JPS59115470A - Driving method with reduced cylinder for multi-cylindered engine - Google Patents

Driving method with reduced cylinder for multi-cylindered engine

Info

Publication number
JPS59115470A
JPS59115470A JP22537282A JP22537282A JPS59115470A JP S59115470 A JPS59115470 A JP S59115470A JP 22537282 A JP22537282 A JP 22537282A JP 22537282 A JP22537282 A JP 22537282A JP S59115470 A JPS59115470 A JP S59115470A
Authority
JP
Japan
Prior art keywords
ignition
cylinder
cylinders
cycle
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22537282A
Other languages
Japanese (ja)
Inventor
Isamu Kubomoto
久保元 勇
Yoichi Negoro
陽一 根来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP22537282A priority Critical patent/JPS59115470A/en
Publication of JPS59115470A publication Critical patent/JPS59115470A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • F02P11/02Preventing damage to engines or engine-driven gearing

Abstract

PURPOSE:To prevent generation of water drops due to overcooling and corrosion in cylinders by intermitting the ignition of each cylinder by turns at an equal frequency at the time of partial load. CONSTITUTION:At the time of full load, cylinders are ignited in the turn of 1 3 4 2 at every cycle time. At the time of light load, one ignition cycle is prolonged double the length at the time of full load, and ignitions of cylinders are intermitted at intervals of one ignition cycle to make operation of 50% reduced cylinders. At medium load operation, a set of a double prolonged ignition cycle and the original cycle is repeated to ignite each cylinder twice in the turn of 1 4 2 3 4 1 3 2, and the ignition is intermitted once in the turn of 3 1 2 4 to make operation of 1/3 reduced cylinders.

Description

【発明の詳細な説明】 本発明は、多気筒エンジンの減筒運転方法に関する。[Detailed description of the invention] The present invention relates to a method for operating a multi-cylinder engine with reduced cylinders.

従来、エンジンの負荷状態が部分負荷のときに、エンジ
ンの一部特定の気筒における点火を休止させて、燃料の
無駄使い等を少なくすることが知られている。 例えば
、全負荷時に1→3→4→2の気筒類に点火させている
4気筒エンジンでは、部分負荷時に、1・4の2気筒だ
けを点火させ、3・2の2気筒の点火を休止させる方法
がある。
2. Description of the Related Art Conventionally, it has been known to suspend ignition in some specific cylinders of the engine when the engine is under partial load, thereby reducing wasted fuel. For example, in a 4-cylinder engine that ignites cylinders 1 → 3 → 4 → 2 during full load, only two cylinders 1 and 4 will ignite during partial load, and the ignition of cylinders 3 and 2 will be stopped. There is a way to do it.

しかし、このような方法には次のような欠点がある。 
即ち、(i)点火を休止させたシリンダとそうでないシ
リンダとの間で熱負荷状態が天外く異なり、シリンダブ
ロックの変形やこの変形によるガス漏れが発生する。 
(11)点火を休止させたシリンダでは、ピストンリン
グの張りが弱く、オイルアップ、異常摩耗、シリンダラ
イナやピストンリング等の損傷が起こる。 (iii)
更に、適冷により水滴が発生腰シリングの腐食か生じ易
い等の欠点がある。
However, such a method has the following drawbacks.
That is, (i) the thermal load state is extremely different between the cylinder in which the ignition is stopped and the cylinder in which the ignition is not, and deformation of the cylinder block and gas leakage due to this deformation occur.
(11) In a cylinder in which ignition is stopped, the tension of the piston ring is weak, resulting in oil buildup, abnormal wear, and damage to the cylinder liner, piston ring, etc. (iii)
Furthermore, there are drawbacks such as water droplets that are likely to form due to proper cooling and cause corrosion of the sills.

本発明方法は、上記の諸欠点を解消することを目的とす
るもので、部分負荷のときに、各気筒を順に交替させて
同じ頻度で休止させることを特徴とする多気筒エンジン
の減筒運転方法である。
The method of the present invention is aimed at solving the above-mentioned drawbacks, and is aimed at reducing cylinder operation of a multi-cylinder engine, which is characterized in that each cylinder is alternated in turn and stopped at the same frequency during partial load. It's a method.

本発明方法は、公知の気化器を用いて混合気を形成する
火花点火式エンジンにも適用できるが、生ガスの吹抜は
等の問題が生じない燃料噴射式火花点火エンジンやディ
ーゼルエンジンに適用すると一層好適である。  また
、本発明方法は4サイクルエンジンにも2サイクルエン
ンジンにもM用できる。
The method of the present invention can also be applied to spark-ignition engines that use known carburetors to form air-fuel mixtures, but it cannot be applied to fuel-injected spark-ignition engines or diesel engines that do not pose problems such as blowing raw gas. This is even more suitable. Furthermore, the method of the present invention can be applied to both 4-stroke and 2-stroke engines.

