JPS59114818A - Electron beam pattern drawing method - Google Patents

Electron beam pattern drawing method

Info

Publication number
JPS59114818A
JPS59114818A JP22417282A JP22417282A JPS59114818A JP S59114818 A JPS59114818 A JP S59114818A JP 22417282 A JP22417282 A JP 22417282A JP 22417282 A JP22417282 A JP 22417282A JP S59114818 A JPS59114818 A JP S59114818A
Authority
JP
Japan
Prior art keywords
electron beam
mask substrate
output
objective lens
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22417282A
Other languages
Japanese (ja)
Other versions
JPH058566B2 (en
Inventor
Yasuo Matsuoka
康男 松岡
Bunro Komatsu
小松 文朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22417282A priority Critical patent/JPS59114818A/en
Priority to GB08333914A priority patent/GB2132390B/en
Priority to DE19833346001 priority patent/DE3346001A1/en
Publication of JPS59114818A publication Critical patent/JPS59114818A/en
Publication of JPH058566B2 publication Critical patent/JPH058566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To prevent variation of pattern dimension even if setting shift occurs in a mask substrate or the like, by a method wherein output correction value of an object lens in fine regions by imaginarily dividing a substrate is determined, output correction value of a deflection electrode in the fine regions is determined from above correction value, and the object lens output and the deflection electrode output are corrected and electron beam is projected. CONSTITUTION:Values 1/n, 1/m by equally dividing a mask substrate 13 in direction (x) and direction (y) are outputted from CPU 24 to a rate multiplier 30. Scanning of electron beam is synchronized by a synchronizing circuit 31 and the rate multiplier 30 outputs signals i/n (i=1-n), j/m (j=1-m) corresponding to divided region positions on the mask substrate 13 in one pulse per one scan of the electron beam through a counter 26b of an object lens controller 26 into an arithmetic circuit 26a. The arithmetic circuit 26a estimates object lens correction value DELTALij in each divided region on the mask substrate 13 by proportional allotment. An arithmetic circuit 28a of a deflection electrode controller 28 estimates deflection correction values DELTAXwij and DELTAFij or DELTAYBij in each divided region on the mask substrate 13.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電子ビームパターン描画方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an electron beam pattern writing method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電子ビーム露光装置によシ例えばガラス基板表面にクロ
ム層等を被覆したマスク基板上にパターンを形成し、マ
スクを造る場合、ガラス基板をカセット上に設置して電
子ビーム露光を行なう。
When using an electron beam exposure apparatus to form a pattern on a mask substrate, for example, a glass substrate surface coated with a chromium layer or the like to make a mask, the glass substrate is placed on a cassette and electron beam exposure is performed.

こノ際、マスク基板がカセット上で正常にセットされて
いれば第1図に示す如く、アパーチャ1から照射される
電子ビームがマスク基板2上で正確に焦点を結ぶのでマ
スク基板2上に形成されるパターンは設計通シの寸法と
なる。
At this time, if the mask substrate is properly set on the cassette, the electron beam irradiated from the aperture 1 will be accurately focused on the mask substrate 2, as shown in FIG. The pattern will be the dimensions of the design.

しかし、第2図及び第3図に示す如くマスク基板2がカ
セット3上で傾いてセットされたような場合、電子ビー
ムのマスク基板2上での照射位置が焦点深度からはずれ
るため、相対的にドーズ量が低下し、ノリーンの寸法が
細くなる。
However, when the mask substrate 2 is tilted and set on the cassette 3 as shown in FIGS. 2 and 3, the irradiation position of the electron beam on the mask substrate 2 deviates from the depth of focus, so the relative The dose decreases and the dimensions of the noreen decrease.

こうしたカセット3上でのマスク基板2のセット時のず
れ(第2図中2で表示)は例えばカセット3のビンの摩
耗により起こり、数十μm〜数百μm程度となシ、パタ
ーン寸法に大きな影響を与える。
Such misalignment when the mask substrate 2 is set on the cassette 3 (indicated by 2 in Fig. 2) occurs, for example, due to abrasion of the bottle of the cassette 3, and may range from several tens of μm to several hundred μm, which may be large in pattern dimensions. influence

例えば、第4図に示すマスク基板2上のAl〜3゜B、
〜3+C1〜3におけるツクターンの設計寸法をX方向
、y方向ともに10μmに設定しておいた時に、マスク
基板2のA3  + B3  + c、側で上方にz 
= 500μm傾斜した場合、実際にマスク基板2上に
形成されるパターンの寸法は第5図に示すようになる。
For example, Al~3°B on the mask substrate 2 shown in FIG.
~3+C1~3 When the design dimension of the turn is set to 10 μm in both the X direction and the y direction, z
In the case of an inclination of = 500 μm, the dimensions of the pattern actually formed on the mask substrate 2 are as shown in FIG.

