JPS59112163A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS59112163A
JPS59112163A JP22277982A JP22277982A JPS59112163A JP S59112163 A JPS59112163 A JP S59112163A JP 22277982 A JP22277982 A JP 22277982A JP 22277982 A JP22277982 A JP 22277982A JP S59112163 A JPS59112163 A JP S59112163A
Authority
JP
Japan
Prior art keywords
pressure
evaporator
valve
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22277982A
Other languages
Japanese (ja)
Other versions
JPH0320663B2 (en
Inventor
藤本 真嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP22277982A priority Critical patent/JPS59112163A/en
Publication of JPS59112163A publication Critical patent/JPS59112163A/en
Publication of JPH0320663B2 publication Critical patent/JPH0320663B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複数の蒸発器により、複数の室を所 ・定の
温度に冷却する例えば冷凍・冷蔵庫等の冷凍装置に関し
、特にその冷凍システムの冷媒流制御に係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to refrigeration equipment such as freezers and refrigerators that cool multiple chambers to a predetermined temperature using a plurality of evaporators. Related to flow control.

従来例の構成とその問題点 従来の冷凍装置、例えば2温度式冷凍冷蔵庫の冷凍装置
(佳第1図に示す様に圧縮機1 、凝縮器2゜第一の減
圧器3.第一の電磁弁4.第二の減圧器5、第一の蒸発
器6.第二の蒸発器7.サクションライン8.圧縮機1
 、と環状に接続し、かつ、第一の減圧器3と、第二の
蒸発器7の入口との間を、第二の電磁弁9を介して、第
三の減圧器1゜て接続して、冷凍装置を構成している。
Structure of the conventional example and its problems Conventional refrigeration equipment, for example, the refrigeration equipment of a two-temperature refrigerator-freezer (as shown in Fig. Valve 4. Second pressure reducer 5, first evaporator 6. Second evaporator 7. Suction line 8. Compressor 1
, and the first pressure reducer 3 and the inlet of the second evaporator 7 are connected via the second solenoid valve 9 and the third pressure reducer 1°. This constitutes a refrigeration system.

そして第2図に示す様に、第一の蒸発器6を有する冷却
室(冷蔵室)の温度調節器11の常閉端子112Lに第
一の電磁弁4を、常開端子11bに第2の電磁弁9を接
続し、第二の蒸発器7を有する冷却室(冷凍室)の温度
調節器12と、前記、温度調節器11と電磁弁4,9及
び圧縮機1をそれぞれ直列に接続している。上記構成に
あって、冷凍室。
As shown in FIG. 2, the first solenoid valve 4 is connected to the normally closed terminal 112L of the temperature controller 11 of the cooling room (refrigerating room) having the first evaporator 6, and the second solenoid valve is connected to the normally open terminal 11b. A solenoid valve 9 is connected, and a temperature regulator 12 of a cooling room (freezing room) having a second evaporator 7 is connected in series with the temperature regulator 11, the solenoid valves 4 and 9, and the compressor 1, respectively. ing. With the above configuration, the freezer compartment.

