JPS5911390A - Increase in strength of odorous, hydrous soft earth accompanied by deodorization - Google Patents

Increase in strength of odorous, hydrous soft earth accompanied by deodorization

Info

Publication number
JPS5911390A
JPS5911390A JP11031483A JP11031483A JPS5911390A JP S5911390 A JPS5911390 A JP S5911390A JP 11031483 A JP11031483 A JP 11031483A JP 11031483 A JP11031483 A JP 11031483A JP S5911390 A JPS5911390 A JP S5911390A
Authority
JP
Japan
Prior art keywords
additive
water
strength
soil
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11031483A
Other languages
Japanese (ja)
Other versions
JPH0141675B2 (en
Inventor
Hajime Miyoshi
一 三好
Etsuo Asanagi
麻薙 悦男
Junsuke Iguchi
井口 純輔
Ikuo Okabayashi
郁夫 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP11031483A priority Critical patent/JPS5911390A/en
Publication of JPS5911390A publication Critical patent/JPS5911390A/en
Publication of JPH0141675B2 publication Critical patent/JPH0141675B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To economically and efficiently deodorize hydrous soft earth and to increase its strength at the same time, by adding gypsum dihydrate, fine blast furnace slag, portland cement and a water-soluble ferrous salt in specified order and proportion to the hydrous soft earth. CONSTITUTION:A method comprising adding and mixing additives A, B and C hereinafter described with odorous, hydrous soft earth, wherein the additives A and C are added separately or together before addition of the additive B, and a wt. ratio of A/B is selected to be 75/25-55/45. The additive A is a mixture consisting of 5-45wt% gypsum dihydrate and 95-55wt% fine blast furnace slag of particle size of 100-1mum. The additive B is portland cement. The additive C is a water-soluble ferrous salt. Said additives A and B are most pref. added in a ratio of 70/30-60/40, wherein the additive A is pref. a mixture consisting of 15-35wt% gypsum dihydrate and 85-65wt% fine blast furnace slag.

Description

【発明の詳細な説明】 本発明は、悪臭を持つ含水軟弱土を経済的かつ効率よく
脱臭させると共にその強度を増加させる方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for economically and efficiently deodorizing water-containing soft soil having a foul odor and increasing its strength.

含水軟弱土は、閉鎖型海域、開放型海域、干潮河川など
に堆積する海域系のもの、河川、湖沼、貯水池、浄化池
、浄水場などに堆積する淡水系のもの、アースドリル工
法、ベット杭工法などにおいて排出される土木工事系の
ものなどに分類される。これらの含水軟弱土は、一般に
、無臭のものは少なく、多くの場合、独特の悪臭を放つ
。そして、この悪臭は、近接する生活環境を著しく不快
にする。また、この含水軟弱土は、取扱いの困難なもの
で、これを建設地としたり、あるいは他の用途のために
移送させるためには、強度増加処理をしなければならな
い。
Water-containing soft soils include marine soils that are deposited in closed sea areas, open sea areas, low-tide rivers, etc., freshwater soils that are deposited in rivers, lakes, reservoirs, purification ponds, water purification plants, etc., earth drill method, and bed piles. It is classified as civil engineering work-related waste emitted during construction methods, etc. Generally, these soft soils containing water are rarely odorless, and in many cases, they emit a unique foul odor. This bad odor makes the living environment in the vicinity extremely unpleasant. In addition, this soft soil containing water is difficult to handle, and in order to use it as a construction site or to transport it for other uses, it must be treated to increase its strength.

従来、含水軟弱土の処理に関しては、強度増加や脱臭を
独立して行うことは知られているが、両者を一挙に実施
し得る方法は知られていない。
Conventionally, with regard to the treatment of hydrated soft soil, it has been known to independently perform strength increase and deodorization, but there is no known method that can perform both at once.

含水軟弱土の脱臭のみを目的とした処理法としては、消
石灰や生石灰を添加する方法が知られている。この場合
、悪臭を持つ含水軟弱土のpH値を上昇することにより
、悪臭の原因となっている硫化水素やメルカプタン類を
カルシウム塩として、その目的を達成させているために
、実用性が乏しい。即ち、この方法によると、硫化水素
やメルカプタン類は、軟弱土のpi値が10以上のアル
カリ性にならないと、消石灰や生石灰による脱臭反応(
カルシウム塩生成反応)が不充分である。換言すれば、
処理土は、脱臭反応により生じるカルシウム塩が安定に
存在し得るようにp11値を10以上に維持しなければ
、再び悪臭である硫化水素やメルカプタン類が発生する
ことになる。軟弱土にはpH値緩衝の作用が大きいので
、これ方法で良好な脱臭効果を得るためには、この大き
なpH緩衝作用によりさらに上回った多量の消石灰や生
石灰の添加が必要とされる。このように、消石灰や生石
灰等の石灰を多量に用いることは、経済性を損ねるので
実用的でなく、さらに、これを本発明で強度増加処理す
る時、この対象土がゲルストレングスによ3− リ、この粘度が非常に高くなり、強度増加処理の作業性
を著しく困難にするという大きな欠点を生じる。その上
、消石灰や生石灰を用いる場合には、それが危険物であ
るために取り扱いやその貯蔵、保管に種々の制約を受け
る欠点がある。また、他の方法として、硫酸第2鉄や塩
化第2鉄のような水溶性の3価鉄塩を添加する方法も提
案されているが、この場合にも、次の理由により満足す
べき結果を与えない。
As a treatment method for the sole purpose of deodorizing water-containing soft soil, a method of adding slaked lime or quicklime is known. In this case, the purpose is achieved by increasing the pH value of water-containing soft soil that has a bad odor, converting hydrogen sulfide and mercaptans, which cause the bad odor, into calcium salts, which is not practical. In other words, according to this method, hydrogen sulfide and mercaptans will undergo a deodorizing reaction (
Calcium salt production reaction) is insufficient. In other words,
Unless the p11 value of the treated soil is maintained at 10 or more so that calcium salts generated by the deodorizing reaction can stably exist, hydrogen sulfide and mercaptans, which are bad smells, will be generated again. Since soft soil has a large pH buffering effect, in order to obtain a good deodorizing effect using this method, it is necessary to add a large amount of slaked lime or quicklime that exceeds this large pH buffering effect. As described above, it is impractical to use a large amount of lime such as slaked lime or quicklime because it impairs economic efficiency.Furthermore, when this is subjected to the strength increasing treatment according to the present invention, the gel strength of the target soil increases by 3-3. Secondly, this viscosity becomes very high, resulting in a major drawback in that it makes the workability of strength increasing treatment extremely difficult. Moreover, when slaked lime or quicklime is used, there is a drawback in that it is a dangerous substance and is subject to various restrictions in its handling, storage, and preservation. In addition, as another method, a method of adding a water-soluble trivalent iron salt such as ferric sulfate or ferric chloride has been proposed, but in this case as well, the results are not satisfactory for the following reasons. not give.

(a)水溶性の3価鉄塩は、加水分解して不溶性の水酸
化物となり易い。水溶性の3価鉄塩を安定な水溶液とし
て取り扱う場合、そのpH値値は2.5以下に維持する
必要があり、そのpH値が3以上になると、はとんどが
水酸化物として沈殿してしまう。
(a) Water-soluble trivalent iron salts are easily hydrolyzed to become insoluble hydroxides. When handling water-soluble trivalent iron salts as stable aqueous solutions, the pH value must be maintained below 2.5; if the pH value exceeds 3, most of the salt will precipitate as hydroxide. Resulting in.

Fe”+3820=Fe(OH)R↓+3H+(1)沈
殿生成した水酸化物と悪臭の成分である硫化水素やメル
カプタンとの反応は、不均一反応となるので、その反応
は円滑に進まない。
Fe"+3820=Fe(OH)R↓+3H+ (1) The reaction between the precipitated hydroxide and the malodorous components hydrogen sulfide and mercaptan is a heterogeneous reaction, so the reaction does not proceed smoothly.

(b)悪臭の主成分である硫化水素が鉄分と反応して硫
化鉄を生じるためには、その溶液のpH値は4.5〜8
.5とする必要がある。従って、水溶性の34− 価鉄塩の単独添加のみでは満足すべき結果が得難し1゜ (c) (a)と(b)項の条件の調和のために、水溶
性の3価鉄塩と生石灰または消石灰との併用が提案され
ているが、鉄塩の加水分解が起きるために、悪臭の原因
となっている硫化水素の化学量論に対して大過剰の鉄塩
を加えないと満足し得る結果は得られない。
(b) In order for hydrogen sulfide, which is the main component of bad odor, to react with iron to produce iron sulfide, the pH value of the solution must be 4.5 to 8.
.. It needs to be 5. Therefore, it is difficult to obtain satisfactory results by adding water-soluble 34-valent iron salt alone.1゜(c) In order to harmonize the conditions in (a) and (b), water-soluble trivalent iron salt is added. It has been proposed to use it in combination with quicklime or slaked lime, but since hydrolysis of the iron salt occurs, it is not satisfactory unless a large excess of iron salt is added relative to the stoichiometry of hydrogen sulfide, which is the cause of the odor. You won't get the results you want.