すなわち、正常なセット位置からのズレが最も大きいA
3  + B3  + c3の位置ではドーズ量の低下
によジノやターン寸法は6μm程度となυ設計寸法から
4μm程度細くなる。
In other words, A with the largest deviation from the normal set position
At the position 3 + B3 + c3, the gino and turn dimensions are about 6 μm due to the decrease in the dose amount, which is about 4 μm thinner than the designed dimension.

また、マスク基板2のセットずれは第6図に示すように
パターンのトータルピッチ(長寸法ピッチ)に対しても
大きな影響を与える。
Further, misalignment of the mask substrate 2 has a large effect on the total pitch (long dimension pitch) of the pattern, as shown in FIG.

しかし、従来の電子ビーム露光装置には上述したような
マスク基板のセットずれが起きてもマスク基板が電子ビ
ームの焦点深度からはずれないように調整する機能がな
いため、ノぐターン寸法の変動を防止できないという欠
点があった。
However, conventional electron beam exposure equipment does not have a function to adjust the mask substrate so that it does not deviate from the focal depth of the electron beam even if the mask substrate is misaligned as described above. The disadvantage is that it cannot be prevented.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであシ
、マスク基板等のセットずれが起きてもマスク基板等が
電子ビームの焦点深度からはずれないようにし、ノ9タ
ーン寸法の変動を防止できる電子ビームパターン描画方
法を提供しようとするものである。
The present invention was made in order to eliminate the above-mentioned drawbacks.Even if the mask substrate, etc. is misaligned, it prevents the mask substrate, etc. from deviating from the focal depth of the electron beam, thereby preventing variations in the turn dimension. The purpose of this study is to provide an electron beam pattern drawing method that can be used.

〔発明の概要〕[Summary of the invention]

本発明の電子ビームパターン描画方法は、まず、基板表
面の少なくとも3箇所に二次元的に設けられたマーカー
上を電子ビームを線走査して各マーカーにおいて焦点が
合った時の対物レンズの出力値を測定する。次に、この
出力値に基づいてパターン描画時に基板を仮想的に分割
した細分領域での対物レンズの出力の補正値を求めると
ともにこれらの補正値からそれに対応する各細分領域に
おける偏向電極の出力の補正値を求め、対物レンズ出力
及び偏向電極出力を補正して電子ビームを照射すること
を特徴とするものである。
In the electron beam pattern drawing method of the present invention, first, an electron beam is line-scanned over markers two-dimensionally provided at at least three locations on a substrate surface, and when each marker is focused, the output value of the objective lens is Measure. Next, based on this output value, the correction value of the output of the objective lens in each subdivision area where the substrate is virtually divided during pattern drawing is determined, and from these correction values, the output of the deflection electrode in each corresponding subdivision area is calculated. This method is characterized in that a correction value is determined, the objective lens output and the deflection electrode output are corrected, and the electron beam is irradiated.

上述した各細分領域における対物レンズの出力の補正値
は各細分領域の正常セット状態75)らの鉛直方向のず
れに対応するものでアシ、この補正値弁だけ対物レンズ
の出力を補正すれは電子ビームの焦点深度を各細分領域
表面に合わせることができる。また、各細分領域におけ
る偏向電極の出力の補正値は各細分領域の正常セット状
態からの水平方向のずれに対応するものであり、その補
正値弁だけ偏向電極の出力を補正することにより水平方
向のずれをなくなることができる。しだがって、上述し
た方法によれば、各細分領域で常に焦点深度及び焦点位
置を合わせて電子ビームを照射することができ、設計寸
法からの変動の少ないノリーンを描画することができる
The correction value of the output of the objective lens in each subdivision area mentioned above corresponds to the vertical deviation from the normal set state 75) of each subdivision area. The depth of focus of the beam can be tailored to each subregion surface. In addition, the correction value of the output of the deflection electrode in each subdivision area corresponds to the horizontal deviation from the normal set state of each subdivision area, and by correcting the output of the deflection electrode by that correction value valve, the output of the deflection electrode is corrected in the horizontal direction. This can eliminate the misalignment. Therefore, according to the above-described method, it is possible to irradiate the electron beam with the focal depth and focal position always being adjusted in each subdivision area, and it is possible to draw a noreen with little variation from the design dimension.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第7図〜第12図を参照して説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 7 to 12.

