JPS59114028A - Manufacture of thermoplastic resin film - Google Patents

Manufacture of thermoplastic resin film

Info

Publication number
JPS59114028A
JPS59114028A JP22390182A JP22390182A JPS59114028A JP S59114028 A JPS59114028 A JP S59114028A JP 22390182 A JP22390182 A JP 22390182A JP 22390182 A JP22390182 A JP 22390182A JP S59114028 A JPS59114028 A JP S59114028A
Authority
JP
Japan
Prior art keywords
film
stretched
stretching
conditions
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22390182A
Other languages
Japanese (ja)
Other versions
JPH0125696B2 (en
Inventor
Hiroshi Noda
能田 「ひろし」
Hideaki Watanabe
秀明 渡辺
Kinji Hasegawa
欣治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP22390182A priority Critical patent/JPS59114028A/en
Publication of JPS59114028A publication Critical patent/JPS59114028A/en
Publication of JPH0125696B2 publication Critical patent/JPH0125696B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the bowing phenomenon from occurring by a method wherein a film, after being stretched longitudinally, is stretched laterally until 10-90% of total percent of lateral stretch is reached and thermally set and finally stretched laterally to realize 100% of total percent of lateral stretch while running the film in the reversed direction. CONSTITUTION:A fusion-extruded thermoplastic resin film is at first longitudinally stretched. Secondly, the film is laterally stretched by holding both ends of the film until 10-90% of total percent of lateral stretch is reached and thermally set. Thirdly, the running direction of the film is reversed and the film is laterally stretched by holding both its ends until 100% of total percent of lateral stretch is realized while running in the direction opposite to that during said lateral stretching and thermal setting and finally thermally set again at a temperature higher than said thermally set temperature in order to obtain a biaxially stretched thermosetting resin film with uniform physical proterties. In addition, fusion-extrusion conditions, casting conditions, stretching conditions in the machine direction and in the width direction, all of which are well-known conditions, can be employed, as a film forming and a stretching conditions.

Description

【発明の詳細な説明】 本発明は熱可塑性樹脂からなる二軸死神フィルムを少く
とも二段階にわたり横死伸熱固定し、フィルム幅方向に
沿って物性が均一であるフィルムを製造する方法に係る
。更に詳しくは、二軸蕉伸に際し、横延伸及び熱固定を
少くとも二回に分けて施し、ボーイング現象による裏方
性を消滅させ、光学釣具方性が無く、温度膨張率、湿度
膨張率及び熱収縮率等がフィルムの幅方向に沿った任意
の位置で殆んど同一である均一性の高いフィルムを製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a film having uniform physical properties along the width direction of the film by subjecting a biaxial Grim Reaper film made of a thermoplastic resin to heat-setting by lateral death stretching in at least two stages. More specifically, during biaxial stretching, transverse stretching and heat setting are applied at least twice to eliminate the back side effect due to the bowing phenomenon, eliminate optical fishing gear orientation, and improve temperature expansion coefficient, humidity expansion coefficient, and heat setting. The present invention relates to a method for producing a highly uniform film in which the shrinkage rate and the like are almost the same at any position along the width of the film.

二軸−伸フィルムは種々の工業用途に供せられているが
、なかでもフレキシブル液晶パネル。
Biaxially stretched films are used for various industrial applications, among them flexible liquid crystal panels.