(d)鉄塩が不溶性の水酸化物となっている状態で鉄塩
を作用させる時には、脱臭反応は不均一反応となるため
に、その供給量は(c)項の条件下より更に大過剰の鉄
を供給し、その処理時間を長くしないと満足すべき結果
が得られない。
(d) When iron salt is reacted with the iron salt in the form of an insoluble hydroxide, the deodorizing reaction becomes a heterogeneous reaction, so the amount supplied is even larger than under the conditions in (c). Satisfactory results cannot be obtained unless more iron is supplied and the processing time is lengthened.

(e) (b)項で処理したものは、さらに本発明の強
度増加処理を行う場合、対象土のpH値が低下している
ので、その強度増加作用を著しく阻害する。
(e) When the soil treated in section (b) is further subjected to the strength increasing treatment of the present invention, the pH value of the target soil has decreased, so the strength increasing effect is significantly inhibited.

尚、脱臭処理として、悪臭物質である硫化水素などをバ
ーライ1へなどによる物質的な吸着を利用して行う方法
も考えられる。が、しかし、この方法では、物理吸着に
よる硫化水素などの吸着平衡が温度により大きく影響さ
れることと、悪臭を感じない迄に硫化水素などを完全に
吸着させるためには、吸着剤を大量用いる必要のあるこ
と、及び、悪臭発生の原因となっているバクテリア殺菌
や繁殖防止の作用がないので、2次的にその処理を行わ
なければならない、などの問題がある。悪臭を持つ含水
軟弱土を化学的に効率よく脱臭処理するためには、次に
示す(a)〜(e)等の課題を解決しなければならない
In addition, as a deodorizing treatment, it is also possible to consider a method in which hydrogen sulfide, which is a malodorous substance, is physically adsorbed onto Barley 1 or the like. However, with this method, the adsorption equilibrium of hydrogen sulfide, etc. due to physical adsorption is greatly affected by temperature, and a large amount of adsorbent must be used to completely adsorb hydrogen sulfide, etc. without causing a bad odor. There are also problems such as the fact that it is necessary to remove the odor, and that it does not have the effect of sterilizing or preventing the proliferation of bacteria that cause the odor, so it must be treated as a secondary treatment. In order to chemically and efficiently deodorize water-containing soft soil that has a bad odor, the following problems (a) to (e) must be solved.

(a)悪臭物質と反応させる脱臭剤は水溶性のものとし
、脱臭反応による生成物が、対象土の強度増加処理の条
件や処理土中で、物理的にも化学的にも安定な不溶性物
質となるものを選定する必要がある。
(a) The deodorizing agent to be reacted with the malodorous substance is water-soluble, and the product of the deodorizing reaction is an insoluble substance that is physically and chemically stable under the conditions of the strength increasing treatment of the target soil and in the treated soil. It is necessary to select the one that will.

(b)脱臭処理の条件としては、水溶性の脱臭剤が狭雑
物との競争反応に優先して選択的に悪臭物質と完全に反
応させめための条件、及び、反応原料である脱臭剤が悪
臭の原因となっている物質と反応する以前に不溶性物質
に変化しないような条件を満足しなければならない。そ
のためには、脱臭剤の濃度、反応雰囲気のpH値や酸化
、還元電位及び温度、対象土への添加の方法、その他の
諸条件を特定とする必要がある。
(b) The conditions for deodorizing treatment include conditions that allow the water-soluble deodorizing agent to selectively and completely react with malodorous substances in preference to competitive reactions with impurities, and the deodorizing agent as a reaction raw material. Conditions must be met so that the substance does not change into an insoluble substance before it reacts with the substance causing the odor. For this purpose, it is necessary to specify the concentration of the deodorizing agent, the pH value and oxidation of the reaction atmosphere, the reduction potential and temperature, the method of addition to the target soil, and other various conditions.

(C)脱臭剤が対象土に過剰に加えられた場合でも、そ
れが残存して強度増加剤に弊害を及ぼすことがなく、し
かも、最終的に狭雑物やその他の条件により、物理的に
も化学的にも安定な不溶性物質に変化するような脱臭剤
とその処理の条件を選ぶ必要がある。
(C) Even if the deodorizing agent is added in excess to the target soil, it will not remain and cause any harm to the strength increasing agent, and furthermore, it will not be physically affected by the presence of debris or other conditions. It is necessary to select a deodorizer and treatment conditions that will transform it into a chemically stable insoluble substance.

一般的に、セメントを含む強度増加剤は、悪臭を発生す
る含水軟弱土に対しては、そのセメントの水和反応から
副生する水酸化カルシウム(消石灰)により、一時的な
脱臭効果を示すものの、その脱臭効果は前記したように
含水軟弱土のpH値条件によって大きく作用され、長期
かつ安定的なものでなく、その上、その強度増加の効果
も余り大きくない。というのは、悪臭を放つ含水軟弱土
には相当量の有機物が含まれ、そしてセメントの水硬作
用(水和反応)は、この有機物によって著しく聞書され
るからである。したがって、セメントを7− 含む強度増加剤の場合は、悪臭を放つ含水軟弱土に対し
て適用するためにはある種の工夫が要求される。
In general, strength increasing agents containing cement have a temporary deodorizing effect on soft, water-containing soil that generates bad odors due to the calcium hydroxide (slaked lime) that is produced as a by-product from the hydration reaction of the cement. As mentioned above, its deodorizing effect is greatly affected by the pH value condition of the water-containing soft soil, and is not stable over a long period of time.Furthermore, its strength-increasing effect is not very large. This is because the foul-smelling, hydrated soft soil contains a considerable amount of organic matter, and the hydraulic action (hydration reaction) of cement is significantly influenced by this organic matter. Therefore, in the case of a strength increasing agent containing cement, certain measures are required in order to apply it to soft, water-containing soil that gives off a bad odor.

本発明者らは、含水軟弱土の強度増加及び脱臭に関する
前記事情に鑑み、強度増加と脱臭の両方を一挙に達成し
得る方法を開発すべく鋭意研究を重ねた結果、本発明を
完成するに到った。
In view of the above-mentioned circumstances regarding strength increase and deodorization of hydrated soft soil, the present inventors have conducted extensive research to develop a method that can achieve both strength increase and deodorization at once, and as a result, have completed the present invention. It has arrived.

本発明は;悪臭を持つ含水軟弱土に;下記に示す添加剤
A、B及びCを添加、混合することからなり;添加剤A
及びCは、添加剤Bの添加前に、別々、または、同時に
添加し;かつ、添加剤AとBの重量割合A/Bが75/
25〜55/45の範囲であること;を特徴とする悪臭
を持つ含水軟弱土の脱臭を伴う強度増加方法である。
The present invention consists of adding and mixing additives A, B, and C shown below to water-containing soft soil having a bad odor; Additive A
and C are added separately or simultaneously before addition of additive B; and the weight ratio A/B of additives A and B is 75/
25 to 55/45; This is a method for increasing strength accompanied by deodorization of water-containing soft soil having a bad odor.

添加剤A:2水石灰コウ5〜45重量%と粒径100〜
1μmの微細高炉水滓95〜55重量%の混合物 添加剤B:ボルトランドセメント 添加剤C:水溶性の2価鉄塩 添加剤C(脱臭剤)としての水溶性の2価鉄塩は、Q− 無機酸及び有機酸のいずれの塩も使用できるが、添加剤
A及びBへの影響や、経済性などの実用性を考慮すると
、硫酸第1鉄と塩化第1鉄の使用が好ましい。その中で
も、硫酸第1鉄は、チタン製造時に大量副生され、かつ
、安価であるので最も好ましい。チタン製造工場では、
多くの場合、硫酸第1鉄が産業廃棄物として処分されて
いるので、このものの利用は、廃棄物の処理と利用の面
から考えるとまさに一石二鳥である。
Additive A: 5-45% by weight of dihydrate lime and particle size 100-100%
Mixture of 95-55% by weight of 1 μm fine blast furnace water slag Additive B: Boltland cement additive C: Water-soluble divalent iron salt Additive C (deodorizer) is a water-soluble divalent iron salt, Q - Although any salt of an inorganic acid or an organic acid can be used, considering the influence on additives A and B and practicality such as economical efficiency, it is preferable to use ferrous sulfate and ferrous chloride. Among these, ferrous sulfate is the most preferred because it is produced in large quantities as a by-product during titanium production and is inexpensive. At the titanium manufacturing factory,
In many cases, ferrous sulfate is disposed of as industrial waste, so its use can kill two birds with one stone from the perspective of waste treatment and utilization.