まず、第7図に示すようにガラス基板11上にCr層1
21及びCr xOy層122を順次堆積してマスク基
板13を作製した後、第7図及び第8図に示すようにガ
ラス基板11上の/fターン形成領域以外の4隅のCr
層121.CrxOy層122層上22ングしてマーカ
ー141〜144を形成し、更に全面にレジスト15を
塗布する。
First, as shown in FIG. 7, a Cr layer 1 is placed on a glass substrate 11.
21 and Cr xOy layer 122 are sequentially deposited to fabricate a mask substrate 13, as shown in FIGS.
Layer 121. Markers 141 to 144 are formed on the CrxOy layer 122, and a resist 15 is further applied to the entire surface.

次に、前記マスク基板13をテーブル上のカセットにセ
ットした後、描画前に前記マーカー141〜144上で
電子ビームを例えば第8図の矢印方向に線走査して焦点
の状態を評価する。
Next, after setting the mask substrate 13 in a cassette on a table, the electron beam is line-scanned over the markers 141 to 144, for example, in the direction of the arrow in FIG. 8, and the state of the focus is evaluated before writing.

とができる。I can do that.

この際、電子ビームが一マーカー位置で焦点を結んでお
り、ビーム径が最小になっているならば、信号検量部で
第9図に示すようなマーカー141〜144の溝に対応
した反射電子プロファイルを得ることができる。ここで
、正常にセットされたマスク基板13のマーカー141
〜ノ44を線走査して第9図のプロファイルが得られる
ときの対物レンズの出力値をLOとする。ところが、マ
スク基板13にセットずれが生じた場合、対物レンズの
出力値をり、とすると焦点が合わないので、第9図に示
すようなプロファイルを得ることができない。したがっ
て、対物レンズの出力値をり、とは異なる値に補正して
焦点を合わせる必要がある。すなわち、正常セット時の
出力値Loとセットずれが起きたときの出力値L′との
差Lo−L’=ΔL(以下、対物レンズ補正値と称する
)はマーカー141〜144の正常セット状態からの鉛
直方向のずれに対応する。
At this time, if the electron beam is focused at one marker position and the beam diameter is the minimum, the signal calibration section will produce a reflected electron profile corresponding to the grooves of the markers 141 to 144 as shown in FIG. can be obtained. Here, the marker 141 of the mask substrate 13 that has been set normally
The output value of the objective lens when the profile shown in FIG. 9 is obtained by line scanning through 44 is assumed to be LO. However, if a misalignment occurs in the mask substrate 13, the output value of the objective lens will not be in focus, making it impossible to obtain the profile shown in FIG. 9. Therefore, it is necessary to correct the output value of the objective lens to a different value to focus. In other words, the difference Lo-L'=ΔL (hereinafter referred to as objective lens correction value) between the output value Lo during normal setting and the output value L' when setting deviation occurs is calculated from the normal setting state of the markers 141 to 144. corresponds to the vertical deviation of .

一方、セットずれが起きた場合には焦点位置が正常セッ
ト状態から水平方向にずれているので、偏向電極の出力
も補正する必要がある。この偏向電極の出力の補正値(
以下、偏向補正値と称する)は前記対物レンズ補正値Δ
Lに応じた値をとり、x方向ΔXw、y順方向(フォワ
ード)Δy、 、 y逆方向(バックワード)ΔYBに
ついてそれぞれ第10図に示すような曲線となることが
測定によって確認されている。
On the other hand, when a set deviation occurs, the focal point position is shifted in the horizontal direction from the normal set state, so it is also necessary to correct the output of the deflection electrode. The correction value of the output of this deflection electrode (
(hereinafter referred to as the deflection correction value) is the objective lens correction value Δ
It has been confirmed by measurements that the curves take values according to L and form curves as shown in FIG. 10 for x direction ΔXw, y forward direction Δy, and y backward direction ΔYB.

以上のようにマーカー141〜144上で電子ビームを
線走査することによシマーカー14゜〜144の対物レ
ンズ補正値ΔL及び偏向補正値ΔXw、ΔY、 lΔY
Bを知ることができる。これらの値からマスク基板I3
の全面に亘って対物レンズ補正値及び偏向補正値を知る
にはまず、第11図に示す如くマスク基板13面を仮想
的にX方向でn等分、X方向でm等分したnxm個の長
方形の細分領域に分割する。次に、マーカー141〜1
44の対物レンズ補正値ΔL1〜4を比例配分する演算
処理を行なって各細分領域における対物レンズ補正値Δ
Lij(i−1〜n、j=1〜m)を求める。つづいて
、こうしたΔLBの値を第10図のΔXw2ΔYF、Δ
YBの曲線に対応する方程式ΔXw(ΔL)、ΔYF(
ΔL)、ΔYB(ΔL)に代入してへ細分領域における
偏向補正値Δx1V、 、ΔYFij、ΔYB、jを求
めることができる。
As described above, by line-scanning the electron beam over the markers 141 to 144, the objective lens correction values ΔL and deflection correction values ΔXw, ΔY, lΔY of the markers 14° to 144 are determined.
You can know B. From these values, mask substrate I3
To know the objective lens correction value and deflection correction value over the entire surface, first, as shown in FIG. 11, the mask substrate 13 is virtually divided into n equal parts in the Divide into rectangular subregions. Next, markers 141-1
The objective lens correction value ΔL in each subdivision area is calculated by performing calculation processing to proportionally distribute the 44 objective lens correction values ΔL1 to 4.
Find Lij (i-1 to n, j=1 to m). Next, we calculate these values of ΔLB as ΔXw2ΔYF and Δ
Equations ΔXw(ΔL), ΔYF(
By substituting ΔL) and ΔYB(ΔL), the deflection correction values Δx1V, , ΔYFij, ΔYB,j in the subdivision region can be obtained.

