JPS59112602A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS59112602A
JPS59112602A JP57221981A JP22198182A JPS59112602A JP S59112602 A JPS59112602 A JP S59112602A JP 57221981 A JP57221981 A JP 57221981A JP 22198182 A JP22198182 A JP 22198182A JP S59112602 A JPS59112602 A JP S59112602A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
phase
laminated
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221981A
Other languages
Japanese (ja)
Inventor
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57221981A priority Critical patent/JPS59112602A/en
Publication of JPS59112602A publication Critical patent/JPS59112602A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys

Abstract

PURPOSE:To provide high productivity and large coercive force and residual magnetic flux density, by a method wherein 100-crystal axis of alloy of Fe, Cr, Co, Al and the like in specific ratio is integrated in orthogonal direction to the laminated surface. CONSTITUTION:Laminated body of thin alloy is composed 15-35wt% Cr, 10- 50wt% Co, 0.2-9wt% one or more elements selected form the group of Si, Al, Ti, Zr, Hf, V, Nb, Ta, Mo and W and Fe in residue. The laminated body has the 100 crystal axis of the alloy integrated in orthogonal direction to the laminated surface. In the alloy thin band Cr is alpha-phase stabilizing element and also essential element to form spinodal non-magnetic phase. Co is essential element to form spinodal ferromagnetic phase and also control element for the spinodal decomposition temperature. Furthermore, element selected from the group of Si, Al, Ti promotes generation of 100-crystal surface flat plate aggregation composition of the permanent. In this constitution, the permanent magnet of Fe-Cr-Co series with high productivity and large coercive force and residual magnetic flux density is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はFe −0r−Co系永久磁石に関する。よシ
詳しくは、生産性が高く、かつ、残留磁気密度、保持力
が大きく、ヒステリシス環線の角形特性に優れ、従って
最大エネルギー積の大きな積層体永久磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a Fe-0r-Co permanent magnet. More specifically, the present invention relates to a laminated permanent magnet that is highly productive, has a large residual magnetic density and coercive force, has excellent square characteristics of hysteresis rings, and therefore has a large maximum energy product.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

永久磁石は保磁力Hcと残留磁束密度Brが犬きく、シ
かもヒステリシス項線が角型であること、すなわち最大
エネルギー積(B Hmax )の大きいことが要求さ
れる。このような永久磁石には、例えば磁界中における
冷却処理等によって磁気異方性を付与せしめた合金系(
例えば、アルニコ)、金属間化合物系(例えば、希土類
−コバルト磁石)、酸化物系(例えば、フェライト)な
どがある。
A permanent magnet is required to have a high coercive force Hc and a residual magnetic flux density Br, and also have a rectangular hysteresis term line, that is, a large maximum energy product (B Hmax ). Such permanent magnets are made of alloys that have been given magnetic anisotropy by, for example, cooling treatment in a magnetic field.
Examples include alnico), intermetallic compounds (e.g., rare earth-cobalt magnets), and oxides (e.g., ferrite).

しかしながら、これらの永久磁石は、いずれも機械的に
脆弱であυ、機械加工、とりわけ塑性加工することが極
めて困難であるという欠点を有している。
However, all of these permanent magnets have the disadvantage that they are mechanically fragile and are extremely difficult to machine, especially plastic work.

しかるに、近年のエレクトロニクスの急速な発展に伴い
、多様な形状の永久磁石が要求されるようになってきた
。このため、磁性特性のみならず、加工性、成形性が優
れ、しかも生産性の高い永久磁石の開発が望まれている
However, with the rapid development of electronics in recent years, permanent magnets of various shapes have come to be required. Therefore, it is desired to develop permanent magnets that have not only excellent magnetic properties but also excellent workability and formability, and are highly productive.

スピノーダル分解型のFe−0r−Oo三元系磁石合金
は、圧延又は塑性加工が可能な永久磁石合金として注目
されている磁性材料の一つである。
A spinodal decomposition type Fe-0r-Oo ternary magnetic alloy is one of the magnetic materials that is attracting attention as a permanent magnetic alloy that can be rolled or plastically worked.