本発明で用いる添加剤C1即ち、水溶性の2価鉄塩は、
本発明における添加剤Aの使用条件下、即ち、微弱酸性
〜弱アルカリ性の条件下で有効に作用し、添加剤A及び
Bによる強度増加作用に悪影響を及ぼすことがなく、悪
臭を持っ含水軟弱土の脱臭効果を著しく高める。即ち、
この水溶性の2価鉄塩は、本発明における処理条件下で
は、ヘドロなどにおける悪臭の原因物質である硫化水素
やメルカプタン類と効率よく反応し、これを固定化する
。この場合の反応は次の式で表わされる。
The additive C1 used in the present invention, that is, the water-soluble divalent iron salt, is
It acts effectively under the usage conditions of Additive A in the present invention, that is, under slightly acidic to slightly alkaline conditions, does not adversely affect the strength increasing effect of Additives A and B, and has a foul odor in water-containing soft soil. Significantly increases the deodorizing effect of That is,
Under the treatment conditions of the present invention, this water-soluble divalent iron salt reacts efficiently with hydrogen sulfide and mercaptans, which are the causative substances of bad odor in sludge, etc., and fixes them. The reaction in this case is expressed by the following formula.

HzS +Fe2″−→Fe5(固体)+ 2H+  
 (2)2 RS H+ F e 2−(RS )2 
F e (固体)+ 2H+(3)この反応は、炭酸ガ
スの存在下でも選択的に起り、炭酸ガスにより支障を受
けることはない。悪臭を持つ含水軟弱土の発生ガス中に
は炭酸ガスが悪臭原因物質である硫化水素よりも大量に
存在するが、本発明で用いる水溶性の2価鉄塩は、この
化水素との反応終了後に、この炭酸ガスと反応し、無公
害の炭酸第1鉄(シブライト)となる利点を有している
。また、水溶性の2価鉄塩の場合、その溶解度は酸性及
び中性溶液の範囲では、そのpH値による影響(加水分
解を受けて水酸化第1鉄の沈殿生成物は生じない)を受
けず、前記の脱臭反応は、pH値4.5〜8.5の範囲
で円滑に遂行する。このようなことは、前述の如く、3
価の鉄塩の場合には見られなかったことであり、水溶性
の2価鉄塩による顕著な効果である。
HzS +Fe2″-→Fe5 (solid) + 2H+
(2)2 RS H+ Fe 2-(RS)2
Fe (solid) + 2H+ (3) This reaction occurs selectively even in the presence of carbon dioxide gas and is not hindered by carbon dioxide gas. Carbon dioxide gas is present in the gas generated from hydrous soft soil, which has a bad odor, in a larger amount than hydrogen sulfide, which is the substance that causes the bad odor. It has the advantage of later reacting with this carbon dioxide gas to form non-polluting ferrous carbonate (siburite). In addition, in the case of water-soluble divalent iron salts, their solubility is affected by their pH value in the range of acidic and neutral solutions (hydrolysis does not result in precipitation products of ferrous hydroxide). First, the deodorizing reaction described above is smoothly performed within a pH range of 4.5 to 8.5. As mentioned above, this kind of thing
This was not observed in the case of divalent iron salts, and is a remarkable effect of water-soluble divalent iron salts.

含水軟弱土に対する水溶性の2価鉄塩の添加量は、それ
に含まれる硫化水素量に支配され、一義的に定めること
はできないが、一般的には、含水軟弱土中に含まれる全
硫化水素分に対して等モル以上添加すればよい。この場
合、全硫化水素分は、含水軟弱土中の水分に溶解してい
る未解離状成分と解離状成分、及び固形物し;収着され
ている収着成分を意味し、金属と結合している不溶性の
硫化物は含まれない。このような全硫化水素分は、含水
軟弱土を水蒸気蒸留し、留出してくる硫化水素を分析す
ることにより定量する。また、金属と結合している不溶
性の硫化物は、全硫化水素分析に用いた蒸留残渣に濃硫
酸を加え、再び水蒸気蒸留して発生した硫化水素を分析
して定量することができる。本発明においては、過剰に
添加された水溶性の2価鉄塩は、前記したように、共存
する炭酸ガスと反応してシブライ1−を形成したり、ま
た、軟弱土の持つ陽イオン交換成分により捕捉されて固
定化される。したがって、本発明においては、添加する
水溶性の2価鉄塩は、その過剰分がこのような反応によ
り固定化される範囲内であれば、添加剤A及びBによる
強度増加反応に支障を与えることはない。尚、対象土の
陽イオン交換容量は、 11− その土壌粒子に含まれている、粘土鉱物の種類とその量
比、及び腐植の量比により異なる。従って、対象土によ
って陽イオン交換容量は大きく相違する。
The amount of water-soluble divalent iron salt to be added to hydrated soft soil is controlled by the amount of hydrogen sulfide contained therein and cannot be unambiguously determined, but in general, the amount of water-soluble divalent iron salt added to the hydrated soft soil is It may be added in an amount equal to or more than the same mole per minute. In this case, the total hydrogen sulfide content includes undissociated components and dissociated components dissolved in water in the soft soil, as well as solid substances; It does not contain insoluble sulfides. The total hydrogen sulfide content is determined by steam-distilling soft soil containing water and analyzing the hydrogen sulfide distilled out. Furthermore, insoluble sulfides bound to metals can be quantified by adding concentrated sulfuric acid to the distillation residue used for total hydrogen sulfide analysis, steam distilling it again, and analyzing the generated hydrogen sulfide. In the present invention, as mentioned above, the water-soluble divalent iron salt added in excess reacts with coexisting carbon dioxide gas to form Sibray 1-, and also reacts with the cation exchange component of soft soil. captured and immobilized. Therefore, in the present invention, the water-soluble divalent iron salt added will interfere with the strength increasing reaction by additives A and B, as long as the excess amount is within the range where it is fixed by such a reaction. Never. The cation exchange capacity of the target soil differs depending on the type and amount ratio of clay minerals and the amount ratio of humus contained in the soil particles. Therefore, the cation exchange capacity varies greatly depending on the target soil.

悪臭を持つ含水軟弱土を、添加剤C(可溶性の2価鉄塩
)を用いて効率よく脱臭するためには、可溶性の2価鉄
塩を添加剤Bに先立って、対象となる含水軟弱土に分散
・混合させる必要がある。そのためには、添加剤Bの添
加に先立って、可溶性の2価鉄塩を、水溶液として含水
軟弱土に分散・混合したり、あらかじめ添加剤Aに均一
に分散させて、含水軟弱土に添加・混合する方法がとら
れる。添加剤Bの添加・混合の後に添加剤Cを含水軟弱
土に添加すると、添加剤Cの素材である水溶性の2価鉄
塩が、添加剤Bのアルカリ成分により、不溶性の水酸化
物となるために、迅速な脱臭反応を行うことができない
。従って、このような添加剤Cの使用方法は好ましくな
い。
In order to efficiently deodorize hydrated soft soil with a bad odor using Additive C (soluble divalent iron salt), the soluble divalent iron salt must be added to the target hydrated soft soil prior to Additive B. It is necessary to disperse and mix the To this end, prior to the addition of Additive B, a soluble divalent iron salt may be dispersed and mixed in the form of an aqueous solution into the hydrated soft soil, or it may be uniformly dispersed in Additive A in advance and added to the hydrated soft soil. A method of mixing is used. When Additive C is added to water-containing soft soil after Additive B is added and mixed, the water-soluble divalent iron salt, which is the raw material of Additive C, becomes insoluble hydroxide due to the alkaline component of Additive B. Therefore, a rapid deodorizing reaction cannot be performed. Therefore, such a method of using Additive C is not preferred.

次に、本発明の強度増加剤として用いる添加剤A及びB
について詳細に説明する。
Next, additives A and B used as strength enhancers of the present invention
will be explained in detail.

 19一 本発明に用いる添加剤Aは;2水石コウ5〜45重景%
と粒径100〜1μm(セメントと略同しかそれ以下の
粒度)の微細高炉水滓95〜55重量%の混合物からな
る。本発明において、添加剤Aの原料の1つである2水
石コウは;その粒度を特に制約されず、粉末あるいは粒
状物で用いることができ、また、本発明の場合、排煙脱
硫面コウをはじめ各種の副生2水石コウが、付加価値を
高めることなく、回収時の形態のままでも使用すること
ができる。また、本発明の添加剤Aの原料の他の1つで
ある高炉水滓は;製鉄用溶鉱炉の副生物であるスラグ、
すなわち、鉱滓を木で急冷して1〜5mmぐらいの砂状
ないしは粒状に砕いた水砕鉱滓(以下高炉水滓という)
を更に粒径100〜1μmに微粉砕したものである。こ
の組成は、鉄鉱石の成分やその溶鉱炉の操作方針によっ
て若干具なるが、およそ次のようなものである。
191 Additive A used in the present invention is: 5 to 45% dihydrite
and 95 to 55% by weight of fine blast furnace water slag with a particle size of 100 to 1 μm (approximately the same or smaller particle size than cement). In the present invention, dihydrite, which is one of the raw materials for additive A, can be used in the form of powder or granules without any particular restriction on its particle size. Various types of by-product dihydrite can be used in the same form as they were recovered without increasing added value. In addition, blast furnace water slag, which is another raw material for additive A of the present invention, is;
In other words, granulated slag (hereinafter referred to as blast furnace slag) is made by quenching slag with wood and crushing it into sand or granules of about 1 to 5 mm.
was further pulverized to a particle size of 100 to 1 μm. The composition varies depending on the components of the iron ore and the operating policy of the blast furnace, but it is approximately as follows.