写真、製図、磁気ディスク等の用途では縦横両方向の物
性、殊に温度膨張率、湿度膨張率、熱収縮率がバランス
していることが望まれる。しかるに1通常の逐次二軸延
伸法、すなわち縦死神に続いてテンターにより横延伸を
施す方法において、製品フィルムの幅方向の物性を均一
にすることは極めて困雛であった。この理由は、テンタ
ー内においてフィルムの両慄端部は把持されているから
、横死伸に伴5縦方向の収縮応力はクリップ等によって
拘束されているものの、フィルム中央部は比較的拘束力
が弱い。この結果として、走行時のフィルムの分子配向
は上記収縮応力によって中央部分のフィルムが位置的に
遅れて進む。横延伸の前にフィルム面上に幅方向に直線
を仮想的に描いたとすると、横員伸とそれKつづく緊張
熱処理の間にこの直線はフィルム進行方向に向って凹形
の曲線となる。この現象はボーイングと称されるもので
あって、このボーイングによってフィルムは幅方向にお
いて、中央部分と画側部とに物性差(殊に温度膨張率、
湿度膨張率の不均一性)を生ずる原因となっている。フ
ィルム中央部の諸物性を縦横方向にバラ・〉スさせた場
合、フィルム側端部ではボーイング線に対して更に縦方
向に傾斜した配向主軸ができ、この主軸方向の温度膨張
率。
For applications such as photography, drafting, and magnetic disks, it is desirable that the physical properties in both the vertical and horizontal directions, especially the thermal expansion coefficient, the humidity expansion coefficient, and the thermal contraction coefficient, be balanced. However, it has been extremely difficult to make the physical properties of the product film uniform in the width direction using the conventional sequential biaxial stretching method, that is, a method in which longitudinal stretching is performed followed by horizontal stretching using a tenter. The reason for this is that both ends of the film are held in the tenter, so the shrinkage stress in the longitudinal direction due to lateral dead elongation is restrained by clips, etc., but the restraining force is relatively weak in the center of the film. . As a result, the molecular orientation of the film during running progresses with the film in the central portion positionally delayed due to the shrinkage stress. If a straight line is virtually drawn in the width direction on the film surface before transverse stretching, this straight line becomes a concave curve in the direction of film travel during the transverse stretching and the subsequent tension heat treatment. This phenomenon is called bowing, and due to this bowing, the film has differences in physical properties (especially thermal expansion coefficient,
This causes non-uniformity in the coefficient of humidity expansion. When the physical properties of the central part of the film are varied in the vertical and horizontal directions, a main axis of orientation is formed at the film side edges that is further tilted in the vertical direction with respect to the bowing line, and the coefficient of thermal expansion in the direction of this main axis increases.

湿度膨張率は小さくなり、主軸と直角方向の6各の値は
大きくなる。このような幅方向の物性差を解消するため
いくつかの方法が提案されてきた。しかし、いずれも満
足できる段階に到っていない。例えば、特公昭37−1
588号公報には横死伸→縦延伸の方法を開示している
が、本質的な対策とはなっていない。特開昭50−73
978号公報には横死伸工程と熱処理工程との間にニッ
プロールを用いる方法が提案されているが、フィルムに
衷面傷が発生する怖れがあるので、別な問題が新たに生
じている。
The humidity expansion coefficient becomes smaller, and each of the six values in the direction perpendicular to the principal axis becomes larger. Several methods have been proposed to eliminate such differences in physical properties in the width direction. However, none of them have reached a satisfactory stage. For example, Tokko Sho 37-1
Although the No. 588 publication discloses a method of transverse dead stretching→longitudinal stretching, it does not constitute an essential countermeasure. Unexamined Japanese Patent Publication 1973-1973
Although Japanese Patent No. 978 proposes a method using nip rolls between the lateral dead stretching step and the heat treatment step, another problem has arisen since there is a risk of scratches on the back surface of the film.

本発明者は、縦死神後のフィルムを正方向と逆方向の2
回にわけて横死伸熱固定することによって、このボーイ
ング現象を相殺させ得ることを知見して本発明に到達し
たものである。
The present inventor has developed a film after vertical Grim Reaper in two directions, one in the forward direction and the other in the reverse direction.
The present invention was achieved based on the finding that this bowing phenomenon can be offset by performing lateral death expansion heat fixation in several stages.