例えば、マーカー141〜144上が傾斜してマーカー
141〜144において焦点が合ったときの補正値がそ
れぞれΔL1 =O+ΔL2=01ΔL3 =LoL 
’ rΔL4=L、−L’となった比較的単純な場合に
ついて考えると以下のようになる。
For example, when the tops of the markers 141 to 144 are tilted and the markers 141 to 144 are in focus, the correction values are ΔL1 = O + ΔL2 = 01 ΔL3 = LoL
Considering a relatively simple case where 'rΔL4=L, -L', the following results.

まず、1列目では2対物レンズ補正値はΔL11 = 
Lg +ΔL1m==Lo  L’であシ、これらの中
間の細分領域ではΔ[,1j= LO+’ (LOL’
)(j=2〜m  l )となる。この時、偏向補正値
ΔX W 1 j及びΔY F 1 jはそれぞれ第1
0図においてΔL1jに対応した値とすればよい。次に
、2列目では対物レンズ補正値はΔL2 m =LOL
’ rΔL21=0であり、これらの中間の細分領域で
は ΔL2 j=Lo  +L(Lo −L  ) (j 
=2〜m−1)となる。この時、偏向補正値ΔX W 
2 j及びΔYn2jはそれぞれ第10図においてΔL
2Jに対応した値とすればよい。以下、各列の各細分領
域についても同様である。
First, in the first row, the two objective lens correction value is ΔL11 =
Lg +ΔL1m==Lo L', and in these intermediate subdivision regions, Δ[,1j= LO+'(LOL'
) (j=2~ml). At this time, the deflection correction values ΔX W 1 j and ΔY F 1 j are respectively the first
The value may be set to a value corresponding to ΔL1j in FIG. Next, in the second column, the objective lens correction value is ΔL2 m = LOL
'rΔL21=0, and in these intermediate subdivision regions ΔL2 j=Lo +L(Lo −L) (j
=2~m-1). At this time, the deflection correction value ΔX W
2 j and ΔYn2j are respectively ΔL in FIG.
A value corresponding to 2J may be used. The same applies to each subdivision area in each column.

したがって、こうした対物レンズ補正値ΔLijの信号
を対物レンズへ、また偏向補正値ΔXwij及びΔ’F
ij又はΔYBi・の信号を偏向電極へそれコ それ出力すれば、マスク基板13のすべての細分領域に
おいて焦点深度及び焦点位置を合わせて電子ビームの露
光を行なうことができる。
Therefore, the signal of the objective lens correction value ΔLij is sent to the objective lens, and the signal of the deflection correction value ΔXwij and Δ'F
By outputting the signals ij or ΔYBi· to the deflection electrodes, electron beam exposure can be performed in all sub-regions of the mask substrate 13 with the focal depth and focal position aligned.

以上の方法を実際の電子ビーム露光装置を用いて行なう
場合について第12図を参照して説明する。
A case in which the above method is carried out using an actual electron beam exposure apparatus will be described with reference to FIG. 12.

電子ビーム露光装置本体は対物レンズ21、偏向電極2
2、信号検出器23等からなり図示しないテーブル上の
カセットにマスク基板13がセントされる。この電子ビ
ーム露光装置本体を制御する制御系は中央処理装置(C
PU)、IM、検出信号処理器25、演算回路26a1
カウンタz6b、7ツチ26cからなる対物レンズ制御
器26、対物レンズ系DAC(Digital t。
The main body of the electron beam exposure apparatus includes an objective lens 21 and a deflection electrode 2.
2. The mask substrate 13 is placed in a cassette on a table (not shown), which includes a signal detector 23 and the like. The control system that controls the main body of this electron beam exposure apparatus is a central processing unit (C
PU), IM, detection signal processor 25, arithmetic circuit 26a1
An objective lens controller 26 consisting of a counter z6b, a 7-touch 26c, and an objective lens system DAC (Digital t.