510230〜35%、AQ20313〜111%、C
aO3B〜45%。
510230-35%, AQ20313-111%, C
aO3B~45%.

FezO30,5〜1−0%、Mg03〜6%、S O
,5−1,0%、 Mn0O05〜1.5%、Tl0Z
 O,5〜1.0%この微細高炉水滓は前述した如く反
応剤として用いられるため、アルカリや硫酸塩などの刺
激作用により水硬性を発揮し得る潜在水硬性を必須の要
件としている。この潜在水硬性は、高炉滓を急冷し、そ
の結晶化を回避して、結晶化エネルギーを内部に保存し
た非結晶(ガラス状)のものとすることによって得るこ
とができる。高炉滓を徐冷して得た結晶質のものは、メ
リライト(ゲーレナイトCa2 A f125107 
・オケルマナイトCa2MgSi207系固溶体)とオ
ルトケイ酸カルシウムを主要構成鉱物とする緻密の結晶
質であり、潜在水硬性がないので不適当である。尚、1
〜5mm粗粒状の高炉水滓を添加剤Aの原料に用いるこ
とは、その反応に寄与する表面積が小さ過ぎるために、
その反応性が著しく低下するので好ましくない。本発明
の必須要件の1つである粒径100〜1μmの微細高炉
水滓を用いる時には、一般に用いられている1〜5mm
粗粒状の高炉水滓を用いる場合に比して、得られる処理
土の強度増加は3〜5倍にも達する。添加剤A中に含ま
せる2水石コウと微細高炉水滓は、添加剤Bの添加・混
合以前であれば各々独立して夫々を含水軟弱土に添加・
混合することも可能であるが、この場合には、操作回数
が増す上に均一混合にも負荷がかかるので実用的でない
。これらの原料は、その反応性を高めるためにあらかじ
め均一に混合することが重要である。添加剤Aは、2水
石コウと高炉水滓を所定の割合に調製したものを混合・
粉砕してつくるか、あるいは、高炉水滓単独を粉砕した
ものに所定の粉末または未粉砕の2水石コウを均一に混
合してつくる。排煙脱硫装置からの副生2水石コウは、
分離工程で遠心分離機などを経て約10重量%の自由水
を含んだ状態で回収されるが、乾燥高炉水滓と所定の割
合に混合することにより、これは乾燥することがなく、
直接に混合粉砕して添加剤Aとすることもできる。
FezO30,5~1-0%, Mg03~6%, SO
,5-1,0%, Mn0O05~1.5%, Tl0Z
O, 5 to 1.0% Since this fine blast furnace water slag is used as a reactant as described above, it is essential to have latent hydraulic properties capable of exhibiting hydraulic properties due to the stimulating action of alkali or sulfate. This latent hydraulic property can be obtained by rapidly cooling the blast furnace slag, avoiding its crystallization, and making it amorphous (glass-like) in which crystallization energy is stored internally. The crystalline material obtained by slowly cooling blast furnace slag is melilite (Gehlenite Ca2 A f125107
・It is a dense crystalline substance whose main constituent minerals are okermanite (Ca2MgSi207 solid solution) and calcium orthosilicate, and it is unsuitable because it has no latent hydraulic properties. Furthermore, 1
Using ~5mm coarse grained blast furnace water slag as a raw material for additive A is difficult because the surface area that contributes to the reaction is too small.
This is not preferred because its reactivity is significantly reduced. When using fine blast furnace water slag with a particle size of 100 to 1 μm, which is one of the essential requirements of the present invention, the generally used 1 to 5 mm
Compared to the case where coarse-grained blast furnace water slag is used, the strength of the resulting treated soil is increased by 3 to 5 times. Dihydrite and fine blast furnace water slag included in Additive A can be added to soft soil containing water independently before Additive B is added and mixed.
Mixing is also possible, but in this case, it is not practical because the number of operations increases and a burden is placed on uniform mixing. It is important to uniformly mix these raw materials in advance in order to increase their reactivity. Additive A is a mixture of dihydrate slag and blast furnace slag prepared in a predetermined ratio.
It is made by pulverizing or by uniformly mixing a specified powder or unpulverized dihydrite into pulverized blast furnace slag alone. By-product dihydrate from flue gas desulfurization equipment is
In the separation process, it passes through a centrifuge and is recovered in a state containing about 10% free water by weight, but by mixing it with the dried blast furnace water slag at a predetermined ratio, it does not dry out.
Additive A can also be obtained by directly mixing and pulverizing.

本発明に用いる添加剤Aにおいては、2水石コウ(×)
5〜45重景%と微細高炉水滓(Y)95〜55重量%
からなることが必要である。これは、添加剤Bとの添加
比を含めて総合的に実験して見出されたものである。添
加剤A中の2水石コウ含有量が5重量15− %以下の場合、腐植などによるポルトランドセメントの
水和反応への弊害を阻止する作用が満足されないのみな
らず、添加剤AとB及び土壌間で工1へリンガイト(3
CaO・A Q203−3CaSO4・28−3302
0)の生成反応に必要な石コウ量が不足し、含水軟弱土
の強度増加に及ぼす効果が小さくなるので好ましくない
。一方、添加剤A中の2水石コウ含有量が45重量%以
上の場合、即ち、微細高炉水滓含有量が55%以下の時
には、上記のエトリンガイト生成反応に必要な石コウ以
上にそれが供給されることと、微細高炉水滓が反応剤と
して不足するために、含水軟弱土の強度増加効果が小さ
くなるので好ましくない。
In the additive A used in the present invention, dihydrite (×)
5-45% by weight and fine blast furnace water slag (Y) 95-55% by weight
It is necessary to consist of This was discovered through comprehensive experiments including the addition ratio with Additive B. If the dihydrate content in Additive A is less than 5% by weight, the effect of inhibiting the harmful effects of humus on the hydration reaction of Portland cement will not be satisfied, and additives A and B and the soil will be In between work 1 to ringite (3
CaO・A Q203-3CaSO4・28-3302
This is not preferable because the amount of gypsum necessary for the production reaction of 0) is insufficient, and the effect on increasing the strength of the hydrous soft soil is reduced. On the other hand, when the dihydrate slag content in Additive A is 45% by weight or more, that is, when the fine blast furnace slag content is 55% or less, more gypsum is supplied than is necessary for the above-mentioned ettringite production reaction. This is not preferable because the effect of increasing the strength of the hydrated soft soil becomes small due to the fact that the fine blast furnace water slag is insufficient as a reactant.

次に、添加剤Bとして用いるポル1−ランドセメントは
;日本工業規格JIS R5210に準するものである
が、一般的にはその内の普通ポルトランドセメントに準
するものが用いられる。しかし、含水軟弱土処理の条件
によっては、中法熱ポルトランドセメント、早強ポルト
ランドセメント及び超早強セメントなどの規格に準する
ポルトランドセメントの単独またはこれらを混合したも
のが使用される。
Next, the Pol 1-land cement used as the additive B is one that complies with Japanese Industrial Standard JIS R5210, and one of these that complies with ordinary Portland cement is generally used. However, depending on the conditions of hydrous soft soil treatment, portland cements conforming to standards such as medium-temperature heat portland cement, early-early-strength portland cement, and ultra-early-strength cement may be used alone or in combination.

本発明に用いる添加剤AとBの含水軟弱土への添加重量
比A/Bは; 75/25〜55/45の範囲に保持す
ることが、含水軟弱土の強度増加への効果の点で重要で
ある。これらの条件以外では、総合的な最適成分のバラ
ンス比が得られなく、含水軟弱土の強度増加効果が小さ
く、しかも、処理土は好ましいものではない。
The weight ratio A/B of additives A and B used in the present invention to be added to the hydrated soft soil is maintained in the range of 75/25 to 55/45 in terms of the effect on increasing the strength of the hydrated soft soil. is important. Under conditions other than these, a comprehensive optimum balance ratio of components cannot be obtained, the effect of increasing the strength of hydrated soft soil is small, and the treated soil is not preferable.

