JPS5911446A - Multiplier - Google Patents
MultiplierInfo
- Publication number
- JPS5911446A JPS5911446A JP57122508A JP12250882A JPS5911446A JP S5911446 A JPS5911446 A JP S5911446A JP 57122508 A JP57122508 A JP 57122508A JP 12250882 A JP12250882 A JP 12250882A JP S5911446 A JPS5911446 A JP S5911446A
- Authority
- JP
- Japan
- Prior art keywords
- register
- full adder
- multiplier
- adder
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
本発明に計算機などのグイジタル乗算器に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a guidital multiplier for a computer or the like.
従来、この種の装置として、第1図に示すものがあった
。第1図において(1,1s (2)はnビットのレジ
スタ、(2)U2nビットの全加算器、(4)U2nピ
ントのレジスタ、(6)にシフトタイミング発生器を示
し、該構成を備える従来の乗算器において、nビットの
2つの数π、yの積Zi算出する場合について以下説明
する。Conventionally, there has been a device of this type as shown in FIG. In FIG. 1, (1, 1s (2) shows an n-bit register, (2) a U2n-bit full adder, (4) a U2n pinpoint register, and (6) a shift timing generator, which has the above configuration. A case will be described below in which a conventional multiplier calculates the product Zi of two n-bit numbers π and y.
先ず、レジスタ(i) e (2) e(4)の内容全
クリアし一レジスタ(1)にπ、レジスタ(2)にvv
i−セットする。First, clear all the contents of registers (i) e (2) e (4) and set π to register (1) and vv to register (2).
i-Set.
次にレジスタ(2)の右端のピントが1であればレジス
タ(4)の内容とレジスタ(1)の内容を全加算器(8
)で加算し、その結果?レジスタ(4)にストアし、レ
ジスタ(4)の内容會1ビット右ヘシフトする。もしレ
ジスタ(2)の右端のピントが0であnば全加算器(8
)による加算に行なわずレジスタ(4)の内容のみを右
へ1ピントシフトする。Next, if the rightmost focus of register (2) is 1, the contents of register (4) and the contents of register (1) are added to full adder (8).
) and the result? Store in register (4), and shift the contents of register (4) one bit to the right. If the rightmost focus of register (2) is 0, the full adder (8
), only the contents of register (4) are shifted one pinpoint to the right.
次ニ、レジスタ(2ンの内容を1ピント右へシ7トレ前
述の操作音くり返す。このような操作をn回〈り返丁こ
とにエリ、レジスタ(4)にZXllのデータが作られ
乗算が完了する。Next, move the contents of register (2) 1 point to the right and repeat the operation sound described above. Repeat this operation n times, and then the data of ZXll is created in register (4). Multiplication is complete.
しかるに、従来の乗算器は以上のような方式で積を算出
するため、にビットの数X、νの積金求めるには、n回
の同じ手続き(シフトと加算)を行う必要があり1乗算
時間が長くかかる欠点がめつ几。However, since conventional multipliers calculate the product using the method described above, it is necessary to perform the same procedure n times (shift and addition) to obtain the product of the number of bits The drawback is that it takes a long time.
そこで、本発明は上記の1うな従来の欠点を除去するた
めになさ九たもので、複雑な回路?必要とせず短時間に
、基本的には構成素子のもつ最大速度で乗算結果を得る
ことができる乗算器?提供することを目的としている。Therefore, the present invention has been devised to eliminate the above-mentioned one drawback of the conventional technology, and it does not require a complicated circuit. A multiplier that can obtain multiplication results in a short time without the need for it, basically at the maximum speed of the constituent elements? is intended to provide.
以下5本発明の一実施例全第2図について説明する。第
2図に訃いて(6) l <7)はnビットの2進数x
、vがそれぞれセットされるnビットでなるXレジスタ
とXレジスタ5(S)a該Xレジスタ(6)とXレジス
タ(γ)の内容全加算するn+1ピントでなる第1の全
加算器、(9) s叫、ol)はそれぞれ上記レジスタ
(6) 、 (γ)と全加算器(8)の内容の二乗値Z
”* u”*(z+y)”e求める読出し専用メモリ(
以下ROMと称す)、(2)にROM(9)と叫の内容
全加算する第2の全加算器、 (1B)はROMαηと
全加算器(四との内容に基いて積Xν奮求めるn+1ピ
ントでなる減算器を示しておυ、これら図示構成におい
ては、nビットの数2.νの積を求める場合に以下の式
全応用することで簡単に計算できるものである。Hereinafter, five embodiments of the present invention will be explained with reference to FIG. According to Figure 2, (6) l <7) is an n-bit binary number x
, a first full adder consisting of an n+1 pinto which adds up the contents of the X register (6) and the X register (γ); 9) s and ol) are the square values Z of the contents of the registers (6) and (γ) and the full adder (8), respectively.
"*u"*(z+y)"eThe desired read-only memory (
(hereinafter referred to as ROM), (2) a second full adder that adds the contents of ROM (9) and the second full adder, (1B) calculates the product Xν based on the contents of ROMαη and the full adder (n+1 In the illustrated configuration, when calculating the product of an n-bit number 2.v, calculation can be easily performed by applying all of the following equations.
zy=((z+y)”−(z’+11”))/2すなわ
ち、第2図において、先ずレジスタ(6)。zy=((z+y)"-(z'+11"))/2 That is, in FIG. 2, first register (6).
