JPS59115531A - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPS59115531A
JPS59115531A JP57228171A JP22817182A JPS59115531A JP S59115531 A JPS59115531 A JP S59115531A JP 57228171 A JP57228171 A JP 57228171A JP 22817182 A JP22817182 A JP 22817182A JP S59115531 A JPS59115531 A JP S59115531A
Authority
JP
Japan
Prior art keywords
liquid phase
base material
cdte
substrate
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57228171A
Other languages
Japanese (ja)
Inventor
Mitsuo Yoshikawa
吉河 満男
Michiharu Ito
伊藤 道春
Kenji Maruyama
研二 丸山
Hiroshi Takigawa
宏 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57228171A priority Critical patent/JPS59115531A/en
Publication of JPS59115531A publication Critical patent/JPS59115531A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02411Tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02562Tellurides

Abstract

PURPOSE:To obtain a flatly and uniformly grown layer by a method wherein an HgCdFe layer is epitaxially grown in liquid phase on a CdTe substrate, a CdTe liquid phase base material and Hg, which is an easy-to-vaporize element, are separately placed in a reaction oven, and the vapor pressure of Hg, the temperature and the time required for growing of CdTe are properly controlled. CONSTITUTION:A substrate 2, a carbon support stand 3 and a liquid-phase epitaxial growing jig 5, consisting of a sliding part 4, are arranged in a reaction tube 1 which is enclosed by a heating furnace, a concaved part is provided on the surface of the holding stand 3 positioned in the middle part, and the CdTe substrate 6 is placed in said concaved part. Also, a liquid phase base material accommodating part 7 is provided on the upper sliding part 4, the binary alloyed base material 8 consisting of CdTe is placed therein, and the container 10 where an Hg element 9 is placed is arranged at a position apart from said base accommodating part 7. The device is constituted as above, Hg is vaporized and infiltrated into the heated base material 8, and the base material 8 is leaked on the substrate 6 by moving the sliding part 4, thereby enabling an HgCdTe layer to grow on the substrate.

Description

【発明の詳細な説明】 +al  発明の技術分野 本発明は易蒸発性元素を含む開管系液相エピタキシャル
成長法に係り、特に液相エピタキシャル層内の易蒸発性
元素の組成制御法に関する。
DETAILED DESCRIPTION OF THE INVENTION +al Technical Field of the Invention The present invention relates to an open tube liquid phase epitaxial growth method containing an easily vaporizable element, and particularly to a method for controlling the composition of an easily vaporizable element in a liquid phase epitaxial layer.

(b)  技術の背景 赤外線検知素子のような光電変換素子の形成材料として
一般に水銀、カドミウム、テルル(Hll−8Cdx 
Te)のようなエネルギーギャップの狭い多元素半導体
結晶が用いられている。
(b) Background of the technology Generally, mercury, cadmium, tellurium (Hll-8Cdx
A multi-element semiconductor crystal with a narrow energy gap such as Te) is used.

このような多元素半導体結晶を素子形成に都合の良いよ
うに大面積でしかも薄層の状態で得るためには、大面積
の結晶の得られ易いテルル化カドミウム(CdTe)の
基板上にHg1−xCdxTeの結晶層をスライディン
グ法を用いた液相エピタキシャル成長法で形成している
In order to obtain such a multi-element semiconductor crystal in a large area and in a thin layer state convenient for device formation, Hg1- The xCdxTe crystal layer is formed by a liquid phase epitaxial growth method using a sliding method.

(C)  従来技術と問題点 従来の液相エピタキシャル成長法に使用される装置の極
く概念的な構成を図に示す。
(C) Prior Art and Problems The figure shows a very conceptual configuration of an apparatus used in a conventional liquid phase epitaxial growth method.

図に示すように従来の液相エピタキシャル成長装置は1
反応管1内の水素(H2)ガス雰囲気中に設置された基
台2の上に置かれた炭素を材料とする支持台3とその上
を滑動するスライド部4より構成された液相エピタキシ
ャル成長治具5を主体とするものである。
As shown in the figure, the conventional liquid phase epitaxial growth apparatus has 1
This liquid phase epitaxial growth treatment consists of a support 3 made of carbon placed on a base 2 placed in a hydrogen (H2) gas atmosphere in a reaction tube 1, and a slide section 4 that slides on the support 3. The ingredient 5 is the main ingredient.

前記支持台3にはCdTeの基板6が埋設されておリ、
スライド部4に設けられた液相母材容器7には形成ずべ
きHg+−xCdx Te結晶層に対応した11gCd
Te母材8が収容されている。
A CdTe substrate 6 is embedded in the support base 3,
11gCd corresponding to the Hg+-xCdxTe crystal layer that should not be formed in the liquid phase base material container 7 provided in the slide part 4.
A Te base material 8 is accommodated.

