great influence on the activity of MgO and the oxidation layer of the steel sheet. Further, the activity of MgO and the annealing conditions during decarburization annealing are determined. By optimizing, it was found that an excellent amount of an excellent glass film was formed and at the same time excellent magnetic properties were obtained, and the present invention was completed.
[0016]
That is, in the present invention, after decarburization annealing, an optimum steel layer oxide layer is formed by heating and annealing in a non-oxidizing atmosphere at 900 ° C. to 990 ° C. for 10 seconds to 60 seconds, and further, this oxide layer reacts with this oxide layer. By defining the relationship with the activity of MgO to be produced, not only glass film properties but also excellent magnetic properties are exhibited.
[0017]
The optimum amount of the glass coating referred to in the present invention is about 2 to 3.5 g / m 2 , although it varies depending on the plate thickness, steel component, etc., and if it is less than 2 g / m 2 , the insulation and tension effects are inferior. If it is 3.5 g / m 2 or more, it becomes non-uniform or the adhesiveness deteriorates and the characteristics deteriorate.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific modes for carrying out the present invention will be described.
First, the reasons for limiting the present invention will be described. In the present invention, in the decarburization annealing performed after the final cold rolling, after maintaining in an oxidizing atmosphere at 800 ° C. to 870 ° C. for 1 minute to 10 minutes, at 900 ° C. to 990 ° C. for 10 seconds to 60 seconds, a non-oxidizing atmosphere It is essential to perform a heat annealing treatment. When the holding temperature in the oxidizing atmosphere is lower than 800 ° C., the decarburization rate is remarkably lowered, and when it exceeds 870 ° C., the decarburization rate is lowered by forming an oxide film on the surface of the steel plate before the decarburization is completed. Is. If the holding time is shorter than 1 minute, the decarburization is not completed, and the upper limit of 10 minutes is because the productivity deteriorates.
[0019]
If the holding temperature in the non-oxidizing atmosphere is less than 900 ° C. or exceeds 990 ° C., it is difficult to control the texture of the steel sheet, and magnetic properties cannot be obtained. If the retention time is less than 10 seconds, the required amount of oxide layer cannot be obtained, and if it exceeds 60 seconds, the amount formed is too large.
[0020]
Next, the relationship between the activity CAA of MgO and the holding temperature t (° C.) in the non-oxidizing atmosphere is (5/3) × t-1425 ≦ CAA ≦ (5/3) × t-1325. It is necessary to be. This is clear from FIG. 1 showing the relationship between the decarburization annealing holding temperature and the CAA in various non-oxidizing atmospheres in the examples and the comprehensive evaluation to be described later, and the CAA is (5/3) × t−. If it is smaller than 1425, the glass coating amount is excessive and the space factor and adhesion are poor, and if it is larger than (5/3) × t-1325, the coating amount is small and the insulation and magnetic properties deteriorate. I understand.
Furthermore, as shown in FIG. 1, when the temperature after the decarburization annealing is 900 ° C. to 930 ° C. and the CAA is in the range of (5/3) × t-1325 to (5/3) × t-1375, it is very beautiful. Thus, a glass film having particularly good adhesion is formed.
[0021]
In Japanese Patent Publication No. 54-24686, after decarburization annealing is performed in a temperature range of 750 to 870 ° C., heat annealing is performed in a non-oxidizing atmosphere at a temperature of 890 ° C. to 1050 ° C. for 10 minutes or less. A method of performing treatment (hereinafter referred to as a post-stage holding temperature) is disclosed. However, the purpose of the above publication is to improve the magnetic properties by further strengthening the stability of the primary recrystallized grains, and to increase the oxide layer of the steel sheet to which the present invention is intended, and in addition to the oxide layer This is different from increasing the silica content.