即ち、添加重量比A/Bが75/25より大きいと、ポ
ルトランドセメン1−の割合が小さ過ぎ、その水利反応
(水硬性反応)により副生ずる水酸化カルシウム(消石
灰)が少な過ぎ、これを引金として反応が誘発される微
細高炉水滓などの含水軟弱土に及ぼす強度増加の諸反応
が十分に生起しないので、その目的を達成することがで
きない。一方、添加重量比A/Bが55/45より小さ
いと(添加剤Bの添加割合が大き過ぎると)、2水石コ
ウと微細高炉水滓が不足して、含水軟弱土の改良の目的
を十分に達成することができない。2水石コウが不足す
ると、腐 1b − 植などによるポルトランドセメントの水利反応への弊害
を阻止することができないのみならず、強度増加に寄与
するエトリンガイト生成反応の原料として必要な石コウ
が不足するという問題が生じる。また、微細高炉水滓が
不足すると、エトリンガイト生成反応に必要な原料が不
足するなどにより、含水軟弱土の強度増加に及ぼす効果
が小さくなるという弊害の他に、次の(、)〜(d)の
如き問題が生じる。
That is, if the addition weight ratio A/B is larger than 75/25, the proportion of Portland cement 1- is too small, and the calcium hydroxide (slaked lime) produced as a by-product by the water utilization reaction (hydraulic reaction) is too small. The purpose cannot be achieved because the various reactions that increase the strength of soft soils containing water, such as fine blast furnace water slag, in which reactions are induced as gold, do not occur sufficiently. On the other hand, if the addition weight ratio A/B is smaller than 55/45 (if the addition ratio of additive B is too large), dihydrate slag and fine blast furnace water slag will be insufficient, and the purpose of improving hydrated soft soil will be insufficient. cannot be achieved. If there is a shortage of dihydrate gypsum, not only will it be impossible to prevent the harmful effects of humification on the water use reaction of Portland cement, but also there will be a shortage of gypsum, which is necessary as a raw material for the ettringite production reaction that contributes to increased strength. A problem arises. In addition, if there is a shortage of fine blast furnace water slag, there will be a shortage of raw materials necessary for the ettringite production reaction, which will reduce the effect on increasing the strength of hydrated soft soil, as well as the following (,) to (d). Problems such as this arise.

(a)強度増加処理に際し、発熱が大きくなって、処理
土中に内部ヒズミが発生するなどの問題が生じる。(b
)処理土には、ポル1−ランドセメントの水和反応によ
り副生する水酸化カルシウムが多量に含まれるようにな
ることから、処理土がアルカリ性の強いものになる。(
C)処理土が下水や海水によって侵食されやすくなる。
(a) During the strength increasing treatment, heat generation increases, causing problems such as internal distortions occurring in the treated soil. (b
) The treated soil contains a large amount of calcium hydroxide, which is a by-product due to the hydration reaction of Pol 1-land cement, making the treated soil highly alkaline. (
C) Treated soil becomes more easily eroded by sewage and seawater.

(d)強度増加剤のコストが高くなる。(d) The cost of strength enhancers is high.

本発明に於ける添加剤AとBの最も好ましい添加量比A
/Bは70/30〜60/40で、その時の添加剤Aの
好ましい配合割合は、2水石コウ(X)が15〜35重
量%、微細高炉水滓(V)が85〜65重基%である。
The most preferable addition amount ratio A of additives A and B in the present invention
/B is 70/30 to 60/40, and the preferred blending ratio of additive A at this time is 15 to 35% by weight of dihydrite (X) and 85 to 65% of heavy bases of fine blast furnace water slag (V). It is.

本発明を好まし〈実施するには;添加剤A、B及びCの
含水軟弱土への添加順序を次の(a)〜(c)の如く行
う必要がある。
In order to preferably carry out the present invention, it is necessary to add additives A, B and C to water-containing soft soil in the following order (a) to (c).

(a)添加剤AとCを同時に含水軟弱二1−へ添加・混
合した後に、添加剤Bを添加・混合する。
(a) Additives A and C are simultaneously added and mixed to the water-containing soft 21-, and then additive B is added and mixed.

(b)添加剤Cを含水軟弱土に添加後、添加剤A及びB
を順次添加・混合する。
(b) Additive A and B after adding Additive C to soft soil containing water
Add and mix sequentially.

(c)添加剤Aを含水軟弱土に添加した後、添加剤Cを
添加・混合し、次いで、添加剤Bを添加・混合する。
(c) After adding Additive A to the water-containing soft soil, Additive C is added and mixed, and then Additive B is added and mixed.

このように、添加剤Bを添加・混合する前段処理ニオい
て、臭気の原因となっている硫化水素は、水溶性の2価
鉄塩と前記の反応式(1)に従って反応し、硫化鉄(パ
イライ1〜)となって脱臭され、また、添加剤Aの作用
により含水軟弱上は、後続の添加剤Bに対して高い反応
性を示す軟弱土に変換される。
In this way, the hydrogen sulfide that causes the odor in the pre-processing process before adding and mixing Additive B reacts with the water-soluble divalent iron salt according to the reaction formula (1) above, and the hydrogen sulfide ( In addition, due to the action of additive A, the water-containing soft soil is converted into soft soil that exhibits high reactivity to the subsequent additive B.

含水軟弱土への前段処理での添加剤Aの添加・混合の作
業性は極めてよく、また、この添加剤Aが加えられた含
水軟弱上は、後続の添加剤Bの添加・混合が均一、かつ
、容易に行い得る様に作業性は改善され、しかも、添加
剤Bの添加による反応が円滑に起り得る土壌基盤に効果
的に改質される。
The workability of adding and mixing Additive A in the pre-processing to the soft soil with water is extremely good, and the subsequent addition and mixing of Additive B to the soft soil with Additive A is uniform. In addition, the workability is improved so that it can be carried out easily, and the soil base is effectively modified so that the reaction caused by the addition of the additive B can occur smoothly.

添加剤Aに含まれる2水石コウは、水100gに対しC
aSO4,換算で約0.2gという適当な溶解度である
ために、これが含水軟弱上に添加・混合されると、ゲル
ストレングスなどの悪影響を及ぼすことがなく、(a)
ポー1−ランドセメン1への水和反応に弊害を及ぼす対
象土の腐植等の悪影響を抑制し、(b)土壌粒子との陽
イオン交換反応は好ましい平衡状態に達する。従って、
後処理工程で添加剤Bが加えられた場合には、含水軟弱
土の強度増加に必要な諸反応が効果的に生起する。
The dihydrite contained in additive A is C per 100g of water.
Since it has a suitable solubility of about 0.2 g in terms of aSO4, when it is added and mixed onto a water-containing soft material, it does not have any adverse effects on gel strength, etc. (a)
Adverse effects such as humus in the target soil that adversely affect the hydration reaction to Pau 1-Land Cement 1 are suppressed, and (b) the cation exchange reaction with soil particles reaches a favorable equilibrium state. Therefore,
When additive B is added in the post-treatment step, various reactions necessary to increase the strength of the hydrous soft soil effectively occur.

次に、この反応性が高められた含水軟弱土に後処理工程
として、添加剤Bを添加・混合する。この添加剤Bの添
加により、その素材であるポルトランドセメン1〜の水
和反応が始まると、副生ずる水酸化カルシウムのために
、一時的に対象土のpH値は上昇し、添加剤Bと添加剤
Aを構成する2水石コ=19− ウ(X)及び微細高炉水滓との反応、及びこれら添加剤
AとBの各素材と微細土壌成分との諸反応が誘発され、
含水軟弱土の強度は増加される。この場合、上記の如く
、添加剤Aが添加・混合された含水軟弱土は、その強度
増加の諸反応が誘発され易い土壌基盤に改質され、さら
に、作業性も向上しているために、後続の添加剤Bの添
加・混合は均一。
Next, as a post-treatment step, additive B is added and mixed to this hydrous soft soil with increased reactivity. When the addition of Additive B starts the hydration reaction of its material, Portland cement 1~, the pH value of the target soil temporarily increases due to calcium hydroxide produced as a by-product, and Reactions between dihydrite (X) and fine blast furnace water slag constituting agent A, and various reactions between each material of these additives A and B and fine soil components are induced,
The strength of hydrated soft soil is increased. In this case, as mentioned above, the hydrated soft soil to which Additive A has been added and mixed has been modified into a soil base that easily induces various reactions that increase its strength, and furthermore, workability has been improved. Subsequent addition and mixing of additive B is uniform.

かつ、容易に行なわれて、その目的が効率よく達成され
る。
Moreover, it is easy to perform and achieves its purpose efficiently.

本発明に於ける含水軟弱土の強度増加反応としては、(
a)土壌微細土粒子や腐植のイオン交換反応(b)エト
リンガイトの生成反応(C)トベルモライト鉱物類似相
(3Ca0・2SiO□・3H□0)の生成するポゾラ
ン反応(d) W反応による非結晶ゲル物質の生成反応
(e)その他、が挙げられる。
The strength increasing reaction of the hydrated soft soil in the present invention is (
a) Ion exchange reaction of soil fine soil particles and humus (b) Ettringite production reaction (C) Pozzolanic reaction producing tobermolite mineral-like phase (3Ca0, 2SiO□, 3H□0) (d) Non-contamination by W reaction Examples include crystalline gel material production reaction (e) and others.

