JPS5911219B2 - FM multipath distortion reduction device - Google Patents

FM multipath distortion reduction device

Info

Publication number
JPS5911219B2
JPS5911219B2 JP15537479A JP15537479A JPS5911219B2 JP S5911219 B2 JPS5911219 B2 JP S5911219B2 JP 15537479 A JP15537479 A JP 15537479A JP 15537479 A JP15537479 A JP 15537479A JP S5911219 B2 JPS5911219 B2 JP S5911219B2
Authority
JP
Japan
Prior art keywords
signal
sub
envelope
pilot signal
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15537479A
Other languages
Japanese (ja)
Other versions
JPS5678250A (en
Inventor
俊一 根津
清健 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15537479A priority Critical patent/JPS5911219B2/en
Publication of JPS5678250A publication Critical patent/JPS5678250A/en
Publication of JPS5911219B2 publication Critical patent/JPS5911219B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/72Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for noise suppression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1646Circuits adapted for the reception of stereophonic signals

Description

【発明の詳細な説明】 本発明はFM信号が反射、回折などによつて複数の伝送
路を経て受信されたときに生ずるFMマルチパス歪の低
減装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for reducing FM multipath distortion that occurs when an FM signal is received through a plurality of transmission paths due to reflection, diffraction, etc.

日本特有の田舟地形や都市建築物の高層化によつて生ず
るFM受信におけるマルチパス障害は、TVのゴースト
障害と同様きわめて深刻な問題である。このマルチパス
障害は指向性に優れたアンテナを用いてある程度の改善
は期待できるが、直接波、反射波間の入射角差が小さい
場合ほとんど改善できないことや、各放送ごとに最適方
向が異なることを考えると、受信機内での対策が必要と
なる。そして、このような回路による対策として、実際
の伝送途中で生じたマルチパス現象と同じ特性(遅延時
間、D/ U比、無変調時位相差)を持ち、逆の極性(
直接波と遅延波が減算される)の伝送系を受信機内に設
置して、マルチパス妨害を受けたFM波をこれに通すこ
とによつて歪を改善させようとするものが提案されてい
る。しかし、上記方法では3つのパラメータを実際の放
送受信時に最適設定することが極めて複雑で、しかも高
周波信号を数10ttsまで任意に遅延させることは技
術的にも困難であるという問題があつた。本発明はこの
ような欠点に鑑み、比較的取り扱いやすい検波信号に対
策を実施するという観点に立ち、しかもFMマルチバス
歪は周波数の高い変調信号ほど影響を受けやすい特徴が
あり、従つて通常のフィールドではステレオ受信時での
歪が問題となることに着目し、構成の簡単なかつ調整の
容易なマルチパス歪低減装置を実現するものである。以
下、本発明の原理を説明する。
Multipath interference in FM reception caused by Japan's unique topography and the rise of urban buildings is an extremely serious problem, similar to TV ghost interference. This multipath interference can be expected to be improved to some extent by using an antenna with excellent directivity, but it is difficult to improve if the difference in the angle of incidence between the direct wave and the reflected wave is small, and the optimal direction differs for each broadcast. Considering this, countermeasures must be taken within the receiver. As a countermeasure using such a circuit, it has the same characteristics (delay time, D/U ratio, phase difference when no modulation) as the multipath phenomenon that occurs during actual transmission, but has the opposite polarity (
It has been proposed to install a transmission system in the receiver (where direct waves and delayed waves are subtracted) and pass FM waves that have suffered multipath interference through this system in order to improve distortion. . However, the above method has problems in that it is extremely complicated to optimally set the three parameters during actual broadcast reception, and it is also technically difficult to arbitrarily delay the high frequency signal up to several tens of tts. In view of these drawbacks, the present invention is based on the viewpoint of implementing countermeasures for detected signals that are relatively easy to handle.Moreover, FM multi-bass distortion is characterized in that the higher the frequency of the modulation signal, the more susceptible it is to the effect, and therefore the normal Focusing on the problem of distortion during stereo reception in the field, the present invention realizes a multipath distortion reduction device with a simple configuration and easy adjustment. The principle of the present invention will be explained below.