以下、本発明方法の実施手順例を図面に基づき説明する
Hereinafter, an example of the implementation procedure of the method of the present invention will be explained based on the drawings.

〈第1実施手順例〉 先ず、4サイクル4気筒デイーゼルエンジンの減筒運転
方法に適用された実施手順例を説明するが、それに先立
って上記エンジンの燃料装置の概略を図面に基づき説明
する。
<First Practical Procedure Example> First, a practical procedure example applied to a cylinder reduction operation method for a 4-stroke, 4-cylinder diesel engine will be described. Prior to that, an outline of the fuel system of the engine will be described based on the drawings.

第1図は4サイクル4気筒デイーゼルエンジンの燃料装
置の概略構成図である。
FIG. 1 is a schematic diagram of a fuel system for a four-stroke, four-cylinder diesel engine.

このエンジン(1)の各気筒(2,)〜(2,)には、
それぞれ燃料噴射ノズル(31)〜(3,)が設けであ
る。
In each cylinder (2,) to (2,) of this engine (1),
Fuel injection nozzles (31) to (3,) are provided, respectively.

これらのノズル(3□)〜(34)はそれぞれ増圧シリ
ング(41)〜(44)の出力室(51)〜(5,)に
接続されている。 これ呟出力室(51)〜(5,)は
それぞれ逆止弁(61)〜(6,)を介して、燃料ポン
プ(7)に並列接続させる。
These nozzles (3□) to (34) are connected to the output chambers (51) to (5,) of the pressure increasing syringes (41) to (44), respectively. The output chambers (51) to (5,) are connected in parallel to the fuel pump (7) via check valves (61) to (6,), respectively.

上記各増圧シリング(4,)〜(44)の入力室(81
)〜(84)はそれぞれ噴射時期制御用の給排切換弁(
9、)〜(94)を介して圧油ポンプ(10)に接続さ
れる。
The input chambers (81
) to (84) are supply/exhaust switching valves (
9, ) to (94) are connected to the pressure oil pump (10).

上記各給排切換弁(9゜)〜(94)は電磁操作弁で構
成され、制御装置(11)・によってコントロールされ
る。 この制御装置(11)は、4つのデータ入力装f
f(12a)−(]2d)、入力インターフェース(1
3)、中央処理装置(14)、増幅器(15)および出
力インターフェース(16)を有する。
Each of the above-mentioned supply/discharge switching valves (9°) to (94) are constituted by electromagnetically operated valves, and are controlled by a control device (11). This control device (11) has four data input devices f.
f(12a)-(]2d), input interface (1
3), a central processing unit (14), an amplifier (15) and an output interface (16).

−1−記データ入力装置(12a) −(12d)は、
エンジン(1)の回転数を検出してその回転数に対応す
る電気信号を出力する回転数検出器(12a)と、エン
ジン(2)の負荷を検出してその負荷に対応する電気信
号を出力する負荷検出器(121])と、エンジン(1
)の冷却水温を検出してその温度に対応する電気信号を
出力する水温検出器(12c)と、エンジン(1)の排
気ガス温度を検出してその温度に対応する電気信号を出
力する排気温検出器(+2d)とである。
-1- The data input device (12a) - (12d) is
A rotation speed detector (12a) that detects the rotation speed of the engine (1) and outputs an electric signal corresponding to the rotation speed, and a rotation speed detector (12a) that detects the load of the engine (2) and outputs an electric signal corresponding to the load. load detector (121]) and engine (1
) that detects the cooling water temperature of the engine (1) and outputs an electric signal corresponding to that temperature, and an exhaust temperature detector (12c) that detects the exhaust gas temperature of the engine (1) and outputs an electric signal that corresponds to that temperature. Detector (+2d).

中央処理装置(14)では、先ず、これらデータ入力装
置(12a)〜(12d)からの入力に基づト、エンジ
ン(1)の負荷状態が全負荷か部分負荷かを判別する。
The central processing unit (14) first determines whether the load state of the engine (1) is full load or partial load based on the inputs from these data input devices (12a) to (12d).

  そして、後述するように負荷状態に対応して各給排
切換弁(91)〜(94)に点火信号を出力する3− ように構成しである。
As will be described later, an ignition signal is output to each of the supply/discharge switching valves (91) to (94) in accordance with the load condition.

第2図(a)および(b)は上記エンジンの点火スケジ
ュールを示すタイムチャートである。
FIGS. 2(a) and 2(b) are time charts showing the ignition schedule of the engine.

同図中、エンジン(1)の各気筒(2I)〜(24)は
実線円または点線円で囲んだその添字で代表され、それ
らの円の横軸方向の位置で当該気筒の点火時期が示され
ている。
In the figure, each cylinder (2I) to (24) of the engine (1) is represented by its subscript surrounded by a solid line circle or a dotted line circle, and the position of the circle in the horizontal axis direction indicates the ignition timing of the cylinder. has been done.