Analog Converter ) 27、演算回
路28a1カウンタ2&b1ラツテ28cからなる偏向
電極制御器28、偏向系DAC29、レートマルチプラ
イア(R,M、)3o及び同期回路31を構成要素とす
るものである。
The components include an analog converter (R, M, ) 27, a deflection electrode controller 28 consisting of an arithmetic circuit 28a1, a counter 2&b1 rate 28c, a deflection system DAC 29, a rate multiplier (R, M, ) 3o, and a synchronization circuit 31.

ここで、CPU 24は電子ビーム露光装置本体の図示
しない他の部材の信号処理をすべて行なう。検出信号処
理器25は信号検出器23とCPU 24に接続されて
いる。対物レンズ制御器26はその演算回路26aへC
PU 24からの信号及びカウンタ26bを介してレー
トマルチプライア30からの信号が入力され、演算され
た信号をラッチ26cを介して対物レンズ系DAC27
へ出力する。更にこの対物レンズ系DAC,?7はアナ
ログ信号を対物レンズ21へ出力する。
Here, the CPU 24 performs all signal processing for other members (not shown) of the main body of the electron beam exposure apparatus. The detection signal processor 25 is connected to the signal detector 23 and the CPU 24. The objective lens controller 26 sends C to its arithmetic circuit 26a.
A signal from the PU 24 and a signal from the rate multiplier 30 are input via the counter 26b, and the calculated signal is sent to the objective lens system DAC 27 via the latch 26c.
Output to. Furthermore, this objective lens system DAC,? 7 outputs an analog signal to the objective lens 21.

偏向電極制御器28はその演算回路28aへCPU 2
4からの信号、カウンタ28bを介してレートマルチプ
ライア30からの信号及び前記対物レンズ制御器26の
演算回路26aからの信号が入力され、演算された信号
をラッチ28cを介して偏向系DAC29へ出力する。
The deflection electrode controller 28 connects the CPU 2 to its arithmetic circuit 28a.
4, a signal from the rate multiplier 30 via the counter 28b, and a signal from the calculation circuit 26a of the objective lens controller 26 are input, and the calculated signal is output to the deflection system DAC 29 via the latch 28c. do.

更に、この偏向系DAC29はアナログ信号を偏向電極
22へ出力する。また、レートマルチプライア30はC
PU 24及び同期回路3ノからの信号を入力され、対
物レンズ制御器26のカウンタ26b及び偏向電極制御
器28のカウンタ28bへ信号を出力する。
Furthermore, this deflection system DAC 29 outputs an analog signal to the deflection electrode 22. Also, the rate multiplier 30 is C
It receives signals from the PU 24 and the synchronization circuit 3, and outputs signals to the counter 26b of the objective lens controller 26 and the counter 28b of the deflection electrode controller 28.

まず、電子ビームをマスク基板13上に設けられたマー
カー14.〜144上を順次線走査し、焦点合わせを行
なって、信号検出器23及び検出信号器25にょ多焦点
が合ったときの対・−物レンズ出カ値L1〜4を求める
。次に、CPU24から対物レンズ制御器26の演算回
路26aへ前記対物レンズ出力値L1〜4と正常セット
状態における対物レンズ出力値り、を出力する。これと
同時にCPU 24からレートマルチプライア3゜ヘマ
スク基板13をX方向及びX方向に等分した値1/n、
1/m(間引き率)を出方し、同期回路31によシミ子
ビームのスキャンと同期させてレートマルチプライア3
oがら電子ビームの1スキヤンあたシ1パルスのマスク
基板13上の各細分領域位置に対応するi/n(i=1
〜n)。
First, an electron beam is applied to the marker 14 provided on the mask substrate 13. .about.144 is sequentially scanned, focusing is performed, and the objective lens output values L1 to 4 are obtained when the signal detector 23 and the detection signal device 25 are brought into focus. Next, the CPU 24 outputs the objective lens output values L1 to L4 and the objective lens output value in the normal set state to the arithmetic circuit 26a of the objective lens controller 26. At the same time, a value 1/n, which is obtained by equally dividing the mask substrate 13 in the X direction and the X direction, is sent from the CPU 24 to the rate multiplier 3°.
1/m (thinning rate) is output, and the rate multiplier 3 is synchronized with the scanning of the simulator beam by the synchronization circuit 31.
i/n (i=1
~n).

j、/m(j=1〜m)の信号を対物レンズ制御器26
のカウンタ26bを介して演算回路26aへ出力する。
The signals of j, /m (j=1 to m) are sent to the objective lens controller 26.
It is output to the arithmetic circuit 26a via the counter 26b.