冷蔵室両室を冷却する時は、第一の電磁弁4を開路、第
二の電磁弁9を閉路し、冷媒は圧縮機1゜凝縮器2.第
一の減圧器3.第二の減圧器5.第一の蒸発器6.第二
の蒸発器7.圧縮機1へと循環し、冷凍室、冷蔵室を冷
却する。そして冷蔵室が所定の温度迄低下すると、冷蔵
室の温度調節器11が、常開接点11bに切換わり、第
一の電磁弁4が閉路し、第二の電磁弁9が開路し、冷媒
は圧縮機1.凝縮器2.第一の減圧器3.第三の減圧器
10.第二の蒸発器7.圧縮機1へと循環し、冷凍室の
みを冷却する。そして冷凍室が所定の温度迄低下すると
、冷凍室の温度調節器12が開路し、圧縮機1を停止さ
せると共に、電磁弁4,9を閉路し、凝縮器2内の高温
高圧冷媒が第二の減圧器5.及び第三の減圧器1oを介
して蒸発器6゜7に流入するのを防止する構成であった
ため、冷媒の制御に二つの電磁弁が必要であり、コスト
が上昇すると共に、電磁弁の動作音による騒音に対する
防音が必要となり、又、電磁弁の入力増によシ消費電力
量が増大するという問題点を有していだ。
When cooling both refrigerator compartments, the first solenoid valve 4 is opened, the second solenoid valve 9 is closed, and the refrigerant is transferred to the compressor 1° condenser 2. First pressure reducer3. Second pressure reducer5. First evaporator6. Second evaporator7. It circulates to the compressor 1 and cools the freezer and refrigerator compartments. When the temperature of the refrigerator compartment drops to a predetermined temperature, the temperature controller 11 of the refrigerator compartment switches to the normally open contact 11b, the first solenoid valve 4 closes, and the second solenoid valve 9 opens, and the refrigerant is discharged. Compressor 1. Condenser 2. First pressure reducer3. Third pressure reducer 10. Second evaporator7. It circulates to the compressor 1 and cools only the freezer compartment. When the temperature of the freezer compartment drops to a predetermined temperature, the temperature controller 12 of the freezer compartment opens, stops the compressor 1, and closes the solenoid valves 4 and 9, so that the high-temperature, high-pressure refrigerant in the condenser 2 is Pressure reducer 5. Since the structure prevents the refrigerant from flowing into the evaporator 6゜7 through the third pressure reducer 1o, two solenoid valves are required to control the refrigerant, which increases costs and reduces the operation of the solenoid valves. This requires soundproofing against noise, and also has the problem of increased power consumption due to increased input to the solenoid valve.

発明の目的 そこで本発明は、上記問題点に鑑み、電磁弁を使用せず
に、電磁弁2個と同等の冷媒流の切換制御を可能にし、
騒音がなく、且つ電気入力の不必要であり、さらに、圧
縮機停止中に蒸発器へ流入する高温冷媒の流れを阻止す
る冷媒流制御装置を有する冷凍装置を提供せんとするも
のである。
Purpose of the Invention In view of the above problems, the present invention enables switching control of refrigerant flow equivalent to two solenoid valves without using a solenoid valve,
It is an object of the present invention to provide a refrigeration system that is noiseless and requires no electrical input, and further has a refrigerant flow control device that prevents the flow of high temperature refrigerant into the evaporator when the compressor is stopped.

発明の構成 この目的を達成するため本発明は、圧縮機の運転・停止
に同期する冷凍装置内圧力変化により作動する差圧弁と
、感熱部の温度の相当圧力と冷凍装置内圧力との圧力差
により、作動する温度式差圧弁を有し、前記差圧弁を凝
縮器の下流側に、前記温度式差圧弁を前記差圧弁の下流
側に設け、圧縮機の運転・停止に同期する圧力変化によ
り、差圧弁を開閉動作させることにより、圧縮機停止時
、凝縮器からエバポレータに高温高圧冷媒が流入するの
を防止すると共に、圧縮機運転中は、感熱部の温度の相
当圧力と冷凍装置内の圧力との差圧が所定値に比べて大
小することによシ、温度式差圧弁を開閉動作させ第一の
エバポレータへの冷媒流を制御する様にしたものである
Structure of the Invention In order to achieve this object, the present invention provides a differential pressure valve that operates based on changes in the internal pressure of the refrigeration system that are synchronized with the start and stop of the compressor, and a pressure difference between the pressure equivalent to the temperature of the heat-sensitive part and the internal pressure of the refrigeration system. The temperature type differential pressure valve is provided on the downstream side of the condenser, and the temperature type differential pressure valve is provided on the downstream side of the differential pressure valve, and the temperature type differential pressure valve is operated by the pressure change in synchronization with the operation and stop of the compressor. By opening and closing the differential pressure valve, when the compressor is stopped, high-temperature, high-pressure refrigerant is prevented from flowing into the evaporator from the condenser, and when the compressor is operating, the pressure equivalent to the temperature of the heat-sensitive part and the temperature inside the refrigeration system are The temperature type differential pressure valve is opened and closed to control the flow of refrigerant to the first evaporator when the differential pressure with respect to the first evaporator becomes larger or smaller than a predetermined value.