上記中央処理装M(14)は増幅器(15)、出力イン
ターフェース(16)を介して、全負荷状態では、1点
火サイクル、即も720°を進む開に、180゜の位相
間隔で、符号の添字であられせば1→3→4→2の気筒
の順に点火信号を給徘切換弁(9,)〜(94)に向け
て出力する。
The central processing unit M (14), via an amplifier (15) and an output interface (16), transmits the sign with a phase interval of 180° during one ignition cycle, i.e. 720° under full load conditions. If there are any subscripts, ignition signals are outputted to the supply switching valves (9,) to (94) in the order of cylinders 1→3→4→2.

軽負荷時には、1点火サイクルのサイクルタイムを全負
荷時の1点火サイクルのサイクルタイムの2倍に延長し
、その延長された1点火サイクル、即ち1440°を進
む間に、各給徘切換弁(91)〜(94)に、添字であ
られせば1→4→2→3の順に点火信号を出力する。 
ただし、この場合、1→4.2→3の間は360°、4
→2の間は180゜4− であり、最後の3から次の点火サイクルの1への間は5
40°の位相間隔が置かれる。 負荷が上記軽負荷より
も若干重い中負荷の場合には、中央処理装置(14)は
、添字であられせば1→4→2→3→4→1→3→2の
順に点火俗字を出力する。
At light load, the cycle time of one ignition cycle is extended to twice the cycle time of one ignition cycle at full load, and during the extended one ignition cycle, that is, 1440°, each wandering switching valve ( Ignition signals are outputted in the order of 1→4→2→3 to 91) to (94) if there are subscripts.
However, in this case, the distance between 1→4.2→3 is 360°, 4
→2 is 180°4-, and from the last 3 to 1 of the next ignition cycle is 5
A phase separation of 40° is provided. If the load is a medium load that is slightly heavier than the above-mentioned light load, the central processing unit (14) outputs the ignition slang in the order of 1 → 4 → 2 → 3 → 4 → 1 → 3 → 2, if there is a subscript. do.

この場合、1→4.2→3.4→1.3→2の間には3
60°、4→2.3→4.1→3および最後の2から次
の点火サイクルの初めの1への間には180°の位相間
隔が置かれる。
In this case, there are 3 between 1 → 4.2 → 3.4 → 1.3 → 2.
60°, 4→2.3→4.1→3 and there is a 180° phase interval between the last 2 and the first 1 of the next ignition cycle.

点火信号を人力した給徘切換弁(9,)〜(9,)は、
図示通りの排油位置から給油位置に切換わる。
The supply switching valves (9,) to (9,) with manual ignition signals are:
Switches from the oil drain position to the oil supply position as shown.

給排切換弁(91)〜(9,)が給油位置に切換えられ
ると、その給徘切換弁(9,)〜(94)に接続された
増圧シリング(41)〜(44)の入力室(81)〜(
8,)に圧油が導入され、その出力室(51)〜(54
)から燃料が押し出される。 その結果、切換えられた
給徘切換弁(9、)〜(9,)に対応する噴射ノズル(
31)〜(34)から当該気筒(21)〜(2,)内に
燃料が噴射されるように構成されている。
When the supply/discharge switching valves (91) to (9,) are switched to the refueling position, the input chambers of the pressure increasing sills (41) to (44) connected to the supply/discharge switching valves (9,) to (94) (81)~(
Pressure oil is introduced into the output chambers (51) to (54).
) fuel is forced out. As a result, the injection nozzles (
31) to (34) into the cylinders (21) to (2,).

次に、上述の燃料装置を用いた本発明方法の第1実施手
順例を図面に基づき説明する。
Next, a first example of the procedure for carrying out the method of the present invention using the above-mentioned fuel system will be explained based on the drawings.

このエンジン(1)の点火タイミングは、負荷状態の軽
重に対応して全負荷運転、中負荷運転および軽負荷運転
の3段階に切換えられる。
The ignition timing of this engine (1) is switched to three stages: full load operation, medium load operation, and light load operation, depending on the load state.

即ち、全負荷運転では、第2図(a)において−・印で
示すように、1点火サイクルのサイクルタイム、即ち、
720°の位相か進む間に、13)0°の位相を進むご
とに1→3→4−2の順に各気筒(2,)〜(24)が
点火され、全筒運転が行われる。
That is, in full load operation, the cycle time of one ignition cycle, that is, as shown by the symbol - in FIG.
While the phase progresses through 720°, each cylinder (2,) to (24) is ignited in the order of 1→3→4-2 each time the phase progresses through 13) 0°, and all-cylinder operation is performed.