この磁性合金は、高温型α相を得るための溶体化処理(
処理温度1300℃)後、恒温磁界処理又は磁場中冷却
等の磁界中熱処理を施すことにより、所謂、スピノーダ
ル分解を行ない、非磁性マトリックス相中に強磁性相の
単磁区微粒子を形状異方性をもたせて析出させて製造さ
れている。
This magnetic alloy is subjected to solution treatment (
After treatment (temperature: 1300°C), heat treatment in a magnetic field such as isothermal magnetic field treatment or cooling in a magnetic field is performed to perform so-called spinodal decomposition, and form single-domain fine particles of ferromagnetic phase in a non-magnetic matrix phase with shape anisotropy. It is manufactured by letting it stand and precipitate.

しかしながら、その生産性および磁気的特性は必ずしも
十分なものでなかった。すなわち、製造工程においては
、上記溶体化処理後の急冷操作で、変形、ワレなどが起
υやすく、また、その成形加工においては焼鈍と冷間加
工を操シ返す必要があるため、生産性に問題があった。
However, its productivity and magnetic properties were not necessarily sufficient. In other words, in the manufacturing process, deformation and cracking are likely to occur during the rapid cooling operation after the solution treatment, and the forming process requires repeating annealing and cold working, which reduces productivity. There was a problem.

更には、製造時に磁気特性に悪影響を及はすγ相やα相
が混入しやすく、シかも磁気異方性も十分でないため、
最大エネルギー積の向上には限界があるという欠点を有
していた。
Furthermore, during manufacturing, γ and α phases, which adversely affect magnetic properties, are likely to be mixed in, and the magnetic anisotropy is not sufficient.
It has the disadvantage that there is a limit to the improvement of the maximum energy product.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、生産性が高り、シかも保磁力、残留磁
束密度、が大きく、角形性、磁気異方性に優れる積層体
構造のFe −0r−co系永久磁石を提供することに
ある。′ 〔発明の概要〕 本発明者は、上記目的を達成すべ(、Fe−0r−C。
An object of the present invention is to provide a Fe-0r-co permanent magnet with a laminated structure that has high productivity, high coercive force and residual magnetic flux density, and excellent squareness and magnetic anisotropy. be. [Summary of the Invention] The present inventors aimed to achieve the above object (Fe-0r-C.

系磁性合金の組成および製造方法について鋭意研究を重
ねた結果:特定の組成からなるFe、 Or、 C。
As a result of extensive research into the composition and manufacturing method of magnetic alloys: Fe, Or, C, with specific compositions.

および8i、 A4 TI、 Zr、 Hf、 V、 
Nb、 Ta、 Mo等の合金材料に、所謂溶湯急冷法
を適用すると、成形性の優れたα単相の合金薄帯が容易
に得られ、との薄帯を1000〜13oo℃で焼鈍する
と、磁化容易軸である(100)結晶軸が薄帯面に垂直
に集積した組織となシ、磁性特性が著しく向上するとと
:および、この合金薄帯を多層に積層することにより、
容易に(100)異方性の永久磁石が得られることを見
出し本発明を完成するに到った。
and 8i, A4 TI, Zr, Hf, V,
When the so-called molten metal quenching method is applied to alloy materials such as Nb, Ta, and Mo, α single-phase alloy ribbons with excellent formability can be easily obtained. By forming a structure in which the (100) crystal axis, which is the axis of easy magnetization, is accumulated perpendicularly to the ribbon surface, the magnetic properties are significantly improved: and by stacking this alloy ribbon in multiple layers,
They discovered that a (100) anisotropic permanent magnet can be easily obtained and completed the present invention.

即ち、本発明の永久磁石は、クロム(Or)15〜35
重量%;コバル) (Co ) 10〜50重量%;ケ
イ素(Si)、アルミニウム(AL) 、チタン(Ti
)、ジルコニウム(Zr )、ノ1フニウム(Hf)、
バナジウム(v)、ニオブ(Nb )、タンタル(Ta
)、モリブデン(MO)及びタングステン(W)の群か
ら選ばれる少なくとも1種の元素0.2〜9重量%;並
びに残部が実質的に鉄(Fe )から成る合金薄帯の積
層体であり、妙・つ、該合金の(100)結晶軸が積層
面に垂直方向に集積されていることを特徴とする。
That is, the permanent magnet of the present invention contains chromium (Or) 15 to 35
Weight%; Cobalt (Co) 10-50% by weight; Silicon (Si), Aluminum (AL), Titanium (Ti)
), zirconium (Zr), 1fnium (Hf),
Vanadium (v), niobium (Nb), tantalum (Ta
), 0.2 to 9% by weight of at least one element selected from the group of molybdenum (MO) and tungsten (W); and the balance substantially consisting of iron (Fe); A unique feature is that the (100) crystal axis of the alloy is concentrated in a direction perpendicular to the lamination plane.

