JPS61116038A - Fuel injection control method for internal-combustion engine - Google Patents

Fuel injection control method for internal-combustion engine

Info

Publication number
JPS61116038A
JPS61116038A JP23599284A JP23599284A JPS61116038A JP S61116038 A JPS61116038 A JP S61116038A JP 23599284 A JP23599284 A JP 23599284A JP 23599284 A JP23599284 A JP 23599284A JP S61116038 A JPS61116038 A JP S61116038A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
cylinder
stroke
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23599284A
Other languages
Japanese (ja)
Inventor
Toshio Yamada
敏生 山田
Kenji Mori
賢二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP23599284A priority Critical patent/JPS61116038A/en
Publication of JPS61116038A publication Critical patent/JPS61116038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To reduce production of NOx, by a method wherein, in a device which fuel, providing a lean air-fuel ratio, in injected through a part of injection valves, the fuel is injected through said injection valve between the second stage of an exhaust stroke and a suction stroke, and the fuel is injected through other injection valve between a compression stroke and the first stage of the exhaust stroke. CONSTITUTION:In a drive in which a fuel injection valve 12 is installed in an intake air branch 11 communicated with an intake air port 5 of each cylinder for 4-cylinder engine, ignition is set in the order of #1, #3, #4, and #2, the #1 and #4 cylinders are set as a lean cylinder which provides a lean air-fuel ratio, and the #3 and #2 cylinders as a stoiki cylinder which provides a value near to a theorectical air-fuel ratio. In this internal-combustion engine, control is effected such that fuel is injected through a fuel injection valve 12 on the lean cylinder side between the second stage of an exhaust stroke and a suction stroke, and the fuel is injected through the fuel injection valve 12 on the stoiki cylinder side during a compression stork and the first stage of the exhaust stroke. This increases a learn combustion limit, and decrease production of NOx.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気筒数に対応した燃料噴射弁を有し、一部の燃
料噴射弁から相対的に希薄な空燃比を与える燃料が噴射
され且つ残りの燃料噴射弁から理論空燃比近(の空燃比
を与えるようにした内燃機関の燃料噴射制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention has fuel injection valves corresponding to the number of cylinders, and some of the fuel injection valves inject fuel giving a relatively lean air-fuel ratio, and the remaining fuel injection valves inject fuel that provides a relatively lean air-fuel ratio. The present invention relates to a fuel injection control method for an internal combustion engine in which a fuel injection valve provides an air-fuel ratio close to the stoichiometric air-fuel ratio.

従来の技術 機関軽中負荷領域ではできるだけ薄い空燃比で燃焼を行
うことが燃料消費率や排気浄化に関して有利であり、最
近希薄燃焼化が進められている。
Conventional technology In the light and medium load range of engines, it is advantageous in terms of fuel consumption and exhaust purification to perform combustion at the leanest possible air-fuel ratio, and lean burn has recently been promoted.

車両重量の重いクラスの車種においては、NOxの触媒
浄化に頼れない希薄側のみの空燃比で全気筒運転するこ
とは排気浄化の点で十分でない場合がある。そこで、N
Oxを触媒の浄化に頬れる理論空燃比で一部気筒を運転
するために、一部の燃料噴射弁から相対的に希薄な空燃
比を与える燃料が噴射され且つ残りの燃料噴射弁から理
論空燃比(14,5)に近い空燃比を与える燃料が噴射
されるようにした内燃機関の燃料噴射制御方法が知られ
ている。又、燃料噴射方式として、全気筒同時噴射、グ
ループ別噴射、各気筒の吸入行程中に噴射する独立噴射
がある。
In heavy vehicle weight classes, operating on all cylinders only at a lean air-fuel ratio where catalyst purification of NOx cannot be relied upon may not be sufficient in terms of exhaust purification. Therefore, N
In order to operate some cylinders at a stoichiometric air-fuel ratio that allows oxygen to be purified by the catalyst, fuel that provides a relatively lean air-fuel ratio is injected from some fuel injection valves, and the stoichiometric air-fuel ratio is injected from the remaining fuel injection valves. A fuel injection control method for an internal combustion engine is known in which fuel that provides an air-fuel ratio close to the fuel ratio (14,5) is injected. Further, fuel injection methods include simultaneous injection in all cylinders, injection by group, and independent injection in which each cylinder is injected during its intake stroke.