軽負荷運転では、所定の順に各気筒(21)〜(2,)
の1点火サイクルを全負荷時の1点火サイクルの2倍の
長さの1440°に延長し、各気筒(21)〜(24)
を順にそれぞれの全負荷時の1点火サイクル間外に点火
休止させて、50%減筒運転を行)。
During light load operation, each cylinder (21) to (2,) is
One ignition cycle is extended to 1440 degrees, which is twice the length of one ignition cycle at full load, and each cylinder (21) to (24)
ignition is stopped for one ignition cycle at full load in order to perform 50% reduced cylinder operation).

即も、第2図(a)の→印で示すように、先ず、全負荷
時に奇数番目に点火される1、4の気筒(21)、(2
,)を360°の位相間隔を置いて順に点火させ、その
開の全負荷時に偶数番目に点火される3の気筒(23)
の点火は休止させる。 次いで、180’の位相間隔を
置いてから、全負荷に偶数番目に点火される2、3の気
筒(22)、(23)を360°の位相間隔を置いて順
に点火させ、その間の全負荷時の奇数番目に点火される
1の気筒(乙)の点火を休11−させる。 続いてまだ
点火を休止させていない4と2との気筒の点火(24)
、(22)を休止させる。
Immediately, as shown by → marks in FIG.
,) are fired in sequence with a phase interval of 360°, and the 3rd cylinder (23) is fired in the even numbered position at full load when the cylinder is open.
The ignition of is stopped. Then, after setting a phase interval of 180', the second and third cylinders (22) and (23), which are even-numbered to be fired at full load, are fired in sequence with a phase interval of 360°, and at full load during that time. The ignition of the first cylinder (B), which is fired at the odd numbered position, is stopped. Next, ignite cylinders 4 and 2 that have not yet stopped ignition (24)
, (22) are paused.

そして、最後の3の気筒(23)の点火がら、540゜
の位相間隔を置いて次の点火サイクルの最初の1の点火
に戻る。 このようにして、1の気筒から始マる144
0°の1点火サイクル内に、1→4→2→3の順に点火
され、3→1→4→2の順に点火を休止する50%減筒
運転が行われることになる。
The ignition of the last three cylinders (23) then returns to the first ignition of the next ignition cycle with a phase interval of 540°. In this way, starting from cylinder 1, 144
Within one ignition cycle of 0°, a 50% cylinder reduction operation is performed in which the cylinders are ignited in the order of 1 → 4 → 2 → 3, and the ignition is stopped in the sequence of 3 → 1 → 4 → 2.

中負荷運転では、エンジン(1)の各気筒(2,)〜(
24)は、3点火サイクルのうもに2度点火を続けて1
度点火を休止する。 即ち、↓の減筒率の滅筒運転が行
なわれる。
During medium load operation, each cylinder (2,) to (
24) is ignited twice in a row for 3 ignition cycles, then 1
Shut off the ignition. In other words, cylinder-less operation is performed with a cylinder reduction rate of ↓.

この場合、全負荷時の、1点火サイクルの2倍に延長さ
れた点火サイクルと延長されない点火サイクルとが1組
になって周期的に繰返される。各気筒(2,)〜(24
)の点火はその2倍に延長された点火7− サイクル中に1度休止される。
In this case, a set of an ignition cycle extended to twice one ignition cycle and an ignition cycle not extended at full load are periodically repeated. Each cylinder (2,) to (24
) is paused once during the 7-cycle of ignition, which is twice as long.

即ち、先ず、全負荷時に奇数番目に点火される1、4の
気筒(2,)(2,)を36 (1’の位相間隔を置い
て順に点火させ、その間の全負荷時に偶数番口に点火さ
れる3の気筒(23)は点火休止させる。
That is, first, the 1st and 4th cylinders (2,) (2,), which are fired in the odd numbered positions at full load, are fired in order with a phase interval of 36 (1'), and the even numbered cylinders are fired at the full load in between. The ignition of the third cylinder (23) that is to be ignited is stopped.

次いで、180’の位相間隔を置いてから全負荷に偶数
番目に点火される2、3の気筒(22)(2,)を順に
360°の位相間隔を置いて点火させ、その開の全負荷
時の奇数番目に点火される1の気筒(21)の点火を休
止させる。 続いて、18(1”の位相間隔を置いてか
ら、全負荷時に奇数番目に点火される4、1の気筒(2
,>(2,)を順に360°の位相間隔を置いて点火さ
せ、その間の全負荷時の奇数番目に点火される2の気筒
(22)を休止させる。
Next, two or three cylinders (22) (2,), which are even-numbered to fire at full load after a phase interval of 180', are fired in order at a phase interval of 360°, and the full load of the open The ignition of the first cylinder (21) that is fired at the odd numbered position is stopped. Then, after a phase spacing of 18 (1"), 4 and 1 cylinders (2
.