本発明の永久磁石は、後述する合金薄帯を複数枚積層し
て構成される積層体である。
The permanent magnet of the present invention is a laminate formed by laminating a plurality of thin alloy ribbons, which will be described later.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

上記、合金薄帯において、Orはα相安定化元素である
とともにスピノーダル非磁性相形成の必須元素である。
In the alloy ribbon described above, Or is an α-phase stabilizing element and an essential element for forming a spinodal nonmagnetic phase.

その含有量は15〜35重量%である。含有量が15重
量%未満であると保磁力の増大が認められず、一方、3
5重量%を超えると残留磁束密度及び最大エネルギー積
が低下し、しカーも薄帯の製造が困難となる。
Its content is 15-35% by weight. When the content is less than 15% by weight, no increase in coercive force is observed;
If it exceeds 5% by weight, the residual magnetic flux density and the maximum energy product will decrease, making it difficult to produce a thin ribbon.

Coはスピノーダル強磁性相形成の必須元素であり、ま
たスピノーダル分解温度の制御元素でもある。その含有
量は10〜50重量%である。含有量が10重量%未満
であるとスピノーダル分解2相分離温度が低下し、その
結果、保磁力及び最大エネルギー積が低下する。一方、
50重量%を超えると保磁力が低下し、しかも脆化して
製造上問題が生ずる。
Co is an essential element for spinodal ferromagnetic phase formation, and is also an element that controls spinodal decomposition temperature. Its content is 10-50% by weight. When the content is less than 10% by weight, the spinodal decomposition two-phase separation temperature decreases, resulting in a decrease in coercive force and maximum energy product. on the other hand,
If it exceeds 50% by weight, the coercive force decreases and it becomes brittle, causing manufacturing problems.

Si、 A4 Ti、 Zr、 Hf、 V、 Nb、
 Ta、 Mo及びWの群′から選ばれる少なくとも1
種の元素は、本発明の永久磁石の(100)結晶面平板
集合組織の生成を促進するものである。その含有量は0
.2〜9重量%である。含有量が0.2重量%未満であ
ると積層面に垂直にα相〔100〕結晶軸が配向する(
100)結晶面平板集合組織の集合度が著しく低下する
Si, A4 Ti, Zr, Hf, V, Nb,
At least one selected from the group 'Ta, Mo and W'
The seed element promotes the formation of the (100) crystal plane plate texture of the permanent magnet of the present invention. Its content is 0
.. It is 2 to 9% by weight. When the content is less than 0.2% by weight, the α phase [100] crystal axis is oriented perpendicular to the laminated plane (
100) The degree of agglomeration of crystal plane plate texture is significantly reduced.

また、たとえ集合度が満たされていても(100)結晶
配向を磁気特性の上に十分反映することができない。一
方、9重量%を超えると得られる永久磁石薄帯の残留磁
束密度及び保磁力が著しく低下し、しかも薄帯の製造が
極めて困難となる。
Further, even if the degree of aggregation is satisfied, the (100) crystal orientation cannot be sufficiently reflected on the magnetic properties. On the other hand, if it exceeds 9% by weight, the residual magnetic flux density and coercive force of the obtained permanent magnet ribbon will be significantly reduced, and furthermore, the production of the ribbon will be extremely difficult.

合金薄帯は厚さ10〜500μmであることが好ましい
。厚さ10μm未満であると、薄帯の製造が困難となり
、しかも(100)結晶面平板集合損紙の集合度が低下
することとなる。厚さ500μm以上であると、表面性
が著しく低下し、良質の積層体を成形することが困難と
なる。
The alloy ribbon preferably has a thickness of 10 to 500 μm. If the thickness is less than 10 μm, it will be difficult to manufacture a ribbon, and the degree of aggregation of the (100) crystal plane flat plate aggregated broken paper will decrease. If the thickness is 500 μm or more, the surface properties will be significantly reduced, making it difficult to form a high-quality laminate.