この演算回路26aでは比例配分にょシマスフ基板13
上の各細分領域における対物レンズ補正値ΔLijが求
められる。また、偏向電極制御器28の演算回路28a
へCPU 24から第10図図示の偏向補正値の曲線に
対応する方程式ΔXw(ΔL)、ΔYF(ΔL)、ΔY
B(ΔL)を出力するとともに、前記対物レンズ制御器
26の演算回路26aから対物レンズ補正値ΔL1jを
出力し、レートマルチプライア30から電子ビームの1
スキヤンあたり1パルスの1 / n Hj /mの信
号をカウンタ28bを介して出力する。この演算回路2
8aではマスク基板13上の各細分領域における偏向補
正値ΔXwijと、ΔYF1j又はΔYBijが求めら
れる。
In this arithmetic circuit 26a, the proportion distribution is
The objective lens correction value ΔLij in each of the above subdivision areas is determined. In addition, the calculation circuit 28a of the deflection electrode controller 28
Equations ΔXw (ΔL), ΔYF (ΔL), ΔY corresponding to the deflection correction value curves shown in FIG. 10 from the CPU 24
B(ΔL), the arithmetic circuit 26a of the objective lens controller 26 outputs the objective lens correction value ΔL1j, and the rate multiplier 30 outputs 1 of the electron beam.
A signal of 1/n Hj/m of one pulse per scan is outputted via the counter 28b. This calculation circuit 2
8a, the deflection correction value ΔXwij and ΔYF1j or ΔYBij in each subdivision area on the mask substrate 13 are determined.

以上のように求められた対物レンズ補正値ΔL1jをラ
ッチ26cを介して対物レンズ系DAC27へ送り、対
物レンズ21の出力を補正する。
The objective lens correction value ΔL1j obtained as described above is sent to the objective lens system DAC 27 via the latch 26c, and the output of the objective lens 21 is corrected.

また、偏向補正値ΔXw1jと、ΔYFi、又はΔYB
ijをラッチ28cを介して偏向電極系DAC29へ送
り、偏向電極22の出力を補正する。
In addition, the deflection correction value ΔXw1j and ΔYFi or ΔYB
ij is sent to the deflection electrode system DAC 29 via the latch 28c, and the output of the deflection electrode 22 is corrected.

しかして、上記方法によれば、マスク基板13のセット
ずれが起きても、マスク基板13のどの位置においても
常に電子ビームの焦点深度及び焦点位置を合わせること
ができる。したがって、従来、マスク基板130セツト
ずれにより起きていたパターン寸法の変動を少なくシ、
設計通シの寸法のパターンを描画することができる。ま
た、ノ平ターンのトータルピッチも設計通シとすること
ができる。
According to the above method, even if the mask substrate 13 is misaligned, the focal depth and focal position of the electron beam can always be adjusted at any position on the mask substrate 13. Therefore, variations in pattern dimensions that conventionally occur due to misalignment of the mask substrate 130 can be reduced.
A pattern with the dimensions of a design can be drawn. Further, the total pitch of the flat turns can also be made consistent with the design.

なお、上記実施例ではマーカーをマスク基板上の4隅に
形成したが、マーカーはマスク基板の・・ター・形成領
域以外に少なくとも3箇寿4次元的に形成すればよい。
In the above embodiment, the markers are formed at the four corners of the mask substrate, but the markers may be formed four-dimensionally in at least three corners of the mask substrate other than the formation area.

