JPS59113662A - Solid state image pickup element - Google Patents

Solid state image pickup element

Info

Publication number
JPS59113662A
JPS59113662A JP57224409A JP22440982A JPS59113662A JP S59113662 A JPS59113662 A JP S59113662A JP 57224409 A JP57224409 A JP 57224409A JP 22440982 A JP22440982 A JP 22440982A JP S59113662 A JPS59113662 A JP S59113662A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
image pickup
substrate
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57224409A
Other languages
Japanese (ja)
Inventor
Yoshiya Kiriyama
桐山 義也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57224409A priority Critical patent/JPS59113662A/en
Publication of JPS59113662A publication Critical patent/JPS59113662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To contrive to dissolve the smear phenomenon of a solid state image pickup element by a method wherein an amorphous semiconductor layer is provided at the deep part of an image pickup substrate. CONSTITUTION:An image pickup substrate 1 of semiconductor constitution is constructed of a semiconductor substrate 10 consisting of P type silicon, an amorphous silicon layer 11 having high minute defect density and formed on the substrate 10, and an epitaxial layer 12 consisting of P type silicon laminated on the layer 11. The manufacturing method of the image pickup substrate 1 is that, for example, the amorphous silicon layer 11 is formed at first by high-frequency sputtering according to argon plasma on the semiconductor substrate 10 consisting of P type silicon. At this time, by changing pressure of argon and the distance between the electrodes of sputtering, minute defect density of the amorphous silicon layer 11 can be set to an arbitrary value. Then the upper surface part of the amorphous silicon layer 11 is heat-treated at a high temperature for a short hour, at 900 deg.C for 30min for example, to crystallize the layer. After then, the P type silicon epitaxial layer 12 is grown on the crystallized surface of the amorphous silicon layer 11.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は画像の撮影を行なう固体撮像素子に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a solid-state imaging device that takes images.

(ロ)従来技術 この種固体撮像素子は、半導体構成の撮像基板の表面部
に画素単位の受光部を多数配列したものであり、これ等
の各受光部にて、入射された画像光の光電変換が行なわ
れる。
(B) Prior Art This type of solid-state image sensor has a large number of light receiving sections arranged in pixel units on the surface of an imaging substrate having a semiconductor structure, and each of these light receiving sections receives photoelectric signals from incident image light. A conversion takes place.

ところが、従来の固体撮像素子に流いては、入射光が撮
像基板の受光部よりさらに深部にまで到達し、この深部
にて光電変換が行なわれる為に、この深部で発生した光
電荷が拡散移動して隣接する受光部に流入する不01<
合がめった。この事は、再生画像に白いにじみが生じる
スミア現象を引き起こす原因となっていた。
However, in a conventional solid-state image sensor, the incident light reaches a deeper part than the light receiving part of the imaging board, and photoelectric conversion occurs in this deep part, so the photocharges generated in this deep part are diffused and transferred. and flows into the adjacent light receiving section.
We met. This caused a smear phenomenon in which white bleeding appeared in the reproduced image.

一方、祈るスミア現象を抑制する目的で、撮像基板の深
部に、高濃度の不純物、例えば酸素イオンを導入した高
濃度不純物層を設けこの不純物層の光電荷に対するトラ
ップ効果を利用し、半導体基板の深部で光電変換された
光電荷の実効的な拡散距離を小さくし、この光電荷の移
動の抑制を図った固体撮像素子が提案されCいる。
On the other hand, in order to suppress the smear phenomenon, a high-concentration impurity layer containing high-concentration impurities, such as oxygen ions, is introduced deep into the imaging substrate. A solid-state imaging device has been proposed in which the effective diffusion distance of photoelectric charges photoelectrically converted in a deep part is reduced, and the movement of the photocharges is suppressed.

しかしながら所様な従来素子に放いては、高濃度不純物
層での光電荷に対するトラップ能力に限界があり、上述
のスミア現象を解消できるまでには至っていない。しか
も、高濃度不純物層への不純物導入、例えば酸素イオン
導入の際には、長時間の熱酸化処理が必要となり、この
種素子の製造を煩雑なものとしていた。
However, when applied to various conventional devices, there is a limit to the trapping ability of photocharges in the highly concentrated impurity layer, and the above-mentioned smear phenomenon has not yet been eliminated. Moreover, when introducing impurities into the high-concentration impurity layer, for example when introducing oxygen ions, a long thermal oxidation treatment is required, making the manufacture of this type of device complicated.