本発明に係る薄帯の製造方法は、先ず、常法に従って上
記組成の磁性合金を溶融する。溶融は所定桁の上記各元
素の粉末又は塊を、例えば、石英るつぼ等の中に収容し
、これを高周波誘導コイル、キセノンランプ、電子ビー
ム又はアーク放電等により加熱して適宜性なわれる。加
熱時の雰囲気は大気であっても差し支えないが、一度真
空にしだ後、アルゴン等の不活性ガスを導入して溶融す
ることが好ましい。
In the method for manufacturing a ribbon according to the present invention, first, a magnetic alloy having the above composition is melted according to a conventional method. Melting is carried out as appropriate by placing a powder or lump of each of the above elements in a predetermined order of magnitude in, for example, a quartz crucible, and heating the crucible with a high-frequency induction coil, xenon lamp, electron beam, arc discharge, or the like. The atmosphere during heating may be air, but it is preferable to introduce an inert gas such as argon and melt the material after it has been evacuated.

次いで、上記融液を溶湯急冷法を用いて薄帯化する。即
ち、第1図に示したように、融液1を、例えば、アルタ
ニウム、銀、銅、鉄又はこれらの合金で構成され、周速
1 z / sec以上で回転するドラム又はロール2
の回転面に噴出する。そして、冷却速度1000℃/ 
sec以上で急冷凝固せしめて薄帯化する。かかる処理
により、第2図に示しだ薄帯化した際の初期状態から第
3図に示したようなα相(体心立方晶)の〔100〕軸
が薄帯面の垂直方向にかなりの集合度で配向した柱状晶
構造に変化し、(100)面平板集合組織を有する異方
性薄帯が得られる。
Next, the melt is formed into a thin ribbon using a melt quenching method. That is, as shown in FIG. 1, the melt 1 is transferred to a drum or roll 2 made of, for example, artanium, silver, copper, iron, or an alloy thereof and rotating at a circumferential speed of 1 z/sec or more.
ejects onto the rotating surface. And cooling rate 1000℃/
It is rapidly solidified at sec or more to form a thin ribbon. Through this process, the [100] axis of the α phase (body-centered cubic crystal) as shown in FIG. 3 changes from the initial state shown in FIG. The anisotropic ribbon changes to a columnar crystal structure oriented by the degree of aggregation, and has a (100) plane plate texture.

上記処理において、ドラム又はロールの周速が1 m 
/ sec未満であると1000℃/ sec以上の冷
却速度が得られず、表面が平?1↑で連続膜の薄帯を形
成することが困難となるっ又、融液の冷却速度が100
0℃/ Sec未満であると、冷却時に凝固偏析が起こ
ると共に、磁気特性に悪影響を及ばすγ相及びα相の生
成が防止出来ず、α相のみを単相状態で室温まで引抜き
出すことが困難となる、。
In the above process, the peripheral speed of the drum or roll is 1 m
If the cooling rate is less than 1000°C/sec, the surface will not be flat. 1↑, it becomes difficult to form a continuous film ribbon, and the cooling rate of the melt is 100%.
If the temperature is less than 0°C/Sec, solidification segregation will occur during cooling, and the generation of γ and α phases that adversely affect magnetic properties cannot be prevented, making it impossible to extract only the α phase in a single phase state to room temperature. It becomes difficult.

更に、柱状晶構造から成る(100)面平板集合組織の
形成が困難となる。
Furthermore, it becomes difficult to form a (100) plane plate texture consisting of a columnar crystal structure.

次いで、通常、上記薄帯を所定の寸法に裁断した後、こ
れを重ね合せたものを1000〜1300℃の温度で焼
鈍処理を施すことにより柱状晶構造から成る(100)
面平板集合組織の集合度が飛躍的に高められる。この状
態を第4図に示したが、かかる処理によシはぼ単結晶に
近い状態にまで集合度を高めることが可能となる。
Next, the ribbon is usually cut to a predetermined size, and then stacked and annealed at a temperature of 1000 to 1300°C to form a columnar crystal structure (100).
The degree of agglomeration of the plane-plate texture is dramatically increased. This state is shown in FIG. 4, and by such treatment it is possible to increase the degree of aggregation to a state almost like that of a single crystal.