今、搬送波周波数ω。、変調信号μ(を)、振幅i。の
FM波に振幅に倍(に<1)、遅延時間τの反射波が重
畳された場合その合成波iは、となる。
Now, the carrier frequency ω. , modulation signal μ(), amplitude i. When a reflected wave with twice the amplitude (<1) and a delay time τ is superimposed on the FM wave of , the composite wave i becomes as follows.

この(1)式におけるl+Rexp(−j)(Q)。l+Rexp(-j)(Q) in this equation (1).

T+村−Tpdt)がマルチパス妨害を歪のある一種の
伝送路とみたときの伝達特性となる。簡単のためとおけ
ば、伝達特性f(Q)は と表わせる。
T+Mura-Tpdt) is the transfer characteristic when multipath interference is viewed as a type of transmission path with distortion. For simplicity, the transfer characteristic f(Q) can be expressed as follows.

またこのf(Q)の振幅特性A(Q)および位相特性p
(Q)はそれぞれとなる。
Also, the amplitude characteristic A(Q) and phase characteristic p of this f(Q)
(Q) will be respectively.

ところで、上記f(Q)なる伝達特性を持つた伝送路を
FM波が通過するとき、振幅特性については受信機内の
リミツタ効果によつて影響されないとすれば、通過後の
FM波1はとなり、この検波出力0は ここでp(Q)をQ.(ただしQ.= f+−T(!)。
By the way, when an FM wave passes through a transmission path having a transfer characteristic of f(Q) above, assuming that the amplitude characteristic is not affected by the limiter effect in the receiver, the FM wave 1 after passing becomes as follows. This detection output 0 means that p(Q) is Q. (However, Q.=f+-T(!).

Dt=00T)のまわりにテーラ一展開すると、 ただし、 (7)、(8)式より ここで変調信号をIt( t )=ムQ)COSptな
る正弦波とすれば、(9)式に代人してal式において
、係数B,のついた項 以降はすべて高調波歪の項に相
当する。
However, from equations (7) and (8), if the modulation signal is a sine wave with It( t ) = Q)COSpt, then equation (9) can be obtained. In the AL equation, all terms after the coefficient B correspond to harmonic distortion terms.

従つて基本波成分0p(t)はと表わせる。Therefore, the fundamental wave component 0p(t) can be expressed as.

一方b1は(5)式よりU′5式を01)式に代入すれ
ば、 次に、R2《1の条件下で、111を求め整理するとす
なわち、Tt( t )=八0c0sptなる変調信号
はマルチパス現象によつてその振幅が(1+COSPT
−12rc0sQ) 2 倍になる。
On the other hand, b1 is obtained from equation (5) by substituting equation U'5 into equation 01). Next, under the condition of R2《1, find 111 and rearrange it. In other words, the modulated signal of Tt ( t ) = 80c0spt is Due to the multipath phenomenon, the amplitude becomes (1+COSPT
-12rc0sQ) will be doubled.

コンポジツト信号中のサブ信号は搬送波抑圧振幅変調さ
れているが、この振幅情報が上記の影響を受けることに
よつてステレオ再生時に大きな歪の発生、および分離度
の低下を引きおこしている。一方FM信号の搬送波のエ
ンベロープは(4)式で与えられる影響を受ける。この
エンベロープ信号をXとすれば、いま、このXを(1−
COsPT)乗すればとなり、これは04)式で与え
られる振幅影響特性の逆数となつている。従つて0pに
xl− COsPtを乗ずれば、本来の振幅ムoが複元
されることになる。ここでサブ信号は単一正弦波ではな
いが、通常のノースではそのサブ信号におけるエネルギ
ーの大部分が38KHzの周辺土数KHzに集中してお
り、06)式における 1−COSPTのPを38KH
zに代表させて十分な効果が得られる。
Although the sub-signals in the composite signal are subjected to carrier wave suppression amplitude modulation, this amplitude information is affected by the above-mentioned effects, causing large distortion and a decrease in the degree of separation during stereo reproduction. On the other hand, the envelope of the carrier wave of the FM signal is affected by equation (4). If this envelope signal is X, then this X is (1-
COsPT), which is the reciprocal of the amplitude influence characteristic given by equation 04). Therefore, if 0p is multiplied by xl-COsPt, the original amplitude o will be multiplied. Here, the sub-signal is not a single sine wave, but in a normal north, most of the energy in the sub-signal is concentrated in the surrounding earth number KHz of 38 KHz, so P of 1-COSPT in equation 06) is
A sufficient effect can be obtained as represented by z.