実施例の説明 以下、本発明の一実施例として、二つのエバポレータを
有する2温度式冷凍冷蔵庫7で特に、ロータリーコンプ
レッサを有する冷凍装置について第3図〜第5図に従い
説明する。冷凍装置は、高圧容器型ロータリ一式の圧縮
機100.凝縮器101゜第一の減圧器102.冷媒制
御弁103.第二の減圧器104.第一のエバポレータ
1Q5.第二のエバポレータ106.サクションライン
10γ圧縮機100からの逆流を防止する逆止弁108
を環状に接続し、かつ、第一のエバポレータ105をバ
イパスする第三の減圧器109から構成されている。冷
媒制御弁103の入口管110は、第一の減圧器102
の出口と接続され、第一の出口管111は第二の減圧器
104の入口に、また第二の出口管112は第三の減圧
器109の入口を介して、第二の蒸発器106の入口に
それぞれ接続している。
DESCRIPTION OF EMBODIMENTS Hereinafter, as an embodiment of the present invention, a two-temperature refrigerator-freezer 7 having two evaporators, particularly a refrigeration system having a rotary compressor, will be described with reference to FIGS. 3 to 5. The refrigeration system includes a high-pressure container-type rotary compressor 100. Condenser 101. First pressure reducer 102. Refrigerant control valve 103. Second pressure reducer 104. First evaporator 1Q5. Second evaporator 106. Check valve 108 that prevents backflow from suction line 10γ compressor 100
The third pressure reducer 109 is connected in an annular manner and bypasses the first evaporator 105. The inlet pipe 110 of the refrigerant control valve 103 is connected to the first pressure reducer 102
The first outlet pipe 111 is connected to the inlet of the second pressure reducer 104, and the second outlet pipe 112 is connected to the inlet of the third pressure reducer 109 to the second evaporator 106. Each is connected to the entrance.

次に、冷媒制御弁103の構成について説明する。入口
管110.第一の出口管111 、第二の出口管112
を有するケーシング113と、導圧管114を設けた、
上部ケーシング115と導圧部116を介して感熱筒1
17を有する下部ケーシング118とで外殻119を形
成し、内部を上部圧力応動素子1201L、下部圧力応
動素子120bにて上部感圧室121と弁室122と下
部感圧室123とに区画している。前記上部圧力応動素
子120&、下部圧力応動素子120bの弁室122側
面に(はそれぞれスペサー123iL 、123bを介
シて第一のボール弁124+第二のボー/+4126を
一体的に取付けている。前記両ボール升124.1’2
5間にはブロック126を設け、前記ブロック126は
入口管110と第二の出口管112間のケーシング11
3部に一体的に固定されている。ブロック126には第
一のボール弁124の弁座127と、第二のボール弁1
25の弁座128及び前記第一のボール弁124のガイ
ド129.第二のボール9P125のガイド130をそ
れぞれ一体に形成し第一の弁装置131と第二の弁装置
132を構成している。前記両ガイド129.130に
はそれぞれ冷媒通路穴133゜134を設けている。又
、ブロック126には、第一の弁装置131の弁座12
7と第二の弁装置132の弁座128を貫通する比較的
大径の貫通孔135を形成し、貫通孔135の略中央に
は貫通孔135の通路面積より小さい冷媒連通孔136
を設け、その出口部に第一の出口管111を接続してい
る。上部感圧室121内にはスプリング136を設けて
おり、第一のボール弁124を所定の付勢力で弁座12
7に押し付けている。前記導圧管114は、ロータリ一
式圧縮機100と逆止弁108間のサクションラインに
接続している。
Next, the configuration of the refrigerant control valve 103 will be explained. Inlet pipe 110. First outlet pipe 111, second outlet pipe 112
a casing 113 having a casing 113 and a pressure impulse pipe 114;
The thermosensitive cylinder 1 is connected to the upper casing 115 and the pressure guiding part 116.
17, and the lower casing 118 forms an outer shell 119, and the inside is divided into an upper pressure sensitive chamber 121, a valve chamber 122, and a lower pressure sensitive chamber 123 by an upper pressure responsive element 1201L and a lower pressure responsive element 120b. There is. The first ball valve 124+second ball valve 124+4126 are integrally attached to the side surfaces of the valve chamber 122 of the upper pressure responsive element 120& and the lower pressure responsive element 120b (through spacers 123iL and 123b, respectively). Both balls square 124.1'2
A block 126 is provided between the casing 11 between the inlet pipe 110 and the second outlet pipe 112.
It is integrally fixed in three parts. The block 126 includes a valve seat 127 of the first ball valve 124 and a valve seat 127 of the second ball valve 124.
25 valve seat 128 and the guide 129 of the first ball valve 124. The guides 130 of the second balls 9P125 are each formed integrally to constitute a first valve device 131 and a second valve device 132. Both guides 129 and 130 are provided with refrigerant passage holes 133 and 134, respectively. The block 126 also includes the valve seat 12 of the first valve device 131.
7 and a relatively large diameter through hole 135 that passes through the valve seat 128 of the second valve device 132, and a refrigerant communication hole 136 smaller than the passage area of the through hole 135 is formed approximately in the center of the through hole 135.
is provided, and a first outlet pipe 111 is connected to the outlet portion thereof. A spring 136 is provided in the upper pressure sensitive chamber 121, and the first ball valve 124 is urged against the valve seat 12 with a predetermined biasing force.
I'm pushing it to 7. The pressure impulse pipe 114 is connected to a suction line between the rotary compressor 100 and the check valve 108.