?→ 発明の目的 本発明は上述の点に鑑みてなされ、スミア現像の解消を
図った固体撮像素子’a−提供するものである。
? →Object of the Invention The present invention has been made in view of the above-mentioned points, and provides a solid-state image sensing device 'a-'a- which aims to eliminate smear development.

(に)発明の構成 本発明の固体撮像素子は、その撮像基板の深部にアモル
ファス半導体層を設けたものである。
(2) Structure of the Invention The solid-state imaging device of the present invention has an amorphous semiconductor layer provided deep within its imaging substrate.

実施例 図に本発明の固体撮像索子の一実施例を示す。Example The figure shows an embodiment of the solid-state imaging probe of the present invention.

この図に流いて、(1)は半導体構成の撮像基板であり
、P型シリコンからなる半導体基体部と、該基体11Q
上に形成した微小欠陥密度の高いアモルファスシリコン
層1υと、該アモルファスシリコン層uυ上に積層した
P型シリコンからなるエビクキギル層(lりと、から構
成されている。
In this figure, (1) is an imaging substrate having a semiconductor structure, which includes a semiconductor base portion made of P-type silicon, and the base body 11Q.
It is composed of an amorphous silicon layer 1υ with a high microdefect density formed thereon, and a p-type silicon layer laminated on the amorphous silicon layer uυ.

ここで、上記撮像基板(1)の製造方法の具体例を示す
。まず、P型シリコンからなる半導体基体1【0)上に
、アルゴンプラズマに依るll’[波スパッタリンクニ
ヨって、アモルファスシリコン層(lυヲ形成する。こ
の時、アルゴン圧力と、スパックリングの電極間距離を
変える事により、アモルファスシI)コン層(」υの微
小欠陥密度を任意の値に設定する事ができる。例えば、
電極間距離3crn、アルゴン圧力2X10’TOrr
% ターゲットは結晶シリコン、スパッタリング時間1
時間、の条件下で1.0〜1.5μm厚のアモルファス
シリコン層を得る。
Here, a specific example of the method for manufacturing the imaging substrate (1) will be shown. First, an amorphous silicon layer (lυ) is formed on a semiconductor substrate 1 (0) made of P-type silicon by wave sputtering using argon plasma. At this time, argon pressure and sputtering electrodes are applied. By changing the distance between the two layers, the microdefect density of the amorphous silicon layer ('υ) can be set to an arbitrary value.For example,
Interelectrode distance 3 crn, argon pressure 2 x 10' TOrr
% Target is crystalline silicon, sputtering time 1
An amorphous silicon layer with a thickness of 1.0 to 1.5 μm is obtained under conditions of .times.

次に該アモルファスシリコン層Uυの上表曲部を高温短
時間例えば9[JO’030分同加熱処理し−C結晶化
せしめる。尚、この時、加熱!a度を1000 ”Cと
した場合、及び加熱時間を1時向とした場合には、アモ
ルファスシリフン層1.lυ全体が結晶化されてしよう
Next, the upper curved portion of the amorphous silicon layer Uυ is heated at a high temperature for a short period of time, for example, 9 [JO'030] to crystallize -C. In addition, at this time, heat! If the a degree is set to 1000''C and the heating time is set to 1 o'clock, the entire amorphous silicon layer 1.lυ will be crystallized.

その後、上記アモルファスシリコン層1.1υの結晶化
した表面上に通常の気相エピタキシャル法を用いて、P
輌シリコンのエビクキギル層Hを成長きしめる。
Thereafter, P was deposited on the crystallized surface of the amorphous silicon layer 1.1υ using a normal vapor phase epitaxial method.
A layer H of silicone is grown.