発明が解決しようとする問題点 希薄空燃比で燃焼を起させる場合、燃料に着火して良好
な燃焼を行うために希薄化の限界があり、この限界は燃
料がいつ噴射されるかによって変化する。吸入行程中に
燃料を噴射すると、理論空燃比に設定された気筒からの
排気中に窒素酸化物NOxの濃度が高くなるという問題
がある。本発明は一部の燃料噴射弁から相対的に希薄な
空燃比を与える燃料が噴射され且つ残りの燃料噴射弁か
ら理論空燃比近くの空燃比を与える燃料かつ噴射される
ようにした内燃機関の燃料噴射制御装置において、燃料
噴射時期を適切に設定することにより、希薄燃焼限界を
拡大し且つNOxを低減させることを目的とする。
Problems to be Solved by the Invention When combustion is caused at a lean air-fuel ratio, there is a limit to the leanness in order to ignite the fuel and achieve good combustion, and this limit changes depending on when the fuel is injected. . When fuel is injected during the intake stroke, there is a problem in that the concentration of nitrogen oxides NOx increases in the exhaust gas from the cylinder set to the stoichiometric air-fuel ratio. The present invention provides an internal combustion engine in which fuel giving a relatively lean air-fuel ratio is injected from some fuel injection valves, and fuel giving an air-fuel ratio close to the stoichiometric air-fuel ratio is injected from the remaining fuel injection valves. An object of the present invention is to expand the lean burn limit and reduce NOx by appropriately setting fuel injection timing in a fuel injection control device.

問題点を解決するための手段 本発明は上述したような燃料噴射制御装置において、希
薄気筒の燃料噴射弁からは排気ff1lL’4ギから吸
入行程の間に燃料を噴射させ、理論空燃比近くの気筒か
らは圧縮行程から排気行程前半の間に燃料を噴射させる
ようにしたことを特徴とするものである。
Means for Solving the Problems The present invention provides a fuel injection control device as described above, in which fuel is injected from the exhaust gas ff1lL'4 gear from the fuel injection valve of the lean cylinder during the intake stroke, and the air-fuel ratio is close to the stoichiometric air-fuel ratio. It is characterized in that fuel is injected from the cylinder between the compression stroke and the first half of the exhaust stroke.

実施例 第1図において、シリンダブロック1にはピストン2が
挿入され、ピストン2の頂部とシリンダヘッド3の内面
との間に燃焼室4が形成される。
Embodiment In FIG. 1, a piston 2 is inserted into a cylinder block 1, and a combustion chamber 4 is formed between the top of the piston 2 and the inner surface of a cylinder head 3.

燃焼室4には吸気ポート5及び排気ポート6が連通され
、吸気弁7及び排気弁8がそれぞれに配置される。吸気
ポート5にはエアクリーナに通じる吸気管9及びサージ
タンク10から接続された吸気枝管11が連通される。
An intake port 5 and an exhaust port 6 communicate with the combustion chamber 4, and an intake valve 7 and an exhaust valve 8 are arranged respectively. The intake port 5 is connected to an intake pipe 9 leading to an air cleaner and an intake branch pipe 11 connected from a surge tank 10 .

吸気枝管11には燃料噴射弁12が配置される。燃料噴
射弁は吸気ポートに直接に配置されることもできる。本
発明においては、燃料噴射弁12は気筒毎に設けられる
A fuel injection valve 12 is arranged in the intake branch pipe 11 . The fuel injection valve can also be arranged directly in the intake port. In the present invention, a fuel injection valve 12 is provided for each cylinder.