この高温焼鈍処理時に、(ioo)面平板集合組織の接
面垂直方向から、例えば0.01〜IOQOKg / 
cm’の圧力を加えると、各積層面がその界面において
拡散接合された積層体が容易に得られる。
During this high-temperature annealing treatment, from the perpendicular direction to the contact surface of the (ioo) plane flat plate texture, for example, 0.01 to IOQOKg /
When a pressure of cm' is applied, a laminate in which each laminate surface is diffusion bonded at the interface can be easily obtained.

その際、焼鈍処理温度が1000℃未満であるとγ相の
混入が起り、磁気特性が低下する。一方、1300℃を
超える温度では、一部融解が起り、磁気特性が低下する
のみならず、熱経済上、好ましくない。
At that time, if the annealing treatment temperature is less than 1000° C., γ phase will be mixed in, and the magnetic properties will deteriorate. On the other hand, at a temperature exceeding 1300° C., some melting occurs, which not only deteriorates the magnetic properties but also is unfavorable from a thermoeconomic point of view.

上記焼鈍処理と同時に行う積層体の成形にあっては各薄
帯の積層面間にCo−8iもしくはFe−8iの微粉末
管の接合拐を挿入し、加圧することによって、その接合
性を高めることも可能である。
When forming a laminate at the same time as the above annealing treatment, a bonding tube made of Co-8i or Fe-8i fine powder is inserted between the laminated surfaces of each ribbon, and pressure is applied to improve the bondability. It is also possible.

更に、別法として、各薄帯を積層することなく、高温焼
鈍した後、これを積層し、各薄帯を室温以上の低温で耐
熱性有機接着拐、低融点ガラス、低融点合金等の接合利
によって接合することによシ積層体を成形することがで
きる。更には、縫着もしくは締着等の機械的方法によっ
て多層薄帯を相互に接合することも可能である。
Furthermore, as an alternative method, each ribbon is not laminated, but is annealed at a high temperature and then laminated, and each ribbon is bonded with a heat-resistant organic adhesive, low melting point glass, low melting point alloy, etc. at a low temperature lower than room temperature. A laminate can be formed by joining the materials according to their advantages. Furthermore, it is also possible to join the multilayer ribbons together by mechanical methods such as sewing or fastening.

積層体にあっては、各薄帯間のエアーギャップもしくは
接合利層の厚さは1μm以下であることが好ましい。厚
さ1μIn  を超えると、反磁界力が大きくなるため
、利用可能な磁束密度が低下するからである。
In the laminate, it is preferable that the air gap between each ribbon or the thickness of the bonding layer be 1 μm or less. This is because if the thickness exceeds 1 μIn, the demagnetizing field force increases and the usable magnetic flux density decreases.

このようにしてイqられる積層体の形状は、第6図に示
すようにその用途に応じて平板、円環、波板状もしくは
その他の種々の形をとることができる。
The shape of the laminate thus obtained can be a flat plate, an annular ring, a corrugated plate, or various other shapes depending on its use, as shown in FIG.

次に、上記積層体を、そのα相〔1oo〕結晶軸に平行
に20000e以上の磁場を印加して、磁場中熱処理を
300〜700℃の温度範囲で行うことによシ、本発明
の永久磁石が得られる、以下、本発明の永久磁石を実施
例に沿って詳説する。
Next, a magnetic field of 20,000 e or more is applied to the above-mentioned laminate in parallel to its α-phase [1oo] crystal axis, and heat treatment in the magnetic field is performed in a temperature range of 300 to 700°C. Hereinafter, the permanent magnet of the present invention from which a magnet can be obtained will be explained in detail along with Examples.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜6 第1表に示す組成(重量%)の実施例1〜6の6種類の
合金材料を、先端にノズルを備えた石英容器の中に入れ
、アルゴン′d囲気中において高周波誘導加熱法により
、それぞれ溶融した。
Examples 1 to 6 Six types of alloy materials of Examples 1 to 6 having the compositions (wt%) shown in Table 1 were placed in a quartz container equipped with a nozzle at the tip, and subjected to high frequency induction in an argon atmosphere. Each was melted by a heating method.