すなわち本発明は、溶融押出しした熱可塑樹脂フィルム
を二軸配向させるに際し、最初に縦方向に延伸し、その
徒総合横倍率の10〜90チの倍率でフィルム両端を把
持しなからma伸熟熱固定、しかる後フィルムの走行方
向を逆転させ、前記横延伸・熱固定と逆方向に走行させ
ながら統合横延伸倍率となるようにフィルム両端を把持
しながら横死伸し、前記熱固定温度より高い温度で再熱
固定を施す工程を含むことを特徴とする物性の均一な二
軸y伸された熱可塑樹脂フィルムの製造方法である。
That is, in the present invention, when biaxially orienting a melt-extruded thermoplastic resin film, it is first stretched in the longitudinal direction, then gripped at both ends of the film at a magnification of 10 to 90 inches of the total transverse magnification, and then ma-stretched. After heat-setting, the running direction of the film is reversed, and while running in the opposite direction to the above-mentioned transverse stretching and heat-setting, cross-dead stretching is performed while holding both ends of the film so that the integrated transverse stretching ratio becomes higher than the above-mentioned heat-setting temperature. This is a method for producing a biaxially stretched thermoplastic resin film with uniform physical properties, which includes a step of reheat-setting at a certain temperature.

本発明を説明する。本発明で熱可塑性樹脂とは二軸死神
フィルムが製造で欠るものを包含する。例えば、ポリエ
チレンテレフタレート、ポリテトラメチレンテレフタレ
ート、ポリエチレン−2,6−す7タレンジカルポキシ
レート等のポリエステル、ポリプロピレン、ポリエチレ
ン等のポリオレフィン、ナイロン6、ナイロン66等の
ポリアミドを洋げ得る。本発明では、−F配の樹脂のホ
モポリマーのみならず、15%(重量)以内の無機物、
有機物(易滑剤、紫外線吸収剤、難燃剤等)、他のポリ
マー等を含有するものも適用可能である。
The present invention will be explained. In the present invention, thermoplastic resins include those that are lacking in the production of biaxial Grim Reaper films. For example, polyesters such as polyethylene terephthalate, polytetramethylene terephthalate, and polyethylene-2,6-s7thalene dicarpoxylate, polyolefins such as polypropylene and polyethylene, and polyamides such as nylon 6 and nylon 66 can be used. In the present invention, not only a homopolymer of -F-coordinated resin, but also an inorganic substance within 15% (by weight),
Those containing organic substances (lubricants, ultraviolet absorbers, flame retardants, etc.), other polymers, etc. are also applicable.

本発明では製膜・両件条件として、公知の樹脂の溶融押
出条件、キャスティング条件1磯械方向及び幅方向の両
件条件を適宜選択できる。
In the present invention, as film forming conditions, known resin melt extrusion conditions and casting conditions 1, both conditions in the rock-machine direction and in the width direction, can be appropriately selected.

本発明では、ガラス転移点(Tg)乃至融点(Tm) 
−120℃程度の延伸条件を選んで連成二軸死神したフ
ィルムを、幅出し機によりフィルムの走行方向(生産方
向)を逆にして再度横死伸熱固定処理を施すものである
In the present invention, glass transition point (Tg) to melting point (Tm)
The film is subjected to coupled biaxial shinigami under stretching conditions of about -120° C., and the running direction (production direction) of the film is reversed using a tenter machine, and then the lateral deadening heat setting treatment is performed again.

フィルムの厚さは2〜1000μの広範囲の 5− ものに適用できる。The film thickness ranges from 2 to 1000μ. Can be applied to things.