さらに続いて180°の位相間隔を置き、次いで全負荷
時の奇数番目に点火される3、2の気筒(23)(2□
)を順に360°の位相間隔を置いて点火させ、その間
の全負荷時の偶数番目に点火される4の気筒(2,)の
点火を休止させる。 このようにして、1→4→2→3
→4→1→3→2の順に8− 各気筒(21)〜(2,)が2度、α火され、その点火
が3行われる。
This is followed by 3 and 2 cylinders (23) (2□
) are ignited sequentially at 360° phase intervals, and during that time, the ignition of the even-numbered four cylinders (2,) at full load is stopped. In this way, 1→4→2→3
→4→1→3→2 8- Each cylinder (21) to (2,) is fired twice, and the ignition is performed three times.

〈第2実施例〉 次に、4サイクル6気筒エンジンの減筒運転方法に適用
された実施手順例について説明する。
<Second Embodiment> Next, an example of an implementation procedure applied to a reduced-cylinder operation method for a 4-stroke, 6-cylinder engine will be described.

第3図は4サイクル6気筒エンジンの点火スケジュール
を示すタイムチャートである。
FIG. 3 is a time chart showing the ignition schedule of a 4-stroke, 6-cylinder engine.

第3図中、実線円または点線円で囲んだ数字は、図示し
ないエンジンの各気筒を代表し、それらの円の横軸方向
の位置で当該気筒の点火時期を示す。
In FIG. 3, the numbers surrounded by solid circles or dotted circles represent each cylinder of the engine (not shown), and the positions of these circles in the horizontal axis direction indicate the ignition timing of the cylinder.

このエンジンは、全負荷時には、第3図中−e印で示す
ように、1点火サイクルのサイクルタイム、即ち、72
0°の位相が進む間に、12o゛の位相を進むごとに1
−チ5→3→6−2→4の順に点火される。
At full load, this engine has a cycle time of one ignition cycle, that is, 72
1 for every 12 degrees of phase progress while 0 degrees of phase advances.
- It is ignited in the order of 5 → 3 → 6-2 → 4.

部分負荷時には、各気筒の1点火サイクルを全負荷時の
1点火サイクルの2倍の長さ、JIIIも、1440°
に延長し、各気筒の点火を全負荷時の1点火サイクル置
きに順に休止させる。  そして、この延長された1点
火サイクルのサイクルタイムを進む間に、各気筒の点火
を順に休止させることにより50%減筒運転を行なう。
At partial load, one ignition cycle for each cylinder is twice as long as one ignition cycle at full load, and JIII is also 1440 degrees.
ignition of each cylinder is stopped every other ignition cycle under full load. Then, during this extended cycle time of one ignition cycle, the ignition of each cylinder is stopped in turn to perform a 50% reduced cylinder operation.

即ち、第3図中→印で示すように、先ず、全負荷時に奇
数番目に点火される1、3.2の気筒を順に240°の
位相間隔を置いて点火しその間の全負荷時の偶数番目に
点火される5、6の気筒の点火は休止させる。 次いで
、12r)’の位相間隔を置いてから、全負荷時に偶数
番[1に点火される4、5.6の気筒を24+1’の位
相間隔を置いて順に点火させ、その間の全負荷時の奇数
番目に点火される1、3の気筒の点火を休11−させる
That is, as shown by the → mark in Fig. 3, first, the odd-numbered cylinders 1 and 3.2 are fired at a phase interval of 240° at full load, and the even-numbered cylinders at full load are fired in sequence at a phase interval of 240 degrees. The ignition of the 5th and 6th cylinders, which are to be ignited first, is stopped. Next, after setting a phase interval of 12r)', the 4 and 5.6 cylinders, which are fired at even number [1] at full load, are fired in order with a phase interval of 24 + 1', and during the period of full load, The ignition of the odd-numbered cylinders 1 and 3 is stopped.

続いてまだ点火を休1にさせていない2と4との気筒の
点火を休止させ、最後の6の気筒の点火から360°の
位相間隔を置いて次の点火サイクルの最初の1の気筒の
点火に戻る。 このようにして、1の気筒から始まる1
440°の1点火サイクル内に、1→3→2→4→5→
6の順に点火され、5→6−1−3−峠一参・1の順に
点火を休止する50%減筒運転が行われることになる。
Next, the ignition of cylinders 2 and 4, which have not yet been turned off, is turned off, and the first cylinder of the next ignition cycle is turned on at a 360° phase interval from the ignition of the last cylinder of 6. Back to ignition. In this way, 1 starting from cylinder 1
Within one ignition cycle of 440°, 1 → 3 → 2 → 4 → 5 →
A 50% cylinder reduction operation will be performed in which the cylinders are ignited in the order of 6 and the ignition is stopped in the order of 5 -> 6-1-3-Toge Issan-1.