ところで上記のような振幅補正はサブ信号だけでなく当
然パイロツト信号にも適用できる。すなわち、サブ信号
補正のために、xl− COSPT(ただし、P=2r
×38×103)なる信号を用いるとき、19KHzの
パイロツト信号に対しては、xゞ が利用できる。
Incidentally, the above amplitude correction can of course be applied not only to the sub-signal but also to the pilot signal. That is, for sub-signal correction, xl-COSPT (where P=2r
x38 x 103), x can be used for the 19 KHz pilot signal.

とおいて、A.bそれぞれの遅延時間Tに対する変化を
第1図に示す。
Besides, A. FIG. 1 shows the changes in each delay time T of b.

図から明らかなように、Tが0から九ンまでのaとbの
関係が以降すべて0Tについて繰り返されるので、おけ
る第1図のaとbの関係をあらかじめ記憶しておけば、
前記パイロツト信号を最適に補正するbの値から、サブ
信号を最適に補正するaの値を与えることができる。
As is clear from the figure, the relationship between a and b for T from 0 to 9 is repeated for all 0T, so if you memorize the relationship between a and b in Figure 1 in advance,
From the value of b that optimally corrects the pilot signal, the value of a that optimally corrects the sub-signal can be given.

以上の原理に基づいた本発明の構成を第1図に示す。The configuration of the present invention based on the above principle is shown in FIG.

FM検波器1で得たコンポジツト信号は低域通過ノイル
タ2によつてメイン信号を、19KHz帯域通過フイル
タ3によつてパイロツト信号を、そして中心周波数38
KHzの帯域通過フイルタ4によつてサブ信号をそれぞ
れ分離される。一方中間周波信号は自動利得制御回路5
で時間平均的振幅を一定化された後エンベローブ検出器
6によつてそのエンベローブを検出される。このエンベ
ロープ信号はXaを与えるべき乗回路Tと妙 を与える
べき乗回路8にそれぞれ入力される。ここにおいてこれ
らA,.bの値は先に述べた両者の関係を保ちながら設
定するよう可変連動設定回路9によつて与えられる。次
にアナログ乗算回路10においては帯域フイルタ3の出
力であるパイロツト信号とべき乗回路8の出力信号が乗
算され、パイロツト信号を補正する。またアナログ乗算
回路11においては、帯域フイルタ4の出力であるサブ
信号とべき乗回路7の出力信号が乗算され、サブ信号を
補正する。低域フイルタ2の出力であるメイン信号と上
記補正後のパイロツト信号とサブ信号は加算回路12に
よつてコンポジツト信号を再合成し、ステレオ復調回路
13に入力される。同時に乗算器10の出力である補正
後のパイロツト信号はその振幅変調成分を検出回路14
で検出され、そのレベルは表示器15に表示される。も
しパイロツト信号に対する補正が最適であれば、補正後
の振幅は一定となるので、表示器15の指示は最小とな
る。従つて表示器15の指示を最小にするよう設定回路
9を制御して最適のb値を与えれば、このとき同時にサ
ブ信号を最適に補正するa値が選ばれる。なお設定回路
9は第2図のτ2π=O〜一までのA.bの曲線を与え
る二連式のP可変抵抗器や、曲線によく近似して配列さ
れた抵抗網の端子切換えなどによつて容易に実現される
The composite signal obtained by the FM detector 1 is converted into a main signal by a low-pass noilter 2, a pilot signal by a 19 KHz band-pass filter 3, and a center frequency 38.
The sub-signals are separated by a KHz bandpass filter 4. On the other hand, the intermediate frequency signal is controlled by the automatic gain control circuit 5.
After the time-average amplitude is made constant, the envelope is detected by the envelope detector 6. This envelope signal is input to a power circuit T which gives Xa and a power circuit 8 which gives Xa. Here, these A, . The value of b is given by the variable interlock setting circuit 9 so as to set it while maintaining the relationship between the two described above. Next, in the analog multiplication circuit 10, the pilot signal which is the output of the bandpass filter 3 is multiplied by the output signal of the exponentiation circuit 8, and the pilot signal is corrected. Further, in the analog multiplication circuit 11, the sub-signal which is the output of the bandpass filter 4 is multiplied by the output signal of the exponentiation circuit 7, and the sub-signal is corrected. The main signal output from the low-pass filter 2, the pilot signal after the above correction, and the sub signal are recombined into a composite signal by an adder circuit 12 and input to a stereo demodulation circuit 13. At the same time, the corrected pilot signal, which is the output of the multiplier 10, receives its amplitude modulation component from the detection circuit 14.
and its level is displayed on the display 15. If the correction to the pilot signal is optimal, the amplitude after correction will be constant and the indication on the display 15 will be minimum. Therefore, if the setting circuit 9 is controlled to minimize the indication on the display 15 and the optimum b value is given, at the same time the a value that optimally corrects the sub-signal is selected. Note that the setting circuit 9 is used for A.2π=O to 1 in FIG. This can be easily realized by using a double P variable resistor that provides the curve b, or by switching the terminals of a resistor network arranged to closely approximate the curve.