それぞれの融液をその組成の融点よりも100℃高い温
度に維持し、融液をノズルから5 Q Q rpnで回
転する直径300肥の銅製片ロールの回転面上に噴出せ
しめた。ノズルと回転面のギャップは0、1 anであ
った。又、銅製片ロールの周速は7.5m / sec
であり、冷却速度は104℃/ secであった。かか
る処理により、それぞれ、表面が平滑で100μmの厚
さの連続薄帯を得た。
Each melt was maintained at a temperature 100° C. higher than the melting point of its composition, and the melt was jetted from a nozzle onto the rotating surface of a 300 mm diameter copper strip roll rotating at 5 Q Q rpn. The gap between the nozzle and the rotating surface was 0.1 an. Also, the peripheral speed of the copper piece roll is 7.5m/sec
The cooling rate was 104°C/sec. Through this treatment, continuous ribbons each having a smooth surface and a thickness of 100 μm were obtained.

との薄帯を切断して5X20mmのシートを得、これを
各100枚ずつ積層し、圧力0.1 Kg /crn2
、温度1OOO〜1200℃で2時間の真空焼鈍を行っ
た後、室温寸で急冷して積層体(厚み約1 cm )を
得た。この積層体の積層面のX線回折プロフィルを第5
−1図に示す。比較として、焼鈍処理前の液体急冷薄帯
面のX線回折パターンを第5−2図に示す。高温焼鈍処
理により、(1100・)平板集合組織が著しく成長し
ていることが明らかである1、図から明らかな通り、合
金結晶の〔100〕軸は積層面に垂直に配向していた。
A thin strip of 5 x 20 mm was cut to obtain a sheet of 5 x 20 mm, and 100 sheets each were stacked at a pressure of 0.1 Kg/crn2.
After performing vacuum annealing at a temperature of 100 to 1200° C. for 2 hours, the laminate was rapidly cooled at room temperature to obtain a laminate (thickness: about 1 cm). The X-ray diffraction profile of the laminated surface of this laminate is
Shown in Figure-1. For comparison, the X-ray diffraction pattern of the surface of the liquid-quenched ribbon before annealing is shown in FIG. 5-2. It is clear that the (1100·) plate texture has grown significantly due to the high-temperature annealing treatment.1 As is clear from the figure, the [100] axis of the alloy crystal was oriented perpendicular to the laminated plane.

また、積層体において、各シートは互に強固に結合して
いた。
Furthermore, in the laminate, the sheets were strongly bonded to each other.

次に、この積層体を、40000eの積層面に垂直な磁
場中、630℃の温度で15時間、更に600℃の温度
で2時間熱処理を行った後、無磁場で、580℃、1時
間、次に560℃、1時間、更に540℃、8待間の時
効処理を行って、本発明の異方性永久磁石を得た。
Next, this laminate was heat-treated at 630°C for 15 hours in a magnetic field perpendicular to the laminated plane of 40,000e, and then at 600°C for 2 hours, and then heated at 580°C for 1 hour in the absence of a magnetic field. Next, aging treatment was performed at 560°C for 1 hour and then at 540°C for 8 hours to obtain an anisotropic permanent magnet of the present invention.

この永久磁石について、残留磁束密度(Br )、保磁
力(IHC)及び最大エネルギー積((BH)max 
)を測定した。その結果を第1表に示した。また、これ
らの永久磁石は優れた角形性を有していた。
Regarding this permanent magnet, residual magnetic flux density (Br), coercive force (IHC) and maximum energy product ((BH)max
) was measured. The results are shown in Table 1. Moreover, these permanent magnets had excellent squareness.

盈皇土↓ニヱ 第1表に示す組成を有する比較例1〜6の6種類の合金
利料を実施例と同様の方法でそれぞれ溶解、薄帯化、積
層、焼鈍処理、時効処理を施して、永久磁石を得た。こ
の永久磁石について、残留磁束密度(Br)、保磁力(
rHc )及び最大エネルギー積((BH)max )
を測定した。その結果を第1表に示した。
Yinghuangdo↓Nii Six types of composite materials of Comparative Examples 1 to 6 having the compositions shown in Table 1 were melted, formed into thin strips, laminated, annealed, and aged in the same manner as in the examples. A permanent magnet was obtained. Regarding this permanent magnet, residual magnetic flux density (Br), coercive force (
rHc ) and maximum energy product ((BH)max )
was measured. The results are shown in Table 1.