[0022]
Generally, the range of the activity CAA of MgO used as an annealing separator for grain-oriented electrical steel sheets is in the range of 75 to 350. If it is less than 75, MgO brings in a large amount of moisture, and it is inevitable that the film will be defective. If it exceeds 350, the reactivity of MgO is low and a sufficient film amount cannot be obtained.
[0023]
【Example】
3.25%, C; 0.08%, Mn; 0.07%, S; 0.024%, Al; 0.028%, N; 0.0078%, Cu; 0.07% by weight %, Sn; 0.06% and the remainder of the steel ingot, which is substantially Fe, is hot-rolled to form a hot-rolled sheet, which is then annealed, pickled and cold-rolled to obtain a cold-rolled sheet having a final thickness of 0.23 mm. did. Thereafter, decarburization annealing was performed in a hydrogen-nitrogen atmosphere having a hydrogen content of 25% and a dew point of 50 ° C., and then annealed at various temperatures for 20 seconds in a non-oxidizing atmosphere having a dew point of −20 ° C. or less. Then, a MgO preparation agent as described later is suspended in water to form a slurry, applied and dried to a weight of 6 g / m 2 after drying, wound on a coil, and then subjected to high-temperature finish annealing at 1200 ° C. for 20 hours. Went. Next, excess MgO was removed by washing with water and light pickling, and then a normal insulating coating agent for grain-oriented electrical steel sheets mainly composed of aluminum phosphate and silica was applied and dried to obtain a final product.
[0024]
Table 1 shows the MgO used in the present invention.
To MgO shown in Table 1, 3% by weight of titanium oxide and 0.2% of sodium borate were added to prepare an MgO regulator.
Table 2 shows the results of the glass coating characteristics and magnetic characteristics in this test.
[0025]
[Table 1]
Figure 0004018767
[0026]
[Table 2]
Figure 0004018767
[0027]
In Table 2,
(1) Adhesion was evaluated by 20 mmφ bending, and the peeled surface was peeled off with a cellophane tape to evaluate the peel amount. The case where there was almost no peeling was evaluated as “、”, the case where a part was peeled off was evaluated as “◯”, the whole surface peeling was evaluated as “Δ”, and the case where the coating was severely peeled off was evaluated as “x”.
(2) The coating amount was calculated by fluorescent X-ray measurement.
(3) Comprehensive evaluation is ◎ with good surface appearance, adhesion, coating amount, and magnetic properties. Magnetic properties, adhesion, and coating amount are in the optimum range, but the surface appearance is somewhat inconsistent. ◯, when the coating amount was off but good adhesion, Δ, and when the coating amount was off and the adhesion was not good, X was marked.
[0028]
FIG. 1 illustrates the comprehensive evaluation results of the example and the comparative example.
As is apparent from Table 2 and FIG. 1, the scope of the present invention (Examples 1 to 12 in Table 2, within the frame of FIG. 1) is extremely excellent overall evaluation, and in particular, CAA is shown in Claim 2 of the present invention. An extremely excellent overall evaluation is obtained in the range.
[0029]
【The invention's effect】
As is clear from the above description, the present invention can provide an optimum amount of a glass coating having a uniform and excellent adhesion, and a grain-oriented electrical steel sheet having an excellent magnetic property.
[Brief description of the drawings]
FIG. 1 is a diagram showing the comprehensive evaluation results of the scope of the present invention, examples, and comparative examples.