〈第3実施手順例〉 次に、4サイクル6気筒エンジンの減筒運転方法に適用
された他の実施手順例について説明する。
<Third Implementation Procedure Example> Next, another implementation procedure example applied to the cylinder reduction operation method of a 4-cycle 6-cylinder engine will be described.

第4図は4サイクル6気筒エンノンの点火スケジュール
を示すタイムチャートである。
FIG. 4 is a time chart showing the ignition schedule of a 4-stroke, 6-cylinder ennon.

第4図中、実線円または点線円で囲んだ数字は、図示し
ないエンジンの各気筒を代表し、それらの円の横軸方向
の位置で当該気筒の点火時期を示す。
In FIG. 4, the numbers surrounded by solid circles or dotted circles represent each cylinder of the engine (not shown), and the positions of these circles in the horizontal axis direction indicate the ignition timing of the cylinder.

このエンジンは、全負荷時には、第4図中→印で示すよ
うに、1点火サイクルのサイクルタイム、即ち、?2(
1’の位相が進む間に、120°の位相を進むごとに1
→5→3→6→2→4の順に点火される。
At full load, this engine has a cycle time of one ignition cycle, as shown by the → mark in Fig. 4, that is, ? 2(
1 for every 120 degrees of phase progress while 1' phase advances.
→It is ignited in the order of 5 → 3 → 6 → 2 → 4.

部分負荷時には、各気筒を全負荷時の1点火サイクル置
とに1点火サイクルのサイクルタイムを2倍に延長し、
全負荷時の2点火サイクル置きに1度点火を休止させこ
とにより、全負荷時の5点大サイクルのサイクルタイム
を進む間に、各気筒の点火が順に交互に2度づつ休止さ
せられる40%減筒運転が行われる。
At partial load, the cycle time of each cylinder is doubled for every ignition cycle at full load,
By deactivating the ignition once every two ignition cycles at full load, each cylinder's ignition is alternately deactivated twice during the cycle time of a 5-point large cycle at full load.40% Reduced cylinder operation is performed.

11− 即ち、第4図中→印で示すように、先ず、全負荷時に奇
数番目に点火される1、3.2の気筒を240°の位相
間隔を置いて順に点火させ、その間の全負荷時に偶数番
目に点火される5、6の気筒の点火は休止させる。 次
いで、120°の位相間隔を置いてか呟全負荷時に偶数
番目に点火される4、5.6の気筒を順に240’の位
相間隔を置いて、α火させ、その間の全負荷時の奇数番
目に点火される1、3の気筒の点火を休止させる。
11- That is, as shown by the → mark in Fig. 4, first, the odd-numbered cylinders 1 and 3.2 are fired in order at a phase interval of 240° at full load, and during the full load period, The ignition of the fifth and sixth cylinders, which are sometimes even-numbered, is stopped. Next, the even-numbered cylinders 4 and 5.6, which are fired at full load with a phase interval of 120 degrees, are fired α in turn with a phase interval of 240', and the odd-numbered cylinders at full load between them are fired at a phase interval of 240'. The ignition of the 1st and 3rd cylinders, which will be ignited first, is stopped.

続いて、120°の位相間隔を置いて全負荷時の奇数番
目に点火される2、1.3の気筒の2度目の点火を順に
360°の位相間隔を置いて行なわせ、その間の全負荷
時の偶数番目に点火される4、5の気筒の点火を順に休
止させる。 さらに120°の位相間隔を置いてから、
続いてまだ2度目の点火をしていない6.4.5の気筒
を順に240°の位相間隔を置いて点火させ、その間の
全負荷時の奇数番目の2.1の気筒の点火を順に休止さ
せる。 さらに120°の位相間隔を置いて3.2.1
、の各気筒を240°の位相間隔を12− 置いて順に点火させ、その開に全負荷時の偶数番目に点
火される6、4、の気筒の点火を休止させる。  また
さらに120°の位相間隔を置いて5.6.4の各気筒
の点火を240°の位相間隔を置いて順に行ない、その
間の3.2の各気筒の点火は休止する。 そして最後の
4の気筒の点火がら120°の位相間隔を置いて次の5
点火サイクルの最初の1の気筒の点火に戻る。 このよ
うにして、1の気筒から始まる720°の5点火サイク
ル内に、1→3→2→4→5→6→2→1→3→6→4
→5→3→2→1→5→6→4の順に点火され、5→6
→1→3→4−5→2→1→6→4→3−2の順に点火
を休止する40%減筒雲転が行われる。
Subsequently, the second ignition of the 2nd and 1.3 cylinders, which are fired at the odd numbered positions at full load with a phase interval of 120°, is performed in order with a phase interval of 360°, and during the period of full load. The ignition of the 4th and 5th cylinders, which are ignited at even numbered positions, is stopped in sequence. After further setting a phase interval of 120°,
Next, the 6.4.5 cylinders that have not yet been ignited for the second time are ignited at a phase interval of 240°, and the ignition of the odd-numbered 2.1 cylinders under full load is stopped in order. let 3.2.1 with a further 120° phase interval
, are ignited in sequence with a 240° phase interval of 12 -, and at the same time, the ignition of even-numbered cylinders 6 and 4 at full load is stopped. Moreover, the ignition of each cylinder of 5.6.4 is performed in order with a phase interval of 240° at a phase interval of 120°, and the ignition of each cylinder of 3.2 is stopped during that time. Then, with a phase interval of 120° from the ignition of the last 4 cylinders, the next 5 cylinders are fired.
Return to ignition of the first cylinder of the ignition cycle. In this way, within 5 ignition cycles of 720° starting from cylinder 1, 1 → 3 → 2 → 4 → 5 → 6 → 2 → 1 → 3 → 6 → 4
→ 5 → 3 → 2 → 1 → 5 → 6 → 4 are ignited in order, 5 → 6
→1→3→4-5→2→1→6→4→3-2 A 40% reduction cylinder rolling is performed in which the ignition is stopped in the order of →1→3→4-5→2→1→6→4→3-2.