一方前記反応管1内には液相エピタキシャル成長治具5
より所定の距離を隔ててlIg+−x cdXTe結晶
の中の易蒸発性元素すなわち水銀を収容した水銀容器1
0が設げられており、さらに前記液相エピタキシャル成
長治具5と水銀容器10を加熱する加熱炉11が反応管
1を囲んで設けられている。
On the other hand, inside the reaction tube 1 is a liquid phase epitaxial growth jig 5.
A mercury container 1 containing an easily evaporable element, that is, mercury, in lIg+-x cdXTe crystal at a predetermined distance.
Further, a heating furnace 11 for heating the liquid phase epitaxial growth jig 5 and the mercury container 10 is provided surrounding the reaction tube 1.

ここに、加熱炉11の軸方向の温度分布は、液相エピタ
キシャル成長冶具5の存在する範囲は500℃、水銀容
器10の存在する範囲では260℃になるように温度調
節が行われている。
Here, the temperature distribution in the axial direction of the heating furnace 11 is adjusted so that the range where the liquid phase epitaxial growth jig 5 exists is 500°C and the range where the mercury container 10 exists is 260°C.

まずスライド部4に設けられたl&相母材容器7内のl
lgCdTe合金を溶融して液相母材8とし、スライド
部4を→印方向に滑動させて移動し、 CdTe基板6
上に静置してから液相エピタキシャル成長治具5の加熱
部の温度を約1°C/分の冷却速度で低下させてCdT
e基板6の上にHg+−x caXTeの液相エピタキ
シャル層を成長させていく。この際、11gは蒸気圧が
高く容易に前記液相母材8よりl’il脱していくので
、これを防止するために水銀容器lO内の水銀蒸気を反
応管1内の水素ガスをキャリアガスとして反応管1内を
満たし、水銀容器10の加熱部の温度を制御してその蒸
気圧を液相母材8の水銀蒸気圧と等しくして平衡させる
First, the l provided in the slide part 4 & the l in the phase base material container 7
The lgCdTe alloy is melted to form a liquid phase base material 8, and the slide portion 4 is slid in the → direction to form a CdTe substrate 6.
Then, the temperature of the heating part of the liquid phase epitaxial growth jig 5 is lowered at a cooling rate of about 1°C/min to form CdT.
A liquid phase epitaxial layer of Hg+-x caXTe is grown on the e-substrate 6. At this time, 11g has a high vapor pressure and easily escapes from the liquid phase base material 8, so in order to prevent this, mercury vapor in the mercury container 10 is replaced with hydrogen gas in the reaction tube 1 as a carrier gas. The temperature of the heating section of the mercury container 10 is controlled to make its vapor pressure equal to the mercury vapor pressure of the liquid-phase base material 8 to achieve equilibrium.

上述の従来の液相エピタキシャル成長法においては、液
相母材容器7内の溶融したllgCdTe合金は凝固点
に極めて近い500℃に保たれているのであるが、該液
相母材8ばなかなか均一の溶融したHgCdTeにはな
り難く、偏析によりHgの多い固体の結晶片をも含んで
いて結晶核を構成するので、これが原因で形成された液
相エピタキシャル成長法によるHg+−xCdx Te
結晶の表面に凸凹を生じ種々の欠陥を誘発することが多
かった。
In the conventional liquid phase epitaxial growth method described above, the molten llgCdTe alloy in the liquid phase base material container 7 is kept at 500°C, which is extremely close to the freezing point, but the liquid phase base material 8 is not melted uniformly. Hg+-xCdx Te formed by liquid phase epitaxial growth method is difficult to form into Hg+-xCdTe, which contains solid crystal fragments with a large amount of Hg due to segregation and forms crystal nuclei.
This often causes unevenness on the surface of the crystal and induces various defects.

あるいは液相母材8の溶融時にl1gp4気が過度に液
相母料8に吸収されて生成したl1g、−xcclxT
e結晶の成分が所定値と相違するという問題も発生して
いた。
Alternatively, l1g, -xcclxT generated by excessive l1gp4 gas being absorbed into the liquid phase base material 8 when the liquid phase base material 8 is melted.
There also occurred a problem that the components of the e-crystal differed from predetermined values.

上述の液相母材8の成分の不均一の問題を解消するため
に液相母材8の溶融温度を500°C以上に上げること
も考えられるにノれども、その時は液相母材8の11g
蒸気圧が高くなり、これと平衡する反応管1内のHg蒸
気圧も高くせねばならず、さらに前記液相母材8を凝固
させる迄の液相母材8の温度の変化に応じてうまく平衡
して反応管1内の11g蒸気圧を調整出来るように水銀
容器10の加熱部を制御せねばならず、これは極めて困
難な操作で実際的ではない。
Although it is possible to raise the melting temperature of the liquid phase base material 8 to 500°C or higher in order to solve the problem of non-uniformity of the components of the liquid phase base material 8 described above, in that case, the liquid phase base material 8 11g of
As the vapor pressure increases, the Hg vapor pressure within the reaction tube 1 that is in equilibrium with this must also be increased, and further, the Hg vapor pressure in the reaction tube 1 must be increased depending on the temperature change of the liquid phase base material 8 until the liquid phase base material 8 is solidified. The heating section of the mercury container 10 must be controlled so as to balance the 11g vapor pressure within the reaction tube 1, which is an extremely difficult operation and impractical.