13は点火栓、14はエアフローメータ、15はスロッ
トル弁である。燃料噴射弁12は電磁弁により構成され
、その開弁時期及び開弁時間が制御装置16により制御
される。制御装置16は中央処理装置(CPU)17、
リードオンリメモリ(ROM)18、ランダムアクセス
メモリ (RAM)19、クロック(CL)20から構
成され、これらはバス21により相互に接続される。制
御装置16はエアフローメータ14からの信号a、ディ
ストリビュータのロータを利用したクランク角信号6、
冷却水温信号C及びその他の検出器信号を入出力ポート
22を介して入力され、それらの検出器信号及びROM
18に内蔵されたプログラムに従って燃料噴射弁22に
制御信号を出力する。
13 is a spark plug, 14 is an air flow meter, and 15 is a throttle valve. The fuel injection valve 12 is constituted by a solenoid valve, and its opening timing and opening time are controlled by a control device 16. The control device 16 includes a central processing unit (CPU) 17,
It is composed of a read-only memory (ROM) 18, a random access memory (RAM) 19, and a clock (CL) 20, which are interconnected by a bus 21. The control device 16 receives a signal a from the air flow meter 14, a crank angle signal 6 using the rotor of the distributor,
Cooling water temperature signal C and other detector signals are input through the input/output port 22, and these detector signals and ROM
A control signal is output to the fuel injection valve 22 according to a program built in the fuel injection valve 18.

以上の構成の内燃機関において、一部の気筒(第5,6
図のNOI及びNO4気筒)は第4図に示されるように
約20〜25の希薄空燃比を与えるように燃料噴射量を
設定され(以下リーン気筒と言う)、残りの気筒(第5
,6図のNO3及びNO2気筒)は理論空燃比(14,
5)の空燃比を与えるように燃料噴射量を設定される(
以下ストイキ気筒と言う)。このような空燃費は、吸入
空気量や吸気管負圧に応じて求められた基本噴射時間に
気筒毎に設定された係数を乗じることにより定められた
噴射時間により与えられることができ、さらに、温度や
加速等の補正係数により特定の機関条件に応じて補正さ
れることができる。
In the internal combustion engine configured as described above, some cylinders (5th and 6th
For the NOI and NO4 cylinders in the figure), the fuel injection amount is set to give a lean air-fuel ratio of approximately 20 to 25 as shown in Figure 4 (hereinafter referred to as lean cylinders), and for the remaining cylinders (the 5th
, NO3 and NO2 cylinders in Figure 6) are at the stoichiometric air-fuel ratio (14,
5) The fuel injection amount is set to give the air-fuel ratio (
(hereinafter referred to as stoichiometric cylinder). Such air fuel consumption can be given by the injection time determined by multiplying the basic injection time determined according to the intake air amount and intake pipe negative pressure by a coefficient set for each cylinder, and further, It can be corrected according to specific engine conditions by correction factors such as temperature and acceleration.

以上説明したリーン気筒及びストイキ気筒を有する内燃
機関の燃料噴射時期は次のようにして設定される。第2
図及び第3図は本発明において着目したリーンリミット
空燃比(A/F)とNOx発生量とをそれぞれ示し、こ
れらのグラフは実験により得られる。第2図から、燃料
噴射開始時期が排気行程終了前数十度(第2図では約4
0度)から吸入行程の間に設定された場合にリーンリミ
ットがリーン側に拡大されることが分った。又、第3図
から、燃料が排気から吸入行程中に噴射されたときにN
Oxの発生が大きくなることが分った。従って、リーン
気筒では排気行程と吸入行程の間で噴射を行うことによ
り空燃比をさらに希薄化して良好な燃焼を行うことがで
き、よって全体としての燃費を低減することができる。
The fuel injection timing of the internal combustion engine having the lean cylinder and stoichiometric cylinder described above is set as follows. Second
3 and 3 respectively show the lean limit air-fuel ratio (A/F) and the NOx generation amount, which are the focus of the present invention, and these graphs are obtained through experiments. From Figure 2, the fuel injection start timing is several tens of degrees before the end of the exhaust stroke (approximately 4 degrees in Figure 2).
It was found that the lean limit is expanded to the lean side when it is set between 0 degrees) and the suction stroke. Also, from Figure 3, when fuel is injected from the exhaust during the intake stroke, N
It was found that the generation of Ox increased. Therefore, in a lean cylinder, by injecting between the exhaust stroke and the intake stroke, the air-fuel ratio can be further leanened to achieve good combustion, thereby reducing overall fuel consumption.