また、この添加剤Bが対象土に加えられると、反応の過
程において水酸化カルシウム(消石灰)が副生ずるため
に、必然的にその対象土のpH値が一時的に高くなる。
Furthermore, when this additive B is added to the target soil, calcium hydroxide (slaked lime) is produced as a by-product during the reaction process, so the pH value of the target soil inevitably becomes temporarily high.

それ故に、対象土中の悪臭ガスの発生に関与しているバ
クテリアは死滅して、悪20− 臭ガスの発生は停止されるという効果がある。
Therefore, the bacteria involved in the generation of foul-smelling gases in the target soil are killed, and the generation of foul-smelling gases is stopped.

以上の如く、本発明しこおいては、悪臭を持つ含水軟弱
土の脱臭と強度増加の処理を行うに際し、前段処理工程
で添加剤A及び添加剤Cを添加・混合し、後処理工程に
て添加剤Bを添加・混合する。もし、添加剤Cで脱臭処
理を行った対象土を強度増加する場合に、添加剤Bを添
加・混合した後に添加剤Bを対象土に添加・混合すると
、その操作の作業性が悪くなるために、特殊の施工機を
用いても本発明の様に効率よく目的を達成することは困
難となる。即ち、添加剤Cで脱臭処理した含水軟弱土に
添加剤Bを加えると、その含水軟弱土の粘性、ゲルスト
レングス及びpH値に著しい悪影響を与える。これに起
因し、必然的に操作処理の作業性が悪くなり、含水軟弱
土の均一混合の操作がむずかしくなる。これに伴い、後
続の添加剤Aの添加・混合による均−分散及びその諸反
応にも悪影響を与えて含水軟弱土の強度増加の発現が悪
くなる。添加剤Bを先に加えることによる含水軟弱上の
粘度、ゲルストレングス及びpH値に及ぼす悪影響の原
因は、ポル1−ランドセメントの水和反応により生じる
Ca ”−とO1+−である。この悪影響の原因となる
Ca2+とOH−も、本発明の強度増加剤を用い、添加
剤AとBの含水軟弱上への添加順序を特定することによ
って、含水軟弱上の強度増加の操作性は改善され、しか
も、その化学的諸特性を効果的に利用することができる
As described above, in the present invention, when deodorizing and increasing the strength of water-containing soft soil with a bad odor, Additive A and Additive C are added and mixed in the pre-treatment process, and the additives A and C are added and mixed in the post-treatment process. Add and mix additive B. If you want to increase the strength of target soil that has been deodorized with Additive C, if Additive B is added and mixed with the target soil after Additive B is added and mixed, the workability of the operation will deteriorate. Furthermore, even if a special construction machine is used, it is difficult to achieve the purpose as efficiently as the present invention. That is, when Additive B is added to hydrated soft soil that has been deodorized with Additive C, it has a significant adverse effect on the viscosity, gel strength, and pH value of the hydrated soft soil. Due to this, the workability of the operation treatment inevitably deteriorates, and it becomes difficult to uniformly mix the water-containing soft soil. Along with this, the subsequent addition and mixing of additive A has an adverse effect on uniform dispersion and its various reactions, making it difficult to increase the strength of the hydrated soft soil. The cause of the adverse effect on the viscosity, gel strength, and pH value of hydrous softening caused by adding Additive B first is Ca''- and O1+- generated by the hydration reaction of Pol 1-land cement. Ca2+ and OH-, which are the causes, can be improved by using the strength increasing agent of the present invention and by specifying the order of addition of additives A and B to the hydrous soft material. Moreover, its various chemical properties can be effectively utilized.

本発明の大きな特徴は、前記したように、(a)可溶性
の2価鉄塩(添加剤C)を脱臭剤に用い(b)強度増加
剤を、反応性の高い微細高炉水滓、2水石コウ及びポル
トランドセメントの3素材としくC)その強度増加剤3
素材を、微細高炉水滓と2水石コウから構成される添加
剤Aと、ポルhランドセメン1〜からなる添加剤Bに区
分しくd)添加剤C(脱臭剤)と添加剤Aを、添加剤B
に先立って、悪臭を持つ含水軟弱土に添加・混合した後
に、添加剤Bをそれに添加・混合することによって、悪
臭を持つ含水軟弱上の脱臭と強度増加処理を効率よく達
成させることである。
As mentioned above, the major features of the present invention are that (a) a soluble divalent iron salt (additive C) is used as a deodorizing agent, and (b) the strength increasing agent is a highly reactive fine blast furnace water slag, dihydrite, etc. Three materials: Kou and Portland cement C) Their strength enhancers 3
The materials are divided into Additive A consisting of fine blast furnace water slag and dihydrite, and Additive B consisting of Pol-H Land Cement 1.d) Additive C (deodorizing agent) and Additive A. B
To efficiently achieve deodorization and strength-increasing treatment on the water-containing soft soil having a bad odor by adding and mixing additive B to the water-containing soft soil having a bad odor before addition and mixing thereto.

本発明を実施する場合、添加剤A及びBはいずれも粉末
状又はスラリー状で添加することができる。
When carrying out the present invention, both additives A and B can be added in the form of powder or slurry.

本発明によれば、前記したように、従来の方法とは異な
り、添加剤A、B及び土壌の各成分との間での反応が極
めて効率よく起り、処理土の強度増加が最も大きくなる
ように配慮されていることから、所要の強度増加を得る
のに、それら添加剤A。
According to the present invention, as described above, unlike conventional methods, the reaction between additives A and B and each component of the soil occurs extremely efficiently, and the strength of the treated soil is maximized. These additives A are taken into consideration to obtain the required strength increase.

Bの使用量は少なくて済み、しかも所要強度に達する時
間は短かくて済む。処理対象土に関しては、一般的に、
アロフェン、加水ハロサイ1〜、モンモリロナイト等の
粘土鉱物を多く含むものは反応性が高く、一方力オリナ
イト、イライ1へ、クロライ1−などを多く含むものは
反応性が前者より低い。
The amount of B used can be small, and the time required to reach the required strength can be shortened. Regarding the soil to be treated, generally,
Those containing a large amount of clay minerals such as allophane, hydrated halosite 1-, montmorillonite, etc. have high reactivity, while those containing a large amount of olinite, chloride 1-, chloride 1-, etc. have lower reactivity than the former.

又、粘土などの細粒分の含有量(土性)、腐植などの有
機分の含有量及びpH値により反応性は異なり、さらに
初期含水比によっても含水軟弱上の強度増加への効果は
影響を受ける。しかし、通常の所要強度の目的達成のた
めに用いる本発明の強度増加剤の使用量は含水軟弱土1
m3当り、添加剤A及びBの総量で50〜150Kg程
度である。含水軟弱上が反応性の高い粘土鉱物を多く含
んだり、有機質の含−23= 有量が小さいなど強度増加の反応に適している場合には
、強度増加剤の使用量は含水軟弱土1m3当り通常50
〜100Kg程度である。
In addition, the reactivity varies depending on the content of fine particles such as clay (soil texture), the content of organic components such as humus, and the pH value, and the initial water content ratio also affects the effect of water content on softening and increasing strength. receive. However, the amount of the strength increasing agent of the present invention used to achieve the purpose of normal required strength is 1
The total amount of additives A and B is about 50 to 150 kg per m3. If the hydrated soft soil is suitable for strength-increasing reactions, such as when it contains a large amount of highly reactive clay minerals or has a small amount of organic matter, the amount of strength-increasing agent used should be reduced per 1 m3 of hydrated soft soil. Usually 50
~100Kg.

本発明の方法は、含水軟弱土の含水比50〜200%の
軟弱土は勿論、500〜1000%という極めて高い含
水比の軟弱土に対しても適用することができる。処理対
象土の初期含水比は処理土の改良効果に影響を及ぼすが
、含水比が高い軟弱土に対して本発明を適用した場合、
一定量以上の水はブリージングにより処理土から分離し
、その表面に遊離する。
The method of the present invention can be applied not only to soft soil with a moisture content of 50 to 200%, but also to soft soil with an extremely high moisture content of 500 to 1000%. The initial water content ratio of the soil to be treated affects the improvement effect of the treated soil, but when the present invention is applied to soft soil with a high water content ratio,
More than a certain amount of water is separated from the treated soil by breathing and released onto its surface.