下部感圧室123内には、冷凍装置と同一の冷媒を封入
している。下部感圧室123と連通している感熱筒11
7は第一のエバポレータ1o5と熱交換的に固定してい
る。つまり、下部感圧室123内は、第一のエバポレー
タ105の温度に相当する圧力が作用し、第一のエバポ
レータ105の温度が所定以下になったとき、前記下部
感圧室123の下部圧力応動素子120bの変位により
閉路する様に構成している。又ロータリ一式圧縮機10
0の運転停止の制御は、第二のエバポレータを有スる冷
凍室の温度調節器(図示せず)にて行なう様に構成して
いる。
The lower pressure sensitive chamber 123 is filled with the same refrigerant as that of the refrigeration system. Heat-sensitive cylinder 11 communicating with lower pressure-sensitive chamber 123
7 is fixed to the first evaporator 1o5 for heat exchange. That is, a pressure corresponding to the temperature of the first evaporator 105 acts inside the lower pressure-sensitive chamber 123, and when the temperature of the first evaporator 105 falls below a predetermined value, the lower pressure of the lower pressure-sensitive chamber 123 responds. The circuit is configured to be closed by displacement of the element 120b. Also, rotary complete compressor 10
Control of the operation stoppage of 0 is performed by a temperature controller (not shown) of the freezing chamber including the second evaporator.

上記構成において、第一のエバポレータ105を有する
冷蔵室と第二のエバポレータ106を有する冷凍室を冷
却する場合第4図に示す様に、ロータリ一式圧縮機10
0は運転し、凝縮器IQ1を出た高圧冷媒(は、第一の
減圧器102で中圧迄減圧された後入口管110より第
一の弁装置131を有するケーシング113内に、流入
する。一方圧縮機1ooのサクションライン107は圧
縮機100の運転により低圧となっている。従って圧縮
機100と逆止弁108間と接続している上部感圧室1
21内も低圧となっており、上部圧力応動素子1201
Lは第一の弁装置131を有するケーシング113内の
中圧と上部感圧室121内の低圧との圧力差にょシ、上
部圧力応動素子120aおよび第1のボール弁124を
上方に変位し、第一の弁装置131を開路する。従って
冷媒は冷媒通路穴133.’貫通孔135.連通穴13
6を通って、第二の減圧器104で所望の低圧迄減圧さ
れ、第一の蒸発器105に流入し、第二の蒸発器106
、サクションライン107 、 逆止弁108゜圧縮機
1oOへと循環し冷凍室、冷蔵室を冷却する。
In the above configuration, when cooling the refrigerator compartment having the first evaporator 105 and the freezing compartment having the second evaporator 106, as shown in FIG.
0 is operated, and the high-pressure refrigerant (output from the condenser IQ1) is reduced in pressure to intermediate pressure in the first pressure reducer 102 and then flows into the casing 113 having the first valve device 131 through the inlet pipe 110. On the other hand, the suction line 107 of the compressor 1oo is at a low pressure due to the operation of the compressor 100. Therefore, the upper pressure sensitive chamber 1 connected between the compressor 100 and the check valve 108
21 is also at low pressure, and the upper pressure responsive element 1201
L is the pressure difference between the intermediate pressure in the casing 113 having the first valve device 131 and the low pressure in the upper pressure sensitive chamber 121, displacing the upper pressure responsive element 120a and the first ball valve 124 upward; The first valve device 131 is opened. Therefore, the refrigerant flows through the refrigerant passage hole 133. 'Through hole 135. Communication hole 13
6, the pressure is reduced to a desired low pressure in the second pressure reducer 104, the flow flows into the first evaporator 105, and the second evaporator 106
, suction line 107, and check valve 108. The air is circulated to the compressor 1oO to cool the freezer and refrigerator compartments.