又、ストイキ気筒では圧縮行程と膨張行程の間で噴射を
行うことによりNOxを低減することができる。
Further, in a stoichiometric cylinder, NOx can be reduced by performing injection between the compression stroke and the expansion stroke.

第5図はグループ噴射方式に本発明を適用した実施例を
示すものである。気筒の判別はクランク角の720度毎
にパルスを発生ずるセンサ(G720)と180度毎に
パルスを発生するセンサ(G180)とにより、618
0のパルスがあられれる毎にカウンタ(CYSL)をカ
ウントアツプし、G720のパルスでO払いすることに
より行うことができる。従って、第5図の場合はNo1
気筒の吸入行程を示す。尚、第5図及び第6図では気筒
は点火順序に従って配列されている。第5図のグループ
噴射では、NO1気筒(リーン)が吸入行程にあり且つ
NO4気筒(ストイギ)が圧縮行程にあるときにG18
0のパルスが発生した後の所定のクランク角(又は時間
)でこれらの両気筒で同時に噴射が行われ、それから3
60度遅れた時点で、NO4気筒(リーン)が吸入行程
にあり且つNO3気筒(ストイキ)が圧縮行程にあると
きにこれらの両気筒で同時に噴射が行われる。
FIG. 5 shows an embodiment in which the present invention is applied to a group injection system. Cylinder discrimination is performed using a sensor (G720) that generates a pulse every 720 degrees of the crank angle and a sensor (G180) that generates a pulse every 180 degrees.
This can be done by counting up a counter (CYSL) every time a 0 pulse occurs, and discharging the value by 0 with a G720 pulse. Therefore, in the case of Figure 5, No.
The intake stroke of the cylinder is shown. In addition, in FIGS. 5 and 6, the cylinders are arranged according to the firing order. In the group injection shown in Fig. 5, when NO1 cylinder (lean) is in the intake stroke and NO4 cylinder (stoichiometric) is in the compression stroke, G18
Injection occurs simultaneously in both cylinders at a predetermined crank angle (or time) after the 0 pulse occurs, and then 3
At a time delayed by 60 degrees, when the NO4 cylinder (lean) is in the intake stroke and the NO3 cylinder (stoichiometric) is in the compression stroke, injection is performed in both cylinders simultaneously.

第6図に示す独立噴射では、それぞれ180度ずつ遅れ
て、No1気筒(リーン)の吸入行程中、NO2気筒(
ストイキ)の膨張行程中、NO4気筒(リーン)の吸入
行程中、NO3気筒(ストイキ)の膨張行程中に噴射が
行われる。
In the independent injection shown in Fig. 6, during the intake stroke of the No. 1 cylinder (lean), the No. 2 cylinder (lean) is delayed by 180 degrees.
Injection is performed during the expansion stroke of the NO4 cylinder (lean), during the expansion stroke of the NO3 cylinder (stoichiometric), and during the expansion stroke of the NO3 cylinder (stoichiometric).

発明の詳細 な説明したように、本発明によれば燃費及び排気浄化性
能が改善できる。
As described in detail, according to the present invention, fuel efficiency and exhaust purification performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料噴射式内燃機関の断面図、第2図はリーン
リミットを示すグラフ、第3図はNOx発生量を示すグ
ラフ、第4図はリーン及びストイキ気筒を説明するため
の図、第5図はグループ噴射の実施例を示すタイミング
チャート、第6図は独立噴射の実施例を示すタイミング
チャートである。 12・・・燃料噴射弁、16・・・制御装置。。 第2図 噴射開始クランク角度 噴射開始クランク角度 第4図 一機関負荷 第5図     グループ噴射 排  吸  圧  膨  排  吸  圧  膨#1行
程 第6図  ゛ ヨユ’jjよ #2
Figure 1 is a cross-sectional view of a fuel injection internal combustion engine, Figure 2 is a graph showing the lean limit, Figure 3 is a graph showing the amount of NOx generated, Figure 4 is a diagram for explaining lean and stoichiometric cylinders, and Figure 4 is a graph showing the lean limit. FIG. 5 is a timing chart showing an embodiment of group injection, and FIG. 6 is a timing chart showing an embodiment of independent injection. 12...Fuel injection valve, 16...Control device. . Figure 2 Injection start crank angle Injection start crank angle Figure 4 - Engine load Figure 5 Group injection Exhaust Suction pressure Expansion Exhaust Suction pressure Expansion #1 Stroke Figure 6 ゛ Yoyu'jjyo #2