本発明によれば、前記したように、臭気を持つ含水軟弱
土に効率のよい脱臭と強度増加を達成することが可能で
あるが、この場合、添加剤Bの素材であるポルトランド
セメントの添加量は比較的少量であることから、その水
和反応により生じる発熱は著しく抑制され、処理土にヒ
ズミが発生するようなこともなく、その上、処理土中の
残留アルカリ量が少ないことから、処理土のアルカリ上
昇も見られず、また下水や海水によって処理土が24− 侵食されるようなこともない。また、本発明の場合、総
添加剤使用量が少なく、しかも、強度増加剤中に占める
ポルトランドセメントの割合が小さく、また廉価な高炉
水滓の割合が大きいことから、経済性において著しくす
ぐれたものである。さらにまた、本発明で用いる添加剤
原料は、セメントを除くといずれも極めて安価であり、
多くの場合、産業廃棄物として入手し得るため、本発明
は経済的面以外にエコロジーの面からも非常にすぐれた
ものである。
According to the present invention, as described above, it is possible to efficiently deodorize and increase the strength of odor-containing soft soil, but in this case, the amount of Portland cement that is the material of additive B added Since the amount of alkaline is relatively small, the heat generated by the hydration reaction is significantly suppressed, and no distortion occurs in the treated soil.Furthermore, since the amount of residual alkali in the treated soil is small, There is no increase in alkalinity in the soil, and the treated soil is not eroded by sewage or seawater. In addition, in the case of the present invention, the total amount of additives used is small, the proportion of Portland cement in the strength increasing agent is small, and the proportion of inexpensive blast furnace water slag is large, so it is extremely economical. It is. Furthermore, all of the additive raw materials used in the present invention are extremely inexpensive, except for cement.
In many cases, it can be obtained as industrial waste, so the present invention is very superior not only economically but also from an ecological perspective.

次に本発明を実施例及び参考例によりさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples and Reference Examples.

なお、後記実施例において、添加剤Aとしては;排煙脱
硫工程で副生じた2水石コウ粉末(X)(平均粒径53
μm、含水率9%、組成: CaO31,2%、5O3
44,1%)と市販の微細高炉水滓(Y)(ブレーン法
測定による比表面積3600〜4000cm2/g即ち
平均粒通約4pm、組成: 5i0232−35%、A
Q20315〜16%、Ca041−44%、Mg04
〜6%、Fe20B 0.5〜1.2%、5O08〜1
.0%、偏光顕微鏡下の観察ではほとんど結晶物質を含
まずガラス質であった)と均一に混合したものを用いた
。また、添加剤Bとしては;ポル1〜ランドセメントに
おける普通セメント(ブレーン法測定による比表面積3
300cm2/g)を用いた。また、原料含水軟弱土と
しては;実施例では、東京都江東区堅川の堆積軟弱土を
用いた。
In addition, in the examples described later, as additive A;
μm, water content 9%, composition: CaO31.2%, 5O3
44.1%) and commercially available fine blast furnace water slag (Y) (specific surface area 3600-4000 cm2/g, i.e., average particle size approximately 4 pm, as measured by the Blaine method, composition: 5i0232-35%, A
Q20315-16%, Ca041-44%, Mg04
~6%, Fe20B 0.5~1.2%, 5O08~1
.. (0%, which was glassy with almost no crystalline material when observed under a polarizing microscope) was used. In addition, as additive B; ordinary cement in Pol 1 to land cement (specific surface area 3 as measured by Blaine method)
300 cm2/g) was used. In addition, as the raw material water-containing soft soil; in the examples, sedimentary soft soil from Katagawa, Koto-ku, Tokyo was used.

このものは含水比348.4%、粒度組成0〜5μm 
46%、5〜20μm 49%、20μm以」二5%で
あり、平均粒径5.2μmを示す。またこのものは含水
比348%における密度が1.15g/cm3. pH
値8.0、灼熱減量23.7%を示し、このものの重ク
ロム酸試験法による有機物含有量は21.2重量%、発
生ガス中の硫化水素含有濃度1800〜2000ppm
であり(北用式硫化水素検知管により測定)、水蒸気蒸
留液のヨード滴定により測定した全硫化水素分は供試上
IKg当り430B(12,6ミリモル)である。また
全硫化水素分を分析した蒸留残渣に濃硫酸を加え再び水
蒸気蒸留して同様に分析、定量した金属と結合している
不溶性硫化物は硫化水素換算で供試上IKg当り283
6mg (70、2ミリモル)である。また、参考例1
〜4−27= 一5μm42%、5−1.0μm  1.9%、1.0
−20μm  25%、及び含水比260%における密
度1.21g/cm3である大阪南港浚渫底泥を用いた
This product has a water content of 348.4% and a particle size composition of 0 to 5 μm.
46%, 5-20 μm, 49%, 20 μm or more, and 25%, showing an average particle size of 5.2 μm. Moreover, this material has a density of 1.15 g/cm3 at a water content of 348%. pH
It shows a value of 8.0, a loss on ignition of 23.7%, an organic matter content of 21.2% by weight according to the dichromic acid test method, and a concentration of hydrogen sulfide in the generated gas of 1800 to 2000 ppm.
The total hydrogen sulfide content measured by iodometric titration of the steam distillate was 430 B (12.6 mmol) per Ikg of the sample. In addition, concentrated sulfuric acid was added to the distillation residue after analyzing the total hydrogen sulfide content, steam distilled again, and the insoluble sulfide bound to the metal was similarly analyzed and quantified.
6 mg (70.2 mmol). Also, reference example 1
~4-27=-5μm 42%, 5-1.0μm 1.9%, 1.0
-20 μm 25% and a density of 1.21 g/cm 3 at a water content of 260%, Osaka Nanko dredging bottom mud was used.

実施例 悪臭を持つ原料軟弱±1m3に対し、IQ中に2価のF
e 15.6g(0,28モル)を含む硫酸第1鉄溶液
からなる添加剤C3Q(硫酸第1鉄4kg相当量)、添
加剤A78kg (X/’/ = 33/67) 及び
添加剤852kgを第1表に示した添加順位で添加・混
合した。混合は各ステップごとに混合機を用い充分に混
合した。次に、この混合試料を内径50mm、高さ10
0mmの円筒型モールドに注入し、恒温恒温養生器内で
20±1℃に保持して所要期間養生した後、脱型し、そ
の−軸圧縮強さと発生する硫化水素量及び環境庁告示1
3号に指定する溶出試験によるPHを測定した。その結
果を第1表に示す。なお、表中に示したC−Aは、添加
剤Cと添加剤Aを同時に添加したことを表わす。
Example: For soft raw material with bad odor ±1 m3, divalent F in IQ
Additive C3Q consisting of a ferrous sulfate solution containing 15.6 g (0.28 mol) (equivalent to 4 kg of ferrous sulfate), 78 kg of additive A (X/'/ = 33/67) and 852 kg of additive They were added and mixed in the order of addition shown in Table 1. The mixture was thoroughly mixed using a mixer at each step. Next, this mixed sample was prepared with an inner diameter of 50 mm and a height of 10 mm.
It was poured into a 0mm cylindrical mold, kept at 20±1℃ in a thermostatic curing chamber for the required period of time, and then removed from the mold.
The pH was measured by the dissolution test specified in No. 3. The results are shown in Table 1. Note that C-A shown in the table indicates that Additive C and Additive A were added at the same time.

28− 参考例1 原料軟弱土1m3に対して添加剤A (X/Y = 3
0/70)43.7kgを添加して混線機で均一に混合
し、次いで添加剤823.5kgを添加し、混線機で充
分混合した。
28- Reference Example 1 Additive A (X/Y = 3
0/70) was added and mixed uniformly with a mixer, and then 823.5 kg of additive was added and thoroughly mixed with a mixer.

次に、この混合試料は実施例と同じ操作により処理して
1軸圧縮強さを測定した。また、高炉水滓の粒径の強度
に及ぼす影響を明らかにするために、粗粒状の高炉水滓
(V′)を用いた以外は同様な条件で比較試験を行った
。それらの結果を第1図に示す。なお、使用した高炉水
滓Y及びv′の粒度分布は第2表の通りである。
Next, this mixed sample was treated in the same manner as in the example, and the uniaxial compressive strength was measured. In addition, in order to clarify the influence of the particle size of blast furnace water slag on the strength, a comparative test was conducted under the same conditions except that coarse-grained blast furnace water slag (V') was used. The results are shown in FIG. The particle size distributions of the blast furnace water slags Y and v' used are shown in Table 2.

なお、第1図の横軸は処理後の日数(材令)、縦軸は処
理土の1軸圧縮強さくkgf/Cm2)を示し、図中の
曲線1は本願発明の参考側結果、曲線2は比較試験側結
果を示す。
In addition, the horizontal axis of Fig. 1 shows the number of days after treatment (wood age), and the vertical axis shows the uniaxial compressive strength of the treated soil (kgf/Cm2), and curve 1 in the figure is the reference side result of the present invention, the curve 2 shows the comparative test results.