Claims (2)

仕上げ冷延した鋼板を脱炭焼鈍した後に焼鈍分離剤を塗布し、高温仕上げ焼鈍する工程を含む公知の工程による方向性電磁鋼板の製造方法において、脱炭焼鈍を800℃〜870℃で1〜10分の酸化性雰囲気に保持した後に、900℃〜990℃で10〜60秒間非酸化性雰囲気に保持して行い、かつ焼鈍分離剤として用いるMgOとして、MgOのクエン酸活性度CAAが上記脱炭焼鈍における非酸化性雰囲気中での保持温度t(℃)との間に、(5/3)×t−1425≦CAA≦(5/3)×t−1325の関係を満足するMgOを選択し、グラス被膜量が2〜3.5g/m 2 であることを特徴 とする方向性電磁鋼板の製造方法。In the manufacturing method of the grain-oriented electrical steel sheet by a known process including a process of applying an annealing separator after decarburizing and annealing the cold-rolled steel sheet and performing high-temperature finish annealing, decarburization annealing is performed at 800 ° C. to 870 ° C. at 1 to 1. After holding in an oxidizing atmosphere for 10 minutes, holding in a non-oxidizing atmosphere at 900 ° C. to 990 ° C. for 10 to 60 seconds, and MgO used as an annealing separation agent , the citric acid activity CAA of MgO is removed from the above. Select MgO satisfying the relationship of (5/3) × t-1425 ≦ CAA ≦ (5/3) × t-1325 with the holding temperature t (° C.) in the non-oxidizing atmosphere in the carbon annealing. and method for producing oriented electrical steel sheets towards you, wherein the glass film weight of 2~3.5g / m 2. 脱炭焼鈍後の非酸化性雰囲気に保持する温度を900℃〜930℃とし、かつ焼鈍分離剤として用いるMgOとして、MgOのクエン酸活性度CAAと保持温度t(℃)との間に(5/3)×t−1375≦CAA≦(5/3)×t−1325の関係を満足するMgOを選択し、グラス被膜量が2〜3.5g/m 2 であることを特徴とす る請求項1記載の方向性電磁鋼板の製造方法。The temperature maintained in the non-oxidizing atmosphere after decarburization annealing is set to 900 ° C. to 930 ° C., and MgO used as the annealing separator is between the citric acid activity CAA of MgO and the holding temperature t (° C.) (5 / 3) × t-1375 ≦ CAA ≦ (5/3) to select the MgO satisfying the relationship × t-1325, glass film amount you characterized by a 2~3.5g / m 2 according method for producing oriented electrical steel sheets towards to claim 1, wherein.
JP00664897A 1997-01-17 1997-01-17 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties and glass coating properties Expired - Lifetime JP4018767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00664897A JP4018767B2 (en) 1997-01-17 1997-01-17 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties and glass coating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00664897A JP4018767B2 (en) 1997-01-17 1997-01-17 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties and glass coating properties

Publications (2)

Publication Number Publication Date
JPH10204531A JPH10204531A (en) 1998-08-04
JP4018767B2 true JP4018767B2 (en) 2007-12-05

Family

ID=11644208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00664897A Expired - Lifetime JP4018767B2 (en) 1997-01-17 1997-01-17 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties and glass coating properties

Country Status (1)

Country Link
JP (1) JP4018767B2 (en)

Also Published As

Publication number Publication date
JPH10204531A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JP5463347B2 (en) Method for producing copper-containing directional silicon steel
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
JP2011518253A5 (en)
JPH0617261A (en) Grain-oriented silicon steel sheet excellent in film property and magnetic property
US3930906A (en) Method for forming an insulating glass film on a grain-oriented silicon steel sheet having a high magnetic induction
JP3650525B2 (en) Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with excellent magnetic properties with glass coating
JP4018767B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties and glass coating properties
JPH01177376A (en) Annealing separating agent for grain-oriented magnetic steel sheet for obtaining uniform glass coating film and excellent magnetic characteristic
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP4184696B2 (en) Method for producing grain-oriented electrical steel sheet
JPS61201732A (en) Manufacture of grain oriented silicon steel sheet having thermal stability and ultralow iron loss
JPS6013430B2 (en) Method for forming a uniform base film on grain-oriented silicon steel sheet
JPH0335364B2 (en)
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JP2579714B2 (en) Method for forming insulating film on mirror-oriented silicon steel sheet
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JP3233045B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP3336142B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2992213B2 (en) Manufacturing method of grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term