本発明の竹色は2段階の横死伸・熱固定においてフィル
ムの走行を正方向及び逆方向とする点にあり、この二回
のに伸によって、一段横蔦伸と熱固定によって生ずるボ
ーイングの影響を解消するものである。前段(第1段)
の横延伸倍率は総合横延伸倍率の10〜90チ、好まし
くは30〜90チ、の範囲を選択する。延伸・熱固定に
際しフィルムは両側端を拘束具(例えばテンタークリッ
プ)で拘束する。ここに総合横延伸倍率とは、第1段と
第2段との横延伸倍率の積をいう。後段(第2段)の横
延伸・熱処理は前段のフィルムの走行方向とは逆方向と
なるようにフィルムを走行させる。この逆方向を得る簡
便な方法は前段のフィルムな死神熱固定したのち一旦巻
き取り、後段の横死伸に際し巻戻しながら幅出機に供給
すれば達成される。もつとも、フィルムを前段熱処理し
た後、フィルムに損傷を与えない条件であればコア等に
巻付ける必要はない。この場合も後段熱処理の走行6一 方向が前段横延伸熱固定の方向と逆転していれば本発明
の効果が奏されるものである。後段の横方向の延伸倍率
は所望倍率(総合横延伸倍率に相当する)に対し、前段
で延伸した残余分を延伸する。前段と後段との延伸比率
配分は、特に規宗しないが、好ましくは前段−に多く配
分するようにする。幅方向の物性の均一性を得るには、
特に線膨張率の均一性に関しては、前記ボーイングを小
さくせめることが重要である。従って前段横延伸に先立
ってフィルムの横方向に描いた直線が逆行方向に向って
凹に曲り、後段の横延伸熱処理でほぼ元に戻るような条
件が好ましい。そのためには後段の処理で上記ボーイン
グ線が過度に戻りすぎないことが要件となり、条件は試
行錯誤により選択できるが、前段の両押比率を高目に設
定する。この理由は前段の熱固定を高温で実施すると、
後段の延伸処理が離しくなるため、前段の熱固定は比較
的低温で実施することになるが、その場合後段の熱固定
は比較的高温を選択することとなる。そのとき、ボーイ
ングは相当矯正されている。後段の加熱温度が高く設定
されることに伴って後段の延伸倍率は低く設定する必要
がある。ボーイングの矯正の程度によって、後段延伸後
の熱処理時に、必要に応じてフィルムに更に幅方向の拡
張または弛緩処理を施すことが可能なことは勿論である
The bamboo color of the present invention is achieved by running the film in the forward and reverse directions during the two-step lateral dead stretching and heat setting. This is to eliminate the problem. First stage (first stage)
The lateral stretching ratio is selected from a range of 10 to 90 inches, preferably 30 to 90 inches of the total lateral stretching ratio. During stretching and heat setting, both ends of the film are restrained with restraints (for example, tenter clips). The total lateral stretching ratio here refers to the product of the lateral stretching ratios of the first stage and the second stage. In the later stage (second stage) transverse stretching and heat treatment, the film is run in the opposite direction to the running direction of the film in the previous stage. A simple method for obtaining this reverse direction is achieved by first winding up the film after heat-setting it in the first stage, and feeding it to the tenter while unwinding it during the lateral dead stretching in the second stage. However, it is not necessary to wrap the film around the core after the pre-heat treatment, provided that the film is not damaged. In this case as well, the effects of the present invention can be achieved as long as the traveling direction 6 of the post-stage heat treatment is reversed to the direction of the transverse stretching heat-setting of the pre-stage. The stretching ratio in the lateral direction in the latter stage is a desired ratio (corresponding to the total lateral stretching ratio) by stretching the remainder of the stretching in the previous stage. There is no particular rule regarding the distribution of the stretching ratio between the front stage and the rear stage, but it is preferable to distribute more of the stretching ratio to the front stage. To obtain uniformity of physical properties in the width direction,
Particularly regarding the uniformity of linear expansion coefficient, it is important to reduce the bowing. Therefore, conditions are preferable such that a straight line drawn in the transverse direction of the film prior to the transverse stretching in the first stage bends concavely in the reverse direction, and returns to almost its original state in the transverse stretching heat treatment in the latter stage. To achieve this, it is necessary that the bowing line does not return too much in the subsequent processing, and the conditions can be selected by trial and error, but the double push ratio in the previous stage is set to be high. The reason for this is that when the first stage of heat fixation is carried out at a high temperature,
Since the stretching process in the latter stage is performed at a longer distance, the heat setting in the first stage is carried out at a relatively low temperature, but in this case, a relatively high temperature is selected for the heat setting in the latter stage. At that time, Boeing was significantly corrected. As the heating temperature in the latter stage is set high, the stretching ratio in the latter stage needs to be set low. Of course, depending on the degree of bowing correction, it is possible to further expand or relax the film in the width direction, if necessary, during the heat treatment after the post-stretching.