また検出器14の出力レベルを電子回路によつて判別し
、設定回路9を自動的に制御することも当然可能である
。尚、上記の実施例では補正後のパイロツト信号の変調
成分を検出してレベル表示し、その調整度合の適否を判
別するようにしたが、これ以外にもコンポジツト信号が
マルチパス障害を受けて上下非対称となることから、た
とえば再合成されたコンポジツト信号の零レベルを中心
にして面積を対比し、その調整度合の適否を判別するよ
うにしてもよいことは云うまでもない。
Naturally, it is also possible to determine the output level of the detector 14 using an electronic circuit and automatically control the setting circuit 9. In the above embodiment, the modulation component of the corrected pilot signal is detected and the level is displayed to determine whether the degree of adjustment is appropriate. Since it is asymmetrical, it goes without saying that the areas may be compared centering on the zero level of the recombined composite signal to determine whether the degree of adjustment is appropriate or not.

以上本発明によれば、高周波信号に対しても、検波信号
に対しても可変遅延器を必要とせず、しかも指示計を見
ながらーケ所の調整だけでよいので、構成の簡単な、か
つ操作の容易なFMステレオ放送マルチパス歪低減装置
が実現できるものである。
As described above, according to the present invention, there is no need for a variable delay device for either the high frequency signal or the detected signal, and furthermore, it is only necessary to make adjustments while looking at the indicator, so the configuration is simple and the operation is simple. This makes it possible to easily realize an FM stereo broadcast multipath distortion reduction device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のFMマルチパス歪低減装置の一構成例
を示すプロツク図、第2図は同装置の動作説明図である
。 1・・・・・・FM検波器、2・・・・・・低域通過フ
イルタ、3・・・・・・19KHz帯域通過フイルタ、
4・・・・・・帯域通過フイルタ、5・・・・・泪動利
得制御回路、6・・・・・・エンベロープ検出器、7,
8・・・・・・べき乗回路、9・・・・・・可変連動設
定回路、10,11・・・・・・アナログ乗算回路、1
2・・・・・・加算回路、13・・・・・・ステレオ復
調回路、14・・・・・・検出回路、15・・・・・・
表示器。
FIG. 1 is a block diagram showing an example of the configuration of an FM multipath distortion reduction device according to the present invention, and FIG. 2 is an explanatory diagram of the operation of the device. 1...FM detector, 2...Low pass filter, 3...19KHz band pass filter,
4...bandpass filter, 5...depression gain control circuit, 6...envelope detector, 7,
8...Power circuit, 9...Variable interlock setting circuit, 10, 11...Analog multiplication circuit, 1
2...Addition circuit, 13...Stereo demodulation circuit, 14...Detection circuit, 15...
display.