(di  発明の目的 本発明は前述の点に鑑みなされたもので、上に述べた欠
点を除去するために前記液を目母月8を均一な相に形成
する方法を提供しようとするものである。
(di) Purpose of the Invention The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to provide a method for forming the eyelid 8 into a uniform phase using the liquid in order to eliminate the above-mentioned drawbacks. be.

(el  発明の構成 上記の発明の目的は、易蒸発性元素を一成分とする多元
素半導体結晶の開管系反応管内におりる液相エピタキシ
ャル成長法で形成する場合、形成すべき前記多元素半導
体結晶におりる所定成分の中、前記易蒸発性元素の成分
のみを所定値より低くした。あるいは全く含まない熔融
体を液相母材とし、蒸気状の易蒸発性元素を前記反応管
内に導入し、その蒸気圧と前記液相母材の温度と成長時
間とを制御することにより所定の多元素半導体結晶を形
成することを特徴とする液相エピタキシャル成長法によ
り容易に達成される。
(el) Structure of the Invention The object of the above invention is to provide a multi-element semiconductor crystal to be formed when the multi-element semiconductor crystal containing an easily vaporizable element as one component is formed by a liquid phase epitaxial growth method in an open reaction tube. Among the predetermined components contained in the crystal, only the component of the easily vaporizable element is lowered below a predetermined value, or a melt containing no element at all is used as a liquid phase base material, and a vaporized easily vaporizable element is introduced into the reaction tube. However, this can be easily achieved by a liquid phase epitaxial growth method, which is characterized in that a predetermined multi-element semiconductor crystal is formed by controlling its vapor pressure, the temperature of the liquid phase base material, and the growth time.

[fl  発明の実施例 以下本発明の実施例について説明しよう。[fl Embodiments of the invention Examples of the present invention will be described below.

装置は図に示すもので従来と変わりはない。本発明に基
づく方法では前記液相母材8としては従来のHgCdT
e3元合金の代わりにCdTeの2元合金を使用する。
The equipment shown in the figure is the same as before. In the method based on the present invention, the liquid phase base material 8 is conventional HgCdT.
A binary alloy of CdTe is used instead of a ternary alloy.

まず、水銀容器10の加熱部の温度を調整して反応管1
内の11g蒸気圧を目標のflにCdTe融液からの5
00°Cにおりる11g蒸気圧と同一に維持する。
First, the temperature of the heating part of the mercury container 10 is adjusted and the temperature of the reaction tube 1 is adjusted.
5 from the CdTe melt to the target fl.
Maintain the same 11g vapor pressure as at 00°C.

次いで液相エピタキシャル治具の加熱部により 500
℃に加熱され溶融したCdTe合金の液相母材8を従来
の方法でCdTe基板6の上に静置する。
Then, the heating part of the liquid phase epitaxial jig
A liquid phase base material 8 of a CdTe alloy heated to and melted at 0.degree. C. is placed on a CdTe substrate 6 by a conventional method.

一方CdTe 2元合金の融点は約450℃であるので
On the other hand, since the melting point of CdTe binary alloy is about 450°C.

前記の500℃ではその熔融液面に触れるIl、蒸気は
容易にかつ極めて均質に液相母材8のなかに拡散浸透し
てゆくので所定の時間の後は該液相母材8は均質な目標
の成分のHgCdTe合金の溶融体に変成する。しかる
後は従来の方法でエビクキシャル成長をさせて所望の凸
凹のない良質の結晶を容易に得ることが出来る。
At the above-mentioned temperature of 500°C, the Il and vapor that come into contact with the molten liquid surface diffuse and permeate into the liquid phase base material 8 easily and extremely homogeneously, so that the liquid phase base material 8 becomes homogeneous after a predetermined period of time. It is transformed into a melt of HgCdTe alloy of the target composition. After that, evixaxial growth is performed using a conventional method to easily obtain a high-quality crystal without desired unevenness.