第1表から明らかな通り、本発明の永久磁石は比較例の
永久磁石に比べBr、  工Hc、とりわけIHCが高
く、従って最大エネルギー積が太きい。
As is clear from Table 1, the permanent magnet of the present invention has higher Br, Hc, and especially IHC than the permanent magnet of the comparative example, and therefore has a larger maximum energy product.

比較例 7 実施例2と同一の組成を有する比較例7の合金利料2 
Kgを真空高周波炉中、融点より100℃高い温度に維
持し、溶解した後、室温まで冷却してインゴットを得た
。このインゴットを熱間鍛造後1300℃で溶体化処理
すると同時に高温焼鈍した後、室温まで急冷して合金板
を得た。この板面についてX線回折分析を行った結果、
(100)面の集合組織が認められなかった。
Comparative Example 7 Combined interest rate 2 of Comparative Example 7 having the same composition as Example 2
Kg was melted in a vacuum high frequency furnace by maintaining it at a temperature 100° C. higher than its melting point, and then cooled to room temperature to obtain an ingot. After hot forging, this ingot was solution-treated at 1300° C., simultaneously annealed at high temperature, and then rapidly cooled to room temperature to obtain an alloy plate. As a result of performing X-ray diffraction analysis on this plate surface,
No (100) texture was observed.

この合金板を実施例1と同様に時効処理した後、残留磁
束密度(Br)、保磁力(IHC)及び最大エネルギー
積((BH)max’ )を測定した。その結果を第1
表に示した。
After this alloy plate was aged in the same manner as in Example 1, the residual magnetic flux density (Br), coercive force (IHC), and maximum energy product ((BH)max') were measured. The result is the first
Shown in the table.

第1表から明らかな通り、本発明の積層体構造の永久磁
石は、インゴット合金から得られる永久磁石に比べBr
および工Hcのいずれも大きく、従って最大エネルギー
積が太きい。
As is clear from Table 1, the permanent magnet with the laminate structure of the present invention has a higher Br content than the permanent magnet obtained from the ingot alloy.
and Hc are both large, and therefore the maximum energy product is large.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな通り、本発明の永久磁石は、■
可撓性に富む合金薄帯を原料とするので、任意の形状に
容易に積層成形することができ、しかも生産性が高く、
■まだ、(100)磁化容易軸が積層面に垂直方向に極
度に配向した積層体構造を有するので、残留磁束密度、
保磁力や伏きく、ヒステリス猿線が角形となp1従って
最大エネルギー積が大きくなるなどの効果を奏し、その
工業的価値は極めて犬である。
As is clear from the above explanation, the permanent magnet of the present invention has:
Since the raw material is a highly flexible alloy ribbon, it can be easily laminated into any shape and has high productivity.
■It still has a laminated structure in which the (100) easy axis of magnetization is extremely oriented perpendicular to the laminated plane, so the residual magnetic flux density,
It has effects such as coercive force, inclination, and the hysteresis wire becomes rectangular, increasing p1 and therefore the maximum energy product, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶湯急冷法の概念図、第2図は薄帯化初期状態
の結晶構造を示す模式図、第3図は冷却後の薄帯の結晶
構造を示す模式図、第4図は焼鈍処理後の薄帯の結晶構
造を示す模式図、第5−1図は実施例1の試料の焼鈍処
理後のX線回折プロフィル図、第5−2図は実施例1の
試料の焼鈍処理前のX線回折プロフィル図、および第6
図は各種形状をした本発明の積層体構造の永久磁石の態
様を示す模式図である。1−−−−一融液、2−−−−
−一ロール。
Figure 1 is a conceptual diagram of the molten metal quenching method, Figure 2 is a schematic diagram showing the crystal structure in the initial state of ribbon formation, Figure 3 is a schematic diagram showing the crystal structure of the ribbon after cooling, and Figure 4 is annealing. A schematic diagram showing the crystal structure of the ribbon after treatment, Figure 5-1 is an X-ray diffraction profile diagram of the sample of Example 1 after annealing treatment, and Figure 5-2 is a diagram of the sample of Example 1 before annealing treatment. X-ray diffraction profile diagram of
The figures are schematic diagrams showing aspects of permanent magnets having a laminate structure according to the present invention having various shapes. 1-----1 melt, 2----
-One roll.