光1f19である。・;旬13)は各受光部+2)(2
)の一方側に一定間隔を隔てた1所に設けたN型頭域の
転送チャンネル、+4J14Jは各伝送チャンネルt3
)13)と各受光部(2)(2)の他方側との間に設け
たP+型領域のチャンネルストッパ、 +5115)は
該チャンネルストッパ14114)内に設けたN型頭域
からなるオーバーフロードレインである。16)は上記
撮像基板(1)のエビクキギル層(121表面に形成し
た透明な二酸化シリコンからなる絶縁膜である。(力(
7)は上記転送チャンネル+3)(33上に絶縁膜(6
)を介して配置された転送電極、181+8)は上記各
受光部(21(2)と各転送チャンネル+3313Jと
の間の箇所の絶縁膜(6)上に配置されたチャンネルゲ
ート、191+9ンは上記オーバーフロードレイン15
1(51を内股したチャンネルストッパ1J14)上に
絶縁膜16)を介して配置されたオーバーフローコント
ロールゲートである。
The light is 1f19.・;Shun13) is each light receiving part +2)(2
), +4J14J is each transmission channel t3.
) 13) and the other side of each light receiving section (2) (2), +5115) is an overflow drain consisting of an N-type head region provided within the channel stopper 14114). be. 16) is an insulating film made of transparent silicon dioxide formed on the surface of the lobster layer (121) of the imaging substrate (1).
7) is an insulating film (6) on the transfer channel +3) (33).
), 181+8) is a channel gate placed on the insulating film (6) between each of the light receiving parts (21(2) and each transfer channel +3313J), 191+9 is the channel gate located above overflow drain 15
This is an overflow control gate disposed on the channel stopper 1J14 with 51 inside, with an insulating film 16) interposed therebetween.

而して、上記撮像素子は、エピタキシャル層u4に設け
られた受光部t2J (21に入射された画像光が、こ
の受光部t21 (2)及びこの受光部(2)(2)に
近接したエピタキシャル層uり箇所にて光電変換され、
これに依って、入射光の強度に応じて得られた光電荷を
この受光部+2)(23に蓄積せしめる。
Thus, the image sensor is configured such that the image light incident on the light receiving portion t2J (21) provided in the epitaxial layer u4 is transmitted to the light receiving portion t21 (2) and the epitaxial layer adjacent to the light receiving portion (2) (2). Photoelectric conversion occurs at the layered point,
As a result, photocharges obtained according to the intensity of the incident light are accumulated in the light receiving section +2) (23).

一方、受光部(21121のさらに深部のアモルファス
シリコン層Uυに入射された画像光は、このアモルファ
スシリコン層Uυにて光電変換される事となる。
On the other hand, the image light incident on the amorphous silicon layer Uυ located deeper in the light receiving section (21121) is photoelectrically converted in this amorphous silicon layer Uυ.

しかしながら祈るアモルファスシリコン層は、欠陥密度
が非常に高いので、結晶性を有するシリコンに比べて、
光電荷に対するトラップ効果が極めて大すく、このアモ
ルファスシリコンMtlaKて光電変換された光電荷、
この場合電子は直ちにトラップされる。即ち、再生画像
でのスミア現象の原因となる有害な電子が受光部+21
2Jに拡散移動するまでに消滅する事になる。
However, the amorphous silicon layer has a very high defect density, so compared to crystalline silicon,
The trapping effect on photocharges is extremely small, and the photocharges photoelectrically converted by this amorphous silicon MtlaK,
In this case the electrons are immediately trapped. In other words, harmful electrons that cause smear phenomenon in reproduced images are transmitted to the light receiving section +21.
It will disappear by the time it diffuses to 2J.

斯して受光部(2)に蓄積された電子のみが、チャンネ
ルグー) 1.8)に正の高電圧を印加する事に依って
、このチャンネルゲート(8)を介して転送チャンネル
1.3)に導入される。そして、この転送チャンネ/!
/13)上の転送電極(7)に駆助パルスを印加する事
に依゛す、転送チャンネル(3)に導入された電子を画
像信号として外部に転送出力する。
Only the electrons accumulated in the light receiving part (2) are transferred to the transfer channel 1.3 via this channel gate (8) by applying a positive high voltage to the channel (1.8). ) will be introduced. And this transfer channel/!
/13) By applying a driving pulse to the upper transfer electrode (7), the electrons introduced into the transfer channel (3) are transferred and output to the outside as an image signal.