Claims (1)

【特許請求の範囲】[Claims] 気筒数に対応した燃料噴射弁を有し、一部の燃料噴射弁
から相対的に希薄な空燃比を与える燃料が噴射され且つ
残りの燃料噴射弁から理論空燃比近くの空燃比を与える
燃料が噴射されるようにした内燃機関の燃料噴射制御方
法において、前記一部の燃料噴射弁からは排気行程後半
から吸入行程の間に燃料を噴射させ、前記残りの燃料噴
射弁からは圧縮行程から排気行程前半の間に燃料を噴射
させるようにしたことを特徴とする内燃機関の燃料噴射
制御方法。
It has fuel injection valves corresponding to the number of cylinders, some of the fuel injection valves inject fuel that provides a relatively lean air-fuel ratio, and the remaining fuel injection valves inject fuel that provides an air-fuel ratio close to the stoichiometric air-fuel ratio. In the fuel injection control method for an internal combustion engine, some of the fuel injection valves inject fuel from the latter half of the exhaust stroke to the intake stroke, and the remaining fuel injection valves inject fuel from the compression stroke to the exhaust stroke. A fuel injection control method for an internal combustion engine, characterized in that fuel is injected during the first half of the stroke.
JP23599284A 1984-11-10 1984-11-10 Fuel injection control method for internal-combustion engine Pending JPS61116038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23599284A JPS61116038A (en) 1984-11-10 1984-11-10 Fuel injection control method for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23599284A JPS61116038A (en) 1984-11-10 1984-11-10 Fuel injection control method for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61116038A true JPS61116038A (en) 1986-06-03

Family

ID=16994204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23599284A Pending JPS61116038A (en) 1984-11-10 1984-11-10 Fuel injection control method for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61116038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736094A1 (en) * 1995-06-30 1997-01-03 Renault Method for controlling engine fuel intake

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736094A1 (en) * 1995-06-30 1997-01-03 Renault Method for controlling engine fuel intake

Similar Documents

Publication Publication Date Title
US7747379B2 (en) Control device of direct injection internal combustion engine
US5038739A (en) Control arrangement for multi-cylinder two cycle engine
JPH0416622B2 (en)
US5927252A (en) Ignition timing control apparatus for internal combustion engine
JPH03194144A (en) Air-fuel ratio control device for internal combustion engine
JPS5929733A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6263147A (en) Air-fuel ratio controlling method for internal combustion engine and device thereof
JPS6181532A (en) Fuel feed controlling method of multicylinder internal-combustion engine
JPS61116038A (en) Fuel injection control method for internal-combustion engine
JP3485838B2 (en) Ignition control device for internal combustion engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JP3131895B2 (en) Control device for multi-cylinder internal combustion engine
JP3525796B2 (en) Ignition control device for internal combustion engine
JP2000337235A (en) Ignition control device of internal combustion engine
JP2000257476A (en) Control unit for in-cylinder injection engine
JP2586101B2 (en) Control device for multi-cylinder internal combustion engine
JPH01211648A (en) Fuel injection controller of internal combustion engine
JPH05321706A (en) Control device of two cycle engine
JPH06173821A (en) Fuel injection device for engine
JPH0732940Y2 (en) Ignition timing control device for internal combustion engine
JPS631749A (en) Method of operating engine without causing knocking
JP2917417B2 (en) Engine control device
JPS59162333A (en) Control method of fuel injection in multi-cylinder internal-combustion engine
JPH0746751Y2 (en) Engine controller
CA1297359C (en) Method for controlling fuel supply on start of internal combustionengine