このようにして2段延伸熱処理が完了したフィルムは、
必要ならば再び側端部分を切断し、製品とすることがで
きる。物性の均一なフィルムは、例えば光学異方性がな
く、透明なものであれば、フレキシブル液晶パネルとし
て使用でき、従来の無機ガラスを基材パネルとしたもの
に比較して軽量で可撓性の点で有利となる。また機械的
性質−熱的性質においてパラ/スした物性がフィルム全
都に保持されていることは磁気ディスクペースとして優
れた材質となる。
The film that has undergone two-stage stretching heat treatment in this way is
If necessary, the side end portions can be cut again to produce a product. A film with uniform physical properties, for example, if it has no optical anisotropy and is transparent, can be used as a flexible liquid crystal panel, and is lighter and more flexible than conventional inorganic glass-based panels. It is advantageous in that respect. Furthermore, the fact that the film has comparable physical properties in terms of mechanical and thermal properties makes it an excellent material for magnetic disk space.

次に実施例によって更に説明する。Next, it will be further explained by examples.

実施例1 ポリエチレンテレフタレートを溶融し、ダイスリットか
ら押出してや冷ドラム上にフィルム吠に成形した伊、周
速度の異なるp−ル間にあるフィルムを加熱しながら3
.5倍IC!#手方向に漸伸し、105℃の温度で横(
@)方向VC2,6倍延伸して二軸延伸フィルムとした
。幅方向の憂仲に使用したテンタークリップを解放する
ことなくフィルムを把持したまま130’Cの温度で熱
固定した。その後クリップを筒針、クリップに把持され
たフィルムの側端部分を7リツターで切除しながら巻取
った。一段の熱固定な軽たフィルムを解き戻しながら、
再びフィルムの両側端をテンタークリップで把持し、横
方向に190℃において1.5倍両伸(総合横延伸倍率
: 3.9 ) L、引続いて230℃で約30秒間再
熱固定をして巻取った。得られたフィルムは厚さ75〃
であり、その物性値は第1表に示した通りであった。
Example 1 Polyethylene terephthalate was melted, extruded through a die slit, and formed into a film on a cold drum.The film was heated between two rollers with different circumferential speeds.
.. 5x IC! # Gradually stretch in the hand direction, then horizontally at a temperature of 105℃ (
@) The film was stretched 2.6 times in the VC direction to obtain a biaxially stretched film. The film was heat-set at a temperature of 130'C while holding the film without releasing the tenter clip used for fixing it in the width direction. Thereafter, the clip was used as a tube needle, and the side end portion of the film held by the clip was cut off with a 7-liter blade and wound up. While unraveling one layer of heat-set light film,
Grip both ends of the film with tenter clips again, stretch both sides by 1.5 times in the transverse direction at 190°C (total transverse stretching ratio: 3.9), and then reheat and fix at 230°C for about 30 seconds. I wound it up. The resulting film has a thickness of 75〃
The physical properties were as shown in Table 1.

比較例1 9一 実施例1において横延伸熱固守条件を3.9倍、230
℃として一段のみで処理をすること以外は!!AA例1
と同様にして75μのフィルムとした。その物性なt4
1表に示した。
Comparative Example 1 9-The transverse stretching heat retention conditions in Example 1 were 3.9 times, 230
Except for processing in only one stage as ℃! ! AA example 1
A 75μ film was prepared in the same manner as above. Its physical properties t4
It is shown in Table 1.

比較例2 実施例1において、前段の棺で仲を3.0倍、熱固定を
200℃秒段の横嶌伸を1.2倍、熱固定を190”C
とする以外は実施例1と同様にして75μの厚さのフィ
ルムとした。この物性を第1表に示した。
Comparative Example 2 In Example 1, the temperature of the coffin in the front stage was 3.0 times higher, the heat setting was 1.2 times higher at 200°C, and the heat setting was 190"C.
A film having a thickness of 75 μm was prepared in the same manner as in Example 1 except for the following. The physical properties are shown in Table 1.

一1〇− 館1表の結果から、本発明の方法は逐次二軸フィルムの
ボーイングの現象を回避し、温度膨張率等が均一である
フィルムが得られ、工業的価値の大きいものであると云
える。
From the results in Table 110-1, it is concluded that the method of the present invention avoids the bowing phenomenon of sequential biaxial films, produces films with uniform thermal expansion coefficients, etc., and is of great industrial value. I can say that.