また、上記実施例における種々の演算処理は、テーブル
移動のだめの信号処理等とともに通常はCPUで行なわ
れる。
Further, various arithmetic processing in the above embodiments, as well as signal processing for table movement, etc., are normally performed by the CPU.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、マスク基板等のセッ
トずれが起きてもパターン寸法の変動を防止できる電子
♂−ムパターン描画方法を提゛供できるものである。
As described in detail above, according to the present invention, it is possible to provide an electronic pattern drawing method that can prevent variations in pattern dimensions even if misalignment of a mask substrate or the like occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマスク基板の正常セット状態での電子ビームの
露光状態を示す説明図、第2図はマスク基板がカセット
上でセットずれを起こした状態を示す斜視図、第3図は
同状態での電子ビームの露光状態を示す説明図、第4図
はマスク基板の平面図、第5図はマスク基板がセットず
れを起こした場合のi4ターン寸法の変動を示す線図、
第6図はマスク基板がセットずれを起こした場合のトー
タルピッチの変動を示す臆図、第7図はマスク基板上の
マーカーを示す断面図、第8図はマスク基板上のマーカ
ー位置を示す平面図、第9図はマーカーにおける反射電
子プロファイル、第10図は対物レンズ補正値と偏向補
正値との関係を示す線図、第11図をマスク基板を仮想
的に細分領域に分割した状態を示す平面図、第12図は
本発明方法を行なうだめの制御系を示すブロック図であ
る。 22・・・偏向電極、23・・・信号検出器、24・・
・CPU、25・・・検出信号処理器、26・・・対物
レンズ制御器、27・・・対物レンズ系DAC,28・
・・偏向電極制御器、29・・・偏向系DAC,30・
・・レートマルチプライア、31・・・同期回路、26
a、28a・・・演算回路、26 b 、 28 b 
用カウンタ、26c。 28c・・・ラッチ。
Figure 1 is an explanatory diagram showing the electron beam exposure state when the mask substrate is normally set, Figure 2 is a perspective view showing the state where the mask substrate is misaligned on the cassette, and Figure 3 is the same state. 4 is a plan view of the mask substrate, and FIG. 5 is a diagram showing the variation in i4 turn dimension when the mask substrate is misaligned.
Fig. 6 is a diagram showing the variation in total pitch when the mask substrate is misaligned, Fig. 7 is a cross-sectional view showing the markers on the mask substrate, and Fig. 8 is a plane showing the marker position on the mask substrate. Figure 9 is a backscattered electron profile at the marker, Figure 10 is a line diagram showing the relationship between the objective lens correction value and the deflection correction value, and Figure 11 is a diagram showing the mask substrate virtually divided into sub-regions. The plan view and FIG. 12 are block diagrams showing the control system for carrying out the method of the present invention. 22... Deflection electrode, 23... Signal detector, 24...
・CPU, 25...Detection signal processor, 26...Objective lens controller, 27...Objective lens system DAC, 28...
... Deflection electrode controller, 29... Deflection system DAC, 30.
...Rate multiplier, 31...Synchronization circuit, 26
a, 28a... arithmetic circuit, 26 b, 28 b
counter, 26c. 28c...Latch.

Claims (1)

【特許請求の範囲】[Claims] 電子ビームを対物レンズを通過させ、偏向電極により偏
向して基板上に照射し、基板表面にパターンを描画する
にあたシ、基板表面の少なくとも3箇所に二次元的に設
けられたマーカー上を電子ビームを線走査して各マーカ
ーにおいて焦点が合った時の対物レンズの出力値を測定
し、この出力値に基づいてノ4ターン描画時に基板を仮
想的に分割した細分領域での対物レンズの出力の補正値
を求めるとともにこれらの補正値からそれに対応する各
細分領域における偏向電極の出力の補正値を求め、対物
レンズ出力及び偏向電極出力を補正して電子ビームを照
射することを特徴とする電子ビームパターン描画方法。
An electron beam is passed through an objective lens, deflected by a deflection electrode, and irradiated onto a substrate. In order to draw a pattern on the substrate surface, an electron beam is passed through an objective lens, deflected by a deflection electrode, and irradiated onto a marker provided two-dimensionally at at least three locations on the substrate surface. The output value of the objective lens is measured when the electron beam is line-scanned and focused at each marker, and based on this output value, the output value of the objective lens is determined in subdivided areas where the substrate is virtually divided during 4-turn writing. The method is characterized in that a correction value for the output is determined, and from these correction values, a correction value for the output of the deflection electrode in each subdivision region corresponding thereto is determined, and the objective lens output and the deflection electrode output are corrected and the electron beam is irradiated. Electron beam pattern drawing method.
JP22417282A 1982-12-21 1982-12-21 Electron beam pattern drawing method Granted JPS59114818A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22417282A JPS59114818A (en) 1982-12-21 1982-12-21 Electron beam pattern drawing method
GB08333914A GB2132390B (en) 1982-12-21 1983-12-20 Method of and apparatus for drawing an electron beam pattern
DE19833346001 DE3346001A1 (en) 1982-12-21 1983-12-20 METHOD AND DEVICE FOR RECORDING AN ELECTRON BEAM PATTERN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22417282A JPS59114818A (en) 1982-12-21 1982-12-21 Electron beam pattern drawing method

Publications (2)

Publication Number Publication Date
JPS59114818A true JPS59114818A (en) 1984-07-03
JPH058566B2 JPH058566B2 (en) 1993-02-02

Family

ID=16809654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22417282A Granted JPS59114818A (en) 1982-12-21 1982-12-21 Electron beam pattern drawing method

Country Status (3)