Claims (1)

【特許請求の範囲】[Claims] クロム(Or ) 1.5〜35重量%;コバルト(C
o ) 10〜50重量%;ケイ素(Sl)、アルミニ
ウム(At)、チタン(TI)、シルコニ・ラム(Zr
 )、ハフニウム(Hf)、バナジウム(V)、ニオブ
(Nb)、タンタル(Ta)、モリブデン(Mo )及
びタングステン(W)の群から選ばれる少なくとも1種
の元素0.2〜9重量%;並びに残部が実質的に鉄(F
e )から成る合金薄帯の積層体であ)、かつ、該合金
の(100)結晶軸が積層面に垂直方向に集積されてい
ることを特徴とする永久磁石。
Chromium (Or) 1.5-35% by weight; Cobalt (C
o) 10-50% by weight; silicon (Sl), aluminum (At), titanium (TI), silconi-lamb (Zr
), 0.2 to 9% by weight of at least one element selected from the group of hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo), and tungsten (W); and The remainder is essentially iron (F
A permanent magnet characterized in that it is a laminate of thin alloy ribbons consisting of e), and the (100) crystal axis of the alloy is stacked in a direction perpendicular to the lamination plane.
JP57221981A 1982-12-20 1982-12-20 Permanent magnet Pending JPS59112602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221981A JPS59112602A (en) 1982-12-20 1982-12-20 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221981A JPS59112602A (en) 1982-12-20 1982-12-20 Permanent magnet

Publications (1)

Publication Number Publication Date
JPS59112602A true JPS59112602A (en) 1984-06-29

Family

ID=16775198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221981A Pending JPS59112602A (en) 1982-12-20 1982-12-20 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS59112602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049208A (en) * 1987-07-30 1991-09-17 Tdk Corporation Permanent magnets
CN115029611A (en) * 2022-07-25 2022-09-09 西安钢研功能材料股份有限公司 Preparation method of iron-cobalt-vanadium hysteresis alloy strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049208A (en) * 1987-07-30 1991-09-17 Tdk Corporation Permanent magnets
CN115029611A (en) * 2022-07-25 2022-09-09 西安钢研功能材料股份有限公司 Preparation method of iron-cobalt-vanadium hysteresis alloy strip
CN115029611B (en) * 2022-07-25 2023-04-25 西安钢研功能材料股份有限公司 Preparation method of iron-cobalt-vanadium hysteresis alloy strip

Similar Documents

Publication Publication Date Title
JP7387008B2 (en) Iron-based amorphous alloy containing sub-nanoscale ordered clusters, method for preparing the same, and nanocrystalline alloy derivatives using the same
CN101906582A (en) Nanocrystalline magnetic alloy, method for producing same, alloy thin band, and magnetic component
JPS5929644B2 (en) Method for modifying magnetic properties of high magnetic permeability amorphous alloy
KR102031183B1 (en) Soft magnetic alloy and magnetic device
JPH01139738A (en) Method and apparatus for magnetic material having magnetic anisotropy
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
WO2019168159A1 (en) Magnetic core, method of manufacturing same, and coil component
US11508502B2 (en) Soft magnetic alloy and magnetic component
TW202000945A (en) Soft magnetic alloy and magnetic device
TW201715046A (en) Cobalt, iron, boron, and/or nickel alloy-containing articles and methods for making same
CN114334416B (en) Method for preparing high-performance neodymium-iron-boron magnet by solid-liquid phase separation diffusion process
JP6981199B2 (en) Soft magnetic alloys and magnetic parts
JP2020520414A (en) Hot-working magnet and method for manufacturing the hot-working magnet
JPS59112602A (en) Permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP5057211B2 (en) Amorphous metal molded body and method for producing the same
JPWO2018123500A1 (en) Magnetic material sputtering target and method of manufacturing the same
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPH01261803A (en) Manufacture of rare-earth permanent magnet
JP2000232012A (en) Manufacture of rare-earth magnet
JPH10259439A (en) Wear resistant high permeability alloy and magnetic recording and reproducing head
JP2007162064A (en) Method of manufacturing magnetostriction material powder, and method of manufacturing magnetostrictor
JPH0770745A (en) Production of target for rare earth magnetic film
JPH0239503A (en) Rare earth-fe-b anisotropic permanent magnet and its manufacture
JPS62124262A (en) Method for modifying magnetic characteristic of high permeability amorphous alloy