以上説明したように、本発明方法では、各気筒の点火サ
イクルのサイクルタイムを所定の順に2倍に延長して、
各気筒の点火が順に休止される手順をとるので、全気筒
が等しく運転と休止とを繰返し、熱負荷が均一になる。
As explained above, in the method of the present invention, the cycle time of the ignition cycle of each cylinder is doubled in a predetermined order,
Since the procedure is such that the ignition of each cylinder is stopped in turn, all cylinders are repeatedly operated and stopped equally, making the heat load uniform.

 その結果、シリンダブロックの熱変形が少なくなり、
この熱変形によるガス漏れをなくせる。  また、金気
筒のピストンリングが同じように)昌められて適度に張
り出すので、オイルアップか少なく、ピストンリングの
異常摩耗、ピストンリングやシリンダの損傷等が生しに
くい。  さらに、点火が休止される気筒が過冷却され
ずに済むので、気筒内に水滴が凝縮せず、この凝縮水滴
による腐食が発生しにくい。
As a result, thermal deformation of the cylinder block is reduced,
Gas leakage caused by this thermal deformation can be eliminated. In addition, since the piston rings of the gold cylinder are tightened (in the same way) and bulge out appropriately, there is less oil buildup, which prevents abnormal wear of the piston rings and damage to the piston rings and cylinder. Furthermore, since the cylinder in which ignition is suspended does not need to be overcooled, water droplets do not condense inside the cylinder, and corrosion due to the condensed water droplets is less likely to occur.

加えて、全気筒が順に点火されるので、回転が安定し、
振動や騒音が1氏下する等、耐久性、省エネルギ、公害
防止等の観点から種々の利点が得られる。
In addition, all cylinders are ignited in order, so the rotation is stable,
Various advantages can be obtained from the viewpoints of durability, energy saving, pollution prevention, etc., such as vibration and noise being reduced by 1 degree Celsius.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明方法の第1実施手順例を示し、
第1図は本発明方法の実施に用いる4サイクル4気筒デ
イーゼルエンジンの点火装置の概略構成図、第2図(、
)はその全負荷時および軽負荷時の点火スケジュールを
示すタイムチャート、同図(11)はその中負荷時の点
火スケジュールを示すタイムチャート、第3図は本発明
方法の第2実施手順例の点火スケジュールを示すタイム
チャー15− ト、第4図は本発明方法の第3実施手順例の点火スケジ
ュールを示すタイムチャートである。 (1)・・・エンジン、(乙)〜(2,)・・・気筒。 特 許 出 願 人  久保田鉄工株式会社16− 特開昭59−115470 (7)
FIG. 1 and FIG. 2 show a first implementation procedure example of the method of the present invention,
Fig. 1 is a schematic diagram of the ignition system of a 4-cycle, 4-cylinder diesel engine used to carry out the method of the present invention, and Fig. 2 (
) is a time chart showing the ignition schedule at full load and light load, Figure (11) is a time chart showing the ignition schedule at medium load, and Figure 3 is a time chart showing the ignition schedule at medium load. Time chart 15 showing the ignition schedule. FIG. 4 is a time chart showing the ignition schedule of the third example of the procedure for implementing the method of the present invention. (1)...Engine, (B)~(2,)...Cylinder. Patent applicant: Kubota Iron Works Co., Ltd. 16- JP 59-115470 (7)

Claims (1)