第2表 参考例2 原料軟弱上1m3に対し、添加剤A40.3kgを用い
、X/Y重量比を4/96〜50150に変化させ、添
加剤B26.9kgを用いる以外は参考例1と同様にし
て試験を行なった。材令14日目の結果を第2図に示す
Table 2 Reference Example 2 Same as Reference Example 1 except that 40.3 kg of Additive A was used for 1 m3 of soft raw material, the X/Y weight ratio was changed from 4/96 to 50150, and 26.9 kg of Additive B was used. The test was conducted as follows. The results on the 14th day of age are shown in Figure 2.

第2図の横軸は添加剤A中の石ロウ含有重量百分率を示
し、縦軸は処理土の】軸圧縮強さくkgf/cm2)を
示す。
The horizontal axis of FIG. 2 shows the weight percentage of the wax contained in Additive A, and the vertical axis shows the axial compressive strength (kgf/cm2) of the treated soil.

原料軟弱土1m3に対し、添加剤Aと13の添加総量を
67.2kgとし、添加剤AとBの重量割合を種々変化
させ、参考例1の操作条件で試験を行った。材令14日
と28日目の結果を第3図に示す。第3図の横軸は添加
剤AとBの添加総量に対する添加剤Bの重量百分率で、
縦軸は処理土の1軸圧縮強さくkgf/cm” )を示
す。図中の曲線1及び2は処理後の日数(材令)14日
と28日目の処理土についての結果を示している。
The total amount of Additives A and 13 added to 1 m3 of raw material soft soil was 67.2 kg, and the test was conducted under the operating conditions of Reference Example 1 while varying the weight ratio of Additives A and B. The results on the 14th and 28th days of wood age are shown in Figure 3. The horizontal axis in Figure 3 is the weight percentage of additive B to the total amount of additives A and B added.
The vertical axis shows the uniaxial compressive strength (kgf/cm") of the treated soil. Curves 1 and 2 in the figure show the results for the treated soil 14 and 28 days after treatment (wood age). There is.

参考例4 参考例1と同じ供試含水軟弱土に対し添加剤A及びBの
添加順位を逆にした時の試験結果の比較を第3図に示す
Reference Example 4 Figure 3 shows a comparison of test results when the order of addition of Additives A and B was reversed for the same sample hydrated soft soil as in Reference Example 1.

第3表Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は含水軟弱土の処理結果を示すグラフであり
、第1図は添加剤A中の高炉水滓の種類、第2図は添加
剤A中の石ロウ含量、及び第3図は添加剤AとBの割合
がそれぞれ処理土の強度増加に及ぼす影響を示す。 特許出願人 千代田化工建設株式会社 代理人弁理士池浦敏明
Figures 1 to 3 are graphs showing the treatment results for hydrated soft soil, where Figure 1 shows the type of blast furnace water slag in Additive A, Figure 2 shows the stone wax content in Additive A, and Figure 3 shows the results of treatment of soft soil containing water. shows the influence of the proportions of additives A and B on the strength increase of treated soil. Patent applicant Toshiaki Ikeura, patent attorney representing Chiyoda Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)悪臭を持つ含水軟弱土に;下記に示す添加剤A、
B及びCを添加・混合することからなり;添加剤A及び
Cは、添加剤Bの添加前に、別々、または、同時に添加
し;かつ、添加剤AとBの重量割合A/Bが75/25
〜55/45の範囲であること;を特徴とする悪臭を持
つ含水軟弱土の脱臭を伴う強度増加方法。 添加剤A:2水石コウ5〜45重量%と粒径100〜1
μmの微細高炉水滓95〜55重量%の混合物添加剤B
:ボル1−ランドセメンI〜 添加剤C:水溶性の2価鉄塩
(1) For water-containing soft soil with bad odor; Additive A shown below,
Additives A and C are added separately or simultaneously before addition of Additive B; and the weight ratio A/B of Additives A and B is 75. /25
55/45. Additive A: Dihydrite 5-45% by weight and particle size 100-1
Mixture additive B of 95-55% by weight of micron fine blast furnace water slag
: Bol 1-Landcemen I~ Additive C: Water-soluble divalent iron salt
(2)添加剤Aが2水石コウ15〜35重量%と粒径1
00〜1μmの微細高炉水滓85〜65重景%との混合
物からなり、添加剤Aと添加剤Bとの重量割合A/Bが
70/30〜60/40の範囲である特許請求の範囲第
1項の方法。
(2) Additive A is 15 to 35% by weight of dihydrite and has a particle size of 1
00-1 μm fine blast furnace water slag 85-65% by weight, and the weight ratio A/B of additive A and additive B is in the range of 70/30 to 60/40. Method of Section 1.
JP11031483A 1983-06-17 1983-06-17 Increase in strength of odorous, hydrous soft earth accompanied by deodorization Granted JPS5911390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11031483A JPS5911390A (en) 1983-06-17 1983-06-17 Increase in strength of odorous, hydrous soft earth accompanied by deodorization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031483A JPS5911390A (en) 1983-06-17 1983-06-17 Increase in strength of odorous, hydrous soft earth accompanied by deodorization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP439580A Division JPS56100920A (en) 1980-01-18 1980-01-18 Improvement of water content poorsoil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22911887A Division JPS6372783A (en) 1987-09-12 1987-09-12 Method of increasing strength of malodorous and hydrous poor soil concurrently with deodorization

Publications (2)

Publication Number Publication Date
JPS5911390A true JPS5911390A (en) 1984-01-20
JPH0141675B2 JPH0141675B2 (en) 1989-09-06

Family

ID=14532568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031483A Granted JPS5911390A (en) 1983-06-17 1983-06-17 Increase in strength of odorous, hydrous soft earth accompanied by deodorization

Country Status (1)

Country Link
JP (1) JPS5911390A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341056A (en) * 1976-09-27 1978-04-14 Mitsubishi Heavy Ind Ltd Sludge water treatment process
JPS5352534A (en) * 1976-10-25 1978-05-13 Osaka Cement Production method of expandable setting material
JPS54113911A (en) * 1978-02-24 1979-09-05 Onoda Cement Co Ltd Improving material of organic matter soft ground
JPS54135408A (en) * 1978-04-11 1979-10-20 Nippon Steel Corp Method of improving organic soft earth that use iron manufacturing slag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341056A (en) * 1976-09-27 1978-04-14 Mitsubishi Heavy Ind Ltd Sludge water treatment process
JPS5352534A (en) * 1976-10-25 1978-05-13 Osaka Cement Production method of expandable setting material
JPS54113911A (en) * 1978-02-24 1979-09-05 Onoda Cement Co Ltd Improving material of organic matter soft ground
JPS54135408A (en) * 1978-04-11 1979-10-20 Nippon Steel Corp Method of improving organic soft earth that use iron manufacturing slag

Also Published As

Publication number Publication date
JPH0141675B2 (en) 1989-09-06

Similar Documents

Publication Publication Date Title
US4028130A (en) Disposal method and use of sewage sludge
NL8000513A (en) METHOD FOR IMPROVING THE FIRMNESS OF A WATER-SATURATED SOIL SOIL.
US4465518A (en) Process for strengthening soft soil
JPS5817556B2 (en) Method for increasing deodorizing strength of hydrated soft soil with bad odor
JP2009013427A (en) Agent for solidifying and insolubilizing soil and soil treating method
JP2006187773A (en) Agent for solidifying and insolubilizing soil contaminated by contaminants which are cyanide, phosphorous and/or nitrogen and/or arsenic
KR100648461B1 (en) A solidification agent for soft ground and sludge improvement strengthen using industrial waste
JP4683638B2 (en) Rapid dehydrating solidifying agent for treatment of high water content concentrated sludge
KR100854036B1 (en) The soil aggregate manufacturing method which uses the sewage sludge and the soil aggregate which it uses
JP2012214591A (en) Method for manufacturing soil hardener using inorganic waste containing fluorine, soil hardener obtained thereby, and method for immobilizing soft soil using the soil hardener
JP4209223B2 (en) Hexavalent chromium elution suppression method
JP2004136160A (en) Toxic heavy metal collecting material
AU757216B2 (en) Mixture for the treatment of waste materials
JP2013086030A (en) Method for treating dolomite sludge and soil improving material
KR100374189B1 (en) The manufacturing method for soil stabilization
JPS5911390A (en) Increase in strength of odorous, hydrous soft earth accompanied by deodorization
KR100948658B1 (en) Method for solidifying sewage sludge
JPS6244794B2 (en)
JP2003321676A (en) Soil solidifier
JPH0331755B2 (en)
JPS5980486A (en) Increasing in strength and deodorization of water- containing weak earth with sad smell
JP4129832B2 (en) Mud improvement solidification stabilizer
KR100704735B1 (en) Method for removing malodor of organic waste resources
KR830002746B1 (en) Method for improving the strength of a water-saturated soft soil
JP6204099B2 (en) Ground improvement method