(へ)効 果 本発明の固体撮像素子は、以上の説明から明らかな如く
、その撮像基板の深部にアモルファス半導体層を設けた
ものであるので、このアモルファス半導体層にまで入射
されCきた画像光に依一つて光電変換された電荷は、結
晶半導体層に比べて欠陥密度が非常に−いアモルファス
半導体層eこて直ちにトラップされ、祈る有害な電荷を
消滅せしめる事ができ、スミア現象のない良質の画像が
得られる。しかも、アモルファス半導体層を設ける事に
依って従来素子に必要であった光電荷をトラップする為
の高濃度不純物層を不要とでき、祈る固体撮像素子の製
造の簡略化が望める。
(F) Effect As is clear from the above description, the solid-state image sensor of the present invention has an amorphous semiconductor layer provided deep in the image sensor substrate, so that the image light incident on the amorphous semiconductor layer is The photoelectrically converted charges are immediately trapped in the amorphous semiconductor layer, which has a much lower defect density than the crystalline semiconductor layer, and the harmful charges can be annihilated, resulting in a high-quality product without smearing. images are obtained. Moreover, by providing an amorphous semiconductor layer, it is possible to eliminate the need for a high concentration impurity layer for trapping photocharges, which was required in conventional devices, and it is hoped that the manufacturing of the solid-state imaging device will be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の固体撮像素子の一実施例の断面図であり
、(11は撮像基板、(2)は受光部、(10)は半導
体基体、ulはアモルファスシリコン層、11:<1は
エビタキャル層をボし−Cいる。
The figure is a cross-sectional view of one embodiment of the solid-state imaging device of the present invention, (11 is an imaging substrate, (2) is a light receiving part, (10) is a semiconductor substrate, ul is an amorphous silicon layer, 11:<1 is The Evitakal layer is removed.

Claims (1)

【特許請求の範囲】[Claims] 1)アモルファス半導体層上に一導電型の結晶半導体層
を積層せしめてなる半導体構成の撮像基板を用い、該基
板表面部の結晶半導体層にこの半導体層とは逆導電型の
受光部を多数配列構成した事を特徴とする固体撮像素子
1) Using an imaging substrate with a semiconductor structure in which a crystalline semiconductor layer of one conductivity type is laminated on an amorphous semiconductor layer, a large number of light-receiving parts of a conductivity type opposite to that of the semiconductor layer are arranged in the crystalline semiconductor layer on the surface of the substrate. A solid-state image sensor characterized by the following structure.
JP57224409A 1982-12-20 1982-12-20 Solid state image pickup element Pending JPS59113662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224409A JPS59113662A (en) 1982-12-20 1982-12-20 Solid state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224409A JPS59113662A (en) 1982-12-20 1982-12-20 Solid state image pickup element

Publications (1)

Publication Number Publication Date
JPS59113662A true JPS59113662A (en) 1984-06-30

Family

ID=16813309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224409A Pending JPS59113662A (en) 1982-12-20 1982-12-20 Solid state image pickup element

Country Status (1)

Country Link
JP (1) JPS59113662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213174A (en) * 1989-02-13 1990-08-24 Mitsubishi Electric Corp Infrared detector
JPH07183481A (en) * 1993-12-22 1995-07-21 Nec Corp Solid-state image sensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213174A (en) * 1989-02-13 1990-08-24 Mitsubishi Electric Corp Infrared detector
JPH07183481A (en) * 1993-12-22 1995-07-21 Nec Corp Solid-state image sensing device

Similar Documents

Publication Publication Date Title
GB2103876A (en) Solid state image sensors
JPS58138187A (en) Solid-state image sensor
JPH10209421A (en) Manufacture of solid-state imagine device
JPS59113662A (en) Solid state image pickup element
JPH01274468A (en) Manufacture of solid-state image sensing device
JPS6118172A (en) Solid-state image picking device
JPH0666344B2 (en) Charge coupled device
JPH04263469A (en) Solid-state image sensing device
JPS60214172A (en) Solid-state image pickup device
JP2002324899A (en) Method for manufacturing solid-state image pickup element
JP2780294B2 (en) Solid-state imaging device
JPS6046674A (en) Solid-state image pickup device
JP2000311994A (en) Solid-state image pickup element and manufacture thereof
JPS6369264A (en) Interline type solid-state image sensor
JPS63266872A (en) Solid-state image sensing device
JPS60102769A (en) Solid image pick-up device
JPS63185059A (en) Manufacture of solid-state image sensor
JPH02143559A (en) Image sensor and manufacture thereof
JPS62190870A (en) Solid-state image pickup device and manufacture thereof
JP2517258B2 (en) Frame transfer type solid-state image sensor
JPH0316833B2 (en)
JPS5710278A (en) Solid-state image pickup element
JPH02174262A (en) Solid state image pickup element
JPS62269356A (en) Solid-state image sensing device
JPS5812480A (en) Compound solidstate image pickup element