(γ)にX、νをそれぞれセットするとs ROM (
9) s叫、 (11)にはアドレスに対応した2乗の
値が出力されるようにデータが書かれておりmXtYレ
ジスタ(6) * <γンにセットされているx、vは
加算器(8)で加算さ九てその2乗の値(x +y )
” がROMα刀から出力され、ま几ROM (9)
お工び輛と加算器(121に工り(c2+ y2)
が求めらnる工うになる。そしてこの2つの結果と減算
器(lalに工り2zvが求められ、この結果、下1ビ
ラトラ小数点以下とすれば2+yの積が求められること
になる。すなわち。When setting X and ν in (γ), s ROM (
9) Data is written in (11) so that the square value corresponding to the address is output, and the mXtY register (6) * x and v, which are set to <γ, are adders. The value of the sum of 9 and its square (x + y) in (8)
” is output from the ROMα sword, and the ROM (9)
Crafted vehicle and adder (crafted on 121 (c2 + y2)
The required process will be completed. Then, 2zv is obtained by subtracting these two results and the subtractor (lal), and as a result, the product of 2+y is obtained by substituting one digit below the decimal point. That is.
図示構成においては、従来例の工すなタイミング発生器
全必要とせずに積xvを求めることができ。In the illustrated configuration, the product xv can be determined without the need for all the conventional unsophisticated timing generators.
まm、その乗算を基本的には構成要素の最大速度で高速
に行い得る。Well, the multiplication can be done quickly, essentially at the maximum speed of the components.
以上の工うにこの発明によれば、加算器とROMKより
乗算器全構成したので、複雑なタイミング発生器を必要
とせず、′また演算スピードも高速なものとなる。As described above, according to the present invention, since the entire multiplier is composed of an adder and a ROMK, a complicated timing generator is not required, and the calculation speed can be increased.
第1図は従来の乗算器を示すブロック図、第2図は本発
明の一実施例による乗算器全示すブロック図である。
(6) ? (7) :レジスタ (8) $ 11
2) :全加算器(9)、叫、(1η:ROMQB):
減算器代理人 葛 野 信 −FIG. 1 is a block diagram showing a conventional multiplier, and FIG. 2 is a block diagram showing the entire multiplier according to an embodiment of the present invention. (6)? (7) :Register (8) $11
2): Full adder (9), shout, (1η:ROMQB):
Subtractor Agent Shin Kuzuno −
Claims (1)
、上記nビットの2進数x、yがそれぞれセットさnる
XレジスタとXレジスタの内容を加算する第1の全加算
器、該XレジスタとXレジスタ及び第1の全加算器の各
値の二乗’C2+uQs(z+y)”kそれぞれ求める
各読出し専用メモリ、nビットの2進数の各二乗値x”
*v”k加算する第2の全加算器、及び第2の全加算器
による加算値x3+2 と上記読出し専用メモリから
得られるχ、Vの加算値の二乗値(z+y)” とに
基いて上記nビットの2進数x、vの積Zf得る減算器
力・ら構成したことを特徴とする乗算器。In a multiplier that calculates the product Zf of n-bit binary numbers z and v, a first full adder that adds the contents of the X register and the X register set by the n-bit binary numbers x and y, respectively; The square of each value of the register and the X register and the first full adder 'C2+uQs(z+y)'k, each read-only memory to be obtained, each squared value of an n-bit binary number x'
*The above is based on the second full adder that adds v''k, and the added value x3+2 by the second full adder and the square value (z+y) of the added value of χ and V obtained from the read-only memory. A multiplier comprising a subtractor for obtaining a product Zf of n-bit binary numbers x and v.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57122508A JPS5911446A (en) | 1982-07-12 | 1982-07-12 | Multiplier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57122508A JPS5911446A (en) | 1982-07-12 | 1982-07-12 | Multiplier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5911446A true JPS5911446A (en) | 1984-01-21 |
Family
ID=14837578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57122508A Pending JPS5911446A (en) | 1982-07-12 | 1982-07-12 | Multiplier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5911446A (en) |
-
1982
- 1982-07-12 JP JP57122508A patent/JPS5911446A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4953115A (en) | Absolute value calculating circuit having a single adder | |
EP0890899A2 (en) | Multiplication method and apparatus | |
US4594680A (en) | Apparatus for performing quadratic convergence division in a large data processing system | |
JPS5911446A (en) | Multiplier | |
JPH05197525A (en) | Method and circuit for negating operand | |
JPH04256016A (en) | Method and apparatus for correcting multiplier for complement of 2 so that multiplication of non-signed number is performed | |
JPH01220528A (en) | Parity generator | |
JP2737933B2 (en) | Division device | |
JPS6259828B2 (en) | ||
JP2991788B2 (en) | Decoder | |
JP2705162B2 (en) | Arithmetic processing unit | |
JPH03240144A (en) | Variable length data memory interface circuit | |
JPH0585924B2 (en) | ||
JPS59172040A (en) | Multiplying circuit | |
JPS5944656B2 (en) | Integration method of digital differential analyzer | |
JP3201097B2 (en) | Multiplication prescription method in multiplier | |
JP3097081B2 (en) | Variable stage m-sequence code generator | |
JP3055558B2 (en) | n-bit arithmetic unit | |
JPS6188334A (en) | Divider circuit | |
JPH04242425A (en) | Decimal multiplier | |
JPS5936781B2 (en) | Inner and outer integral methods of digital differential analyzer | |
JPH02181821A (en) | Arithmetic device | |
JPS63623A (en) | Multiplier | |
JPS5939773B2 (en) | Logarithmic function calculation method | |
JPH0285922A (en) | Arithmetic circuit |