Country Link
JP (1) JPS59114818A (en)
DE (1) DE3346001A1 (en)
GB (1) GB2132390B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246518A (en) * 1985-08-23 1987-02-28 Toshiba Corp Charged beam patterning method
DE4442596C1 (en) * 1994-11-30 1996-04-04 Heidelberg Instruments Mikrotechnik Gmbh Position measuring error correction system for lithography device
DE19811081C1 (en) * 1998-03-13 1999-10-28 Siemens Ag Holding device for photoblanks
DE19816220C1 (en) * 1998-04-09 1999-07-22 Siemens Ag Photomask blank earthing monitoring method for DRAM or logic circuit mfr.
DE10232230A1 (en) * 2002-07-17 2004-02-05 Pro-Beam Ag & Co. Kgaa Method for measuring the intensity profile of an electron beam, in particular a beam of an electron beam processing device, and / or for measuring an optic for an electron beam and / or for adjusting an optic for an electron beam, measuring structure for such a method and electron beam processing device
WO2018217646A1 (en) 2017-05-22 2018-11-29 Howmedica Osteonics Corp. Device for in-situ fabrication process monitoring and feedback control of an electron beam additive manufacturing process
AU2019206103A1 (en) 2018-07-19 2020-02-06 Howmedica Osteonics Corp. System and process for in-process electron beam profile and location analyses
DE102021202506A1 (en) 2021-03-15 2022-03-24 Carl Zeiss Smt Gmbh Method for determining a beam shape of an electron beam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498577A (en) * 1978-01-20 1979-08-03 Nippon Telegr & Teleph Corp <Ntt> Correction method for electron beam scanning position
JPS54112173A (en) * 1978-02-13 1979-09-01 Ibm Electron beam system
JPS5552223A (en) * 1978-10-13 1980-04-16 Nippon Telegr & Teleph Corp <Ntt> Exposure method in electronic beam exposure device
JPS5621321A (en) * 1979-07-27 1981-02-27 Fujitsu Ltd Automatically setting method of focus and exposure coefficient of electron beam exposure apparatus
JPS56124234A (en) * 1980-03-05 1981-09-29 Hitachi Ltd Correcting method for electron beam deflection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644700A (en) * 1969-12-15 1972-02-22 Ibm Method and apparatus for controlling an electron beam
JPS56103420A (en) * 1980-01-23 1981-08-18 Hitachi Ltd Compensating method for deflection distortion in charged particle beam apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498577A (en) * 1978-01-20 1979-08-03 Nippon Telegr & Teleph Corp <Ntt> Correction method for electron beam scanning position
JPS54112173A (en) * 1978-02-13 1979-09-01 Ibm Electron beam system
JPS5552223A (en) * 1978-10-13 1980-04-16 Nippon Telegr & Teleph Corp <Ntt> Exposure method in electronic beam exposure device
JPS5621321A (en) * 1979-07-27 1981-02-27 Fujitsu Ltd Automatically setting method of focus and exposure coefficient of electron beam exposure apparatus
JPS56124234A (en) * 1980-03-05 1981-09-29 Hitachi Ltd Correcting method for electron beam deflection

Also Published As

Publication number Publication date
GB2132390A (en) 1984-07-04
GB8333914D0 (en) 1984-02-01
GB2132390B (en) 1986-07-30
DE3346001C2 (en) 1991-09-05
JPH058566B2 (en) 1993-02-02
DE3346001A1 (en) 1984-07-05

Similar Documents

Publication Publication Date Title
US4621371A (en) Method of forming by projection an integrated circuit pattern on a semiconductor wafer
US5422491A (en) Mask and charged particle beam exposure method using the mask
JPH06124883A (en) Method for correcting charged beam and method for mark detection
TWI661279B (en) Multi-charged particle beam drawing device and multi-charged particle beam drawing method
JPS59114818A (en) Electron beam pattern drawing method
JPH0324771B2 (en)
US6376136B1 (en) Charged beam exposure method
US4443704A (en) Method of electron beam exposure
US4137459A (en) Method and apparatus for applying focus correction in E-beam system
US7388213B2 (en) Method of registering a blank substrate to a pattern generating particle beam apparatus and of correcting alignment during pattern generation
JP2002353112A (en) Close electron beam projection aligner, and methods for measuring and calibrating inclination of electron beam in the close electron beam projection aligner
KR20190093138A (en) Charged particle beam writing method and charged particle beam writing apparatus
US4264822A (en) Electron beam testing method and apparatus of mask
US8507873B2 (en) Drift measuring method, charged particle beam writing method, and charged particle beam writing apparatus
US10211027B2 (en) Method for measuring resolution of charged particle beam and charged particle beam drawing apparatus
JPH04269613A (en) Method for focusing charged beam
JP2786660B2 (en) Charged beam drawing method
JP2786662B2 (en) Charged beam drawing method
JP3195112B2 (en) Electron beam drawing equipment
JPS6320376B2 (en)
JP2786661B2 (en) Charged beam drawing method
JPS6312146A (en) Pattern-dimension measuring apparatus
JPS59181616A (en) Electron beam exposure method
JPH09298157A (en) Charged particle beam processing method and device
JPS6139354A (en) Blanking device for electron-beam exposure equipment