【特許請求の範囲】[Claims] 1、 全負荷のときには、全気筒(2、)〜(24)が
所定の位相間隔を置いて順に点火される全筒運転を行な
う多気筒エンジン(1)において、部分負荷のときに、
各気筒(乙)〜(24)の点火を順に交替させて同じ頻
度で休止させることを特徴とする、多気筒エンジンの減
筒運転方法
1. In a multi-cylinder engine (1) that performs all-cylinder operation in which all cylinders (2,) to (24) are ignited in sequence at a predetermined phase interval when under full load, when under partial load,
A reduced-cylinder operation method for a multi-cylinder engine, characterized by sequentially alternating the ignition of each cylinder (B) to (24) and stopping the ignition at the same frequency.
JP22537282A 1982-12-21 1982-12-21 Driving method with reduced cylinder for multi-cylindered engine Pending JPS59115470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22537282A JPS59115470A (en) 1982-12-21 1982-12-21 Driving method with reduced cylinder for multi-cylindered engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22537282A JPS59115470A (en) 1982-12-21 1982-12-21 Driving method with reduced cylinder for multi-cylindered engine

Publications (1)

Publication Number Publication Date
JPS59115470A true JPS59115470A (en) 1984-07-03

Family

ID=16828314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22537282A Pending JPS59115470A (en) 1982-12-21 1982-12-21 Driving method with reduced cylinder for multi-cylindered engine

Country Status (1)

Country Link
JP (1) JPS59115470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364670A (en) * 1989-07-31 1991-03-20 Sanshin Ind Co Ltd Overrotation preventing device for multicylinder engine
JPH0419339A (en) * 1990-05-15 1992-01-23 Mitsubishi Electric Corp Controller and control method for internal combustion engine
CN108798912A (en) * 2017-04-28 2018-11-13 丰田自动车株式会社 For with the method and engine control system of intermittent combustion mode operation engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848839A (en) * 1971-10-07 1973-07-10
JPS51140022A (en) * 1975-05-28 1976-12-02 Nissan Motor Co Ltd Electronics type fuel injection device
JPS5735133A (en) * 1980-08-06 1982-02-25 Mitsubishi Motors Corp Drive method and structure of multicylinder engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848839A (en) * 1971-10-07 1973-07-10
JPS51140022A (en) * 1975-05-28 1976-12-02 Nissan Motor Co Ltd Electronics type fuel injection device
JPS5735133A (en) * 1980-08-06 1982-02-25 Mitsubishi Motors Corp Drive method and structure of multicylinder engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364670A (en) * 1989-07-31 1991-03-20 Sanshin Ind Co Ltd Overrotation preventing device for multicylinder engine
JPH0419339A (en) * 1990-05-15 1992-01-23 Mitsubishi Electric Corp Controller and control method for internal combustion engine
CN108798912A (en) * 2017-04-28 2018-11-13 丰田自动车株式会社 For with the method and engine control system of intermittent combustion mode operation engine
CN108798912B (en) * 2017-04-28 2022-04-01 丰田自动车株式会社 Method for operating an engine in an intermittent combustion mode and engine control device

Similar Documents

Publication Publication Date Title
US4159700A (en) Internal combustion compound engines
JP4703622B2 (en) Control device for internal combustion engine with cylinder deactivation mechanism
JP2617427B2 (en) Method of synchronizing successive fuel or ignition distributions in cylinders of a four-cycle internal combustion engine
US7367323B2 (en) Eight-cylinder engine
US20150354471A1 (en) Method of regulating an internal combustion engine
JPS59115470A (en) Driving method with reduced cylinder for multi-cylindered engine
WO1998041753A1 (en) Four-stroke diesel engine with catalytic converter
JP5998503B2 (en) Intake and exhaust system for multi-cylinder engine
RU2765843C2 (en) Method for cyclic shutdown of v-shaped diesel engine cylinders
JPH11193740A (en) Method for injecting fuel into combustion chamber of direct injection 4 stroke cycle otto internal combustion engine
US4866931A (en) Exhaust arrangement for an internal combustion engine
JPS59115469A (en) Driving method with reduced cylinder of three-cylindered engine
US10539082B2 (en) Method and device for operating a multi-cylinder internal combustion engine
JP2013002299A (en) Device for detecting abnormal air-fuel ratio variation between cylinders of multi-cylinder internal combustion engine
JP2013011246A (en) Device for detecting abnormal variation of inter-cylinder air-fuel ratio regarding v-type multicylindered internal combustion engine
JP6990552B2 (en) Engine control unit
JPH0666166A (en) Output control for internal combustion engine
JPS60116841A (en) Controller of fuel injection for multicylinder internal-combustion engine
JP2002155782A (en) Fuel injection method and device
JP3888261B2 (en) Control device for spark ignition engine
JPS61116038A (en) Fuel injection control method for internal-combustion engine
SU1129391A1 (en) Method of operation of eight-cylinder turbine supercharged four-stroke internal combustion engine
US1223935A (en) Method of and apparatus for controlling mechanism for internal-combustion engines.
JP2016142169A (en) Control device of engine
RU2536483C1 (en) Internal combustion engine with heat recovery