Claims (1)

【特許請求の範囲】[Claims] 溶融押出を経た熱可塑性樹脂フィルムな二軸配向せしめ
るに際し、まず縦方向に延伸し、次いで峠合横延伸倍率
の10〜90チの範囲で横死伸し、更に熱固定を施し、
しかる徒フィルムの走行方向を逆転させ、第二段目の横
延伸を施して総合延伸倍率となし、フィルムの両側端を
把持しながら更に前記熱固定の際の固定温度より高温に
おいて再熱固定を施す1稈を含むことを特徴とする物性
の均一な二軸蕉伸された熱可塑性樹脂フィルムの製造方
法。
When biaxially orienting a thermoplastic resin film through melt extrusion, it is first stretched in the machine direction, then dead stretched in the cross direction at a crosswise stretch ratio of 10 to 90 inches, and further heat-set.
Then, the running direction of the film was reversed, a second stage of lateral stretching was carried out to obtain the total stretching ratio, and the film was further heat-set at a higher temperature than the fixing temperature during the heat-setting described above, while gripping both ends of the film. 1. A method for producing a biaxially stretched thermoplastic resin film with uniform physical properties, the method comprising one culm being applied.
JP22390182A 1982-12-22 1982-12-22 Manufacture of thermoplastic resin film Granted JPS59114028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22390182A JPS59114028A (en) 1982-12-22 1982-12-22 Manufacture of thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22390182A JPS59114028A (en) 1982-12-22 1982-12-22 Manufacture of thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPS59114028A true JPS59114028A (en) 1984-06-30
JPH0125696B2 JPH0125696B2 (en) 1989-05-18

Family

ID=16805477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22390182A Granted JPS59114028A (en) 1982-12-22 1982-12-22 Manufacture of thermoplastic resin film

Country Status (1)

Country Link
JP (1) JPS59114028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459332A (en) * 1990-06-29 1992-02-26 Toyobo Co Ltd Thermoplastic resin film and its manufacture

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138771A1 (en) * 1991-11-26 1993-05-27 Daimler Benz Ag Electroconductive film prodn. on plastics surface - esp. for electromagnetic screen by impregnation with monomer and oxidant to form conductive polymer
JPH08132523A (en) * 1994-11-09 1996-05-28 Toray Ind Inc Low heat-shrinkable polyester film
JPH08164558A (en) * 1994-12-15 1996-06-25 Toray Ind Inc Polyester film
WO2013027414A1 (en) * 2011-08-25 2013-02-28 コニカミノルタアドバンストレイヤー株式会社 Method for producing long stretched film and method for producing circularly polarizing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459332A (en) * 1990-06-29 1992-02-26 Toyobo Co Ltd Thermoplastic resin film and its manufacture

Also Published As

Publication number Publication date
JPH0125696B2 (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US6939499B2 (en) Processes and apparatus for making transversely drawn films with substantially uniaxial character
CA2503824A1 (en) Methods and devices for processing polymer films
CA2504833A1 (en) Methods and devices for stretching polymer films
US20070116793A1 (en) Processes and apparatus for making transversely drawn films with substantially uniaxial character
JPH07106597B2 (en) Method for manufacturing high modulus film
JPS59114028A (en) Manufacture of thermoplastic resin film
JPS631174B2 (en)
JPH0125694B2 (en)
JPS5824418A (en) Preparation of thermoplastic polyester film
JPH0455377B2 (en)
JPS6243857B2 (en)
JPS60262624A (en) Stretching method of polyester film
JPS6243856B2 (en)
JP2936688B2 (en) Method for producing thermoplastic resin film
JPS59159319A (en) Manufacture of uniaxially stretched polyester film
JPS62183327A (en) Manufacture of biaxially oriented film
KR100294904B1 (en) Polyimide film and preparation method thereof
JP2841816B2 (en) Method for producing thermoplastic resin film
JPH09216279A (en) Manufacture of biaxially oriented polyamide film
JP3048251B2 (en) Method for producing oriented polyester film
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JP2002178398A (en) Manufacturing method for stretched film
KR100235565B1 (en) Method for producing sequentially biaxially oriented plastic film
JP2936699B2 (en) Method for producing polyamide film
JP2002361734A (en) Method for producing biaxially oriented polyamide film