なお以上の説明から明らかなように液相用、材8として
は単にCdTe2元合金にとどまらず、目標の11gC
dTe合金の成分にくらべて易蒸発性元素のl1g成分
を減じることにより、その溶融点を500°Cより低く
り、500°Cで偏析による結晶片を含まない限り、 
IIgCdTeの3九合金も液相母材8とし一ζ使用出
来る。
As is clear from the above explanation, the material 8 for the liquid phase is not just a CdTe binary alloy, but also the target 11gC
By reducing the l1g component of easily vaporizable elements compared to the components of the dTe alloy, the melting point is lower than 500°C, and as long as it does not contain crystal fragments due to segregation at 500°C,
39 alloy of IIgCdTe can also be used as the liquid phase matrix 8.

ig)  発明の効果 以上の説明から明らかなように1本発明による液相エピ
タキシャル成長法に従えば、平坦な良質の易蒸発性元素
を一成分とする化合物半導体の結晶を容易に得ることが
出来るという効果がある。
ig) Effects of the Invention As is clear from the above explanation, by following the liquid phase epitaxial growth method according to the present invention, it is possible to easily obtain a flat crystal of a compound semiconductor containing an easily vaporizable element as one component. effective.

【図面の簡単な説明】[Brief explanation of drawings]

図は従来の液相エピクキシャル成長法に使用される装置
の極く概念的な構成図である。 図において、1は紋応管、2は基台、3は支持台、4は
スライド部、5は液相エピタキシャル成長治具、6はC
dTe基板、7は液相母材容器、8は液相母材、9ば水
銀、10は水銀容器、11は加熱炉をそれぞれ示す。
The figure is a very conceptual block diagram of an apparatus used in a conventional liquid phase epitaxial growth method. In the figure, 1 is a reaction tube, 2 is a base, 3 is a support stand, 4 is a slide part, 5 is a liquid phase epitaxial growth jig, and 6 is a C
dTe substrate, 7 a liquid phase base material container, 8 a liquid phase base material, 9 mercury, 10 a mercury container, and 11 a heating furnace, respectively.

Claims (1)

【特許請求の範囲】 易蒸発性元素を一成分とする多元素半導体結晶の開管系
反応管内における液相エピタキシャル成長法であって、
形成すべき前記多元素半導体結晶におりる所定成分の中
、前記易蒸発性元素の成分のみを所定値より低くした。 あるいは全く含まない溶融体を液相母材とし、蒸気状の
易蒸発性元素を前記反応管内に導入し、その蒸気圧と前
記液相母材の温度と成長時間とを制御することにより所
定の多元素半導体結晶を形成することを特徴とする液相
エピタキシャル成長法。
[Claims] A liquid phase epitaxial growth method in an open reaction tube for a multi-element semiconductor crystal containing an easily vaporizable element as one component, comprising:
Among the predetermined components included in the multi-element semiconductor crystal to be formed, only the component of the easily evaporable element was set lower than a predetermined value. Alternatively, a predetermined temperature can be achieved by using a completely free melt as a liquid phase base material, introducing a vaporous easily evaporable element into the reaction tube, and controlling its vapor pressure, the temperature of the liquid phase base material, and the growth time. A liquid phase epitaxial growth method characterized by forming multi-element semiconductor crystals.
JP57228171A 1982-12-22 1982-12-22 Liquid phase epitaxial growth method Pending JPS59115531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228171A JPS59115531A (en) 1982-12-22 1982-12-22 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228171A JPS59115531A (en) 1982-12-22 1982-12-22 Liquid phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS59115531A true JPS59115531A (en) 1984-07-04

Family

ID=16872331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228171A Pending JPS59115531A (en) 1982-12-22 1982-12-22 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS59115531A (en)

Similar Documents

Publication Publication Date Title
US3093517A (en) Intermetallic semiconductor body formation
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
WO1991002832A1 (en) Method for directional solidification of single crystals
US4642142A (en) Process for making mercury cadmium telluride
US3762943A (en) Procedure and preparation for the production of homogeneous and planeparallel epitactic growth layers of semiconducting compounds by melt epitaxy
JPS59115531A (en) Liquid phase epitaxial growth method
US4678534A (en) Method for growing a single crystal
JPH0244798B2 (en)
US4201623A (en) Method for making epitaxial silicon crystals with uniform doping levels
JPH06298600A (en) Method of growing sic single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JPH08119784A (en) Production of compound single crystal and production device therefor
JPH02196081A (en) Method for growing gallium arsenide single crystal
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
JPS61280613A (en) Liquid epitaxial growing process
JPH0867593A (en) Method for growing single crystal
CA2292853A1 (en) Process and apparatus for synthesizing and growing crystals
JP2873449B2 (en) Compound semiconductor floating zone melting single crystal growth method
JPH0243723A (en) Solution growth device
JPH01208393A (en) Slider boat for liquid-phase epitaxial growth
JPH0477383A (en) Method for growing compound semiconductor crystal
JPH07242500A (en) Production of ii-vi compound semiconductor single crystal
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JPS6389498A (en) Production of silicon-added gallium arsenide single crystal