Claims (1)

【特許請求の範囲】[Claims] 1 ステレオ信号で変調されたFM信号を検波して得ら
れるコンポジット信号中よりパイロット信号を選択する
手段と、同じくサブ信号を選択する手段と、上記FM信
号のエンベロープを検出する手段と、該検出手段で得た
エンベロープ信号をa乗(0≦a≦2)する第1のべき
乗手段と、同じくb乗(0≦b≦2)する第2のべき乗
手段と、該aの値を1−cosθで表すときbの値が1
−cosθ/2となるようなaとbの関係を保ちながら
変化させる手段と、上記選択されたサブ信号と第1のべ
き乗手段の出力信号を入力とする第1の乗算手段と、上
記選択されたパイロット信号と第2のべき乗手段の出力
信号を入力とする第2の乗算手段を備え、上記第1、第
2の乗算手段の出力に補正されたサブ信号とパイロット
信号を得るとともに、該補正されたパイロット信号の振
幅変調の程度を検出、表示することにより、サブ信号、
パイロット信号の補正度合を知るように構成したことを
特徴とするFMマルチパス歪低減装置。
1. Means for selecting a pilot signal from a composite signal obtained by detecting an FM signal modulated with a stereo signal, means for selecting a sub-signal as well, means for detecting the envelope of the FM signal, and the detecting means. A first exponentiation means that raises the envelope signal obtained by raising the envelope signal to the a power (0≦a≦2), a second exponentiation means that also raises the envelope signal obtained in When representing the value of b is 1
-cos θ/2, a means for changing the relationship between a and b while maintaining the relationship; a first multiplication means that receives the selected sub-signal and the output signal of the first exponentiation means; a second multiplier which receives as input the pilot signal and the output signal of the second exponentiation means, which obtains the corrected sub-signal and pilot signal from the outputs of the first and second multiplier means, and performs the correction. By detecting and displaying the degree of amplitude modulation of the pilot signal, the sub-signal,
An FM multipath distortion reduction device characterized in that it is configured to know the degree of correction of a pilot signal.
JP15537479A 1979-11-29 1979-11-29 FM multipath distortion reduction device Expired JPS5911219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15537479A JPS5911219B2 (en) 1979-11-29 1979-11-29 FM multipath distortion reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15537479A JPS5911219B2 (en) 1979-11-29 1979-11-29 FM multipath distortion reduction device

Publications (2)

Publication Number Publication Date
JPS5678250A JPS5678250A (en) 1981-06-27
JPS5911219B2 true JPS5911219B2 (en) 1984-03-14

Family

ID=15604530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15537479A Expired JPS5911219B2 (en) 1979-11-29 1979-11-29 FM multipath distortion reduction device

Country Status (1)

Country Link
JP (1) JPS5911219B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037057C (en) * 1993-02-05 1998-01-14 日本电信电话株式会社 Circuit for removing random FM noise

Also Published As

Publication number Publication date
JPS5678250A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
KR920002762B1 (en) Receiver for rf-signals
JPH088521B2 (en) Receiver for radio waves with multiple antennas
CA1061449A (en) Ghost removing system for use in television receiver
JPS5845216B2 (en) Multipath distortion removal circuit
EP0099112B1 (en) Space diversity system
US4586153A (en) Serial cross-correlators
US4298983A (en) Automatic equalization system in FM communication circuit
US4602287A (en) Intermediate frequency filter with Nyquist phase modulation correction
JPS5911219B2 (en) FM multipath distortion reduction device
US4602288A (en) Intermediate frequency saw filter with nyquist phase modulation correction
JPS5846704A (en) Synchronous envelope rectifier
US4096454A (en) Amplitude and delay equalization of surface acoustic wave filters in amplitude modulation system
JPS5843941B2 (en) AM stereo receiver
JPS5911220B2 (en) FM multipath distortion reduction device
US8064858B1 (en) Digital carrier-recovery scheme for FM stereo detection
JPH0514427A (en) Optical heterodyne fsk dual filter detector
JPS6217905B2 (en)
EP1139573A2 (en) Frequency modulation multiplex demodulation device
JPS6238362Y2 (en)
Murakami et al. Detection of Asymmetric Sideband Signals in the Presence of Noise
JPS5830249A (en) Fm stereo demodulating circuit
JP2646858B2 (en) Cross polarization interference compensator
SU828424A1 (en) Device for processing broad-band frequency-modulated signals
JPS59168753A (en) Device for demodulating fsk modulating wave
JPH0215415Y2 (en)