゛  そして、冷蔵室が所定の温度迄低下すると、すな
わち第一の蒸発器105が低下すると、感熱筒117の
温度が低下し、下部感圧室123内の圧力も、感熱筒1
17の温度の相当圧カ迄低下する。
゛ Then, when the temperature of the refrigerator compartment decreases to a predetermined temperature, that is, when the temperature of the first evaporator 105 decreases, the temperature of the heat-sensitive cylinder 117 decreases, and the pressure inside the lower pressure-sensitive chamber 123 also decreases.
The pressure is reduced to a temperature equivalent to 17.

すると下部圧力応動素子120bの変位する設定圧力差
よシ貫通孔136内の圧力と下部感圧室123内の圧力
との圧力差が犬きくなシ、下部圧力応動素子120bお
よび第二のボール弁125は下方に変位し、第二の弁装
置132を開路する。
Then, the pressure difference between the pressure inside the through hole 136 and the pressure inside the lower pressure sensitive chamber 123 increases due to the set pressure difference caused by the displacement of the lower pressure responsive element 120b, and the lower pressure responsive element 120b and the second ball valve 125 is displaced downward, opening the second valve device 132.

このとき貫通孔135より連通穴136の通路面積が小
さく、かつ第二の減圧器1045第三の −減圧器10
9の抵抗を小さく設定しているだめ、第二の弁装置13
2が開路すると冷媒の大半は、抵抗の小さい貫通孔13
5.第二の出口管112を通り、第三の減圧器109で
所定の圧カ迄減圧され、第二の蒸発器106.サクショ
ンライン107、逆止弁1o8.ロータリー圧縮機10
0へと循環し、第一の蒸発器105にほとんど冷媒を流
すことなく第二の蒸発器106を有する冷凍室のみを冷
却する。
At this time, the passage area of the communication hole 136 is smaller than that of the through hole 135, and the second pressure reducer 1045 and the third pressure reducer 10
If the resistance of 9 is set small, the second valve device 13
2 opens, most of the refrigerant flows through the through hole 13 with low resistance.
5. Passing through the second outlet pipe 112, the pressure is reduced to a predetermined pressure by the third pressure reducer 109, and the second evaporator 106. Suction line 107, check valve 1o8. Rotary compressor 10
0, and cools only the freezer compartment having the second evaporator 106 with almost no refrigerant flowing into the first evaporator 105.

次に、冷凍室が所定の温度迄低下すると温度調節器(図
示せず)にて圧縮機100を停止させる。
Next, when the temperature of the freezer compartment drops to a predetermined temperature, the compressor 100 is stopped by a temperature regulator (not shown).

圧縮機10Qが停止するとロータリ一式の圧縮機100
内のシリンダ室(図示せず)のオイルシールが破れ、シ
リンダ室より、サクションライン107に高温高圧冷媒
が逆流してくる。しかし、逆止弁108がある為高温高
圧冷媒は逆止弁108迄で流入防止され、蒸発器105
.IQ6の熱負荷となることはない。又、圧縮機100
と逆止弁108間のサタンヨンライン107内の圧力は
圧縮機1ooからの逆流高温高圧冷媒により、圧縮機1
00が停止すると同時に圧力が上昇し、サクシ=! ン
ライン107と接続している上部感圧室121内の圧力
も同様に上昇する。そして上部圧力応動素子120aの
内外の圧力差が設定値以下になるとスプリング136の
付勢力にょシ上部圧力応動素子120aを下方に変位さ
せ、第3図に示す様に第一の弁装置131を閉路し、凝
縮器101内の高温高圧冷媒が第二の減圧器104゜第
三の減圧器109を介して温度の低い蒸発器105.1
06内に流入し、熱負荷になるのを防止する。
When the compressor 10Q stops, the rotary set compressor 100
The oil seal in the inner cylinder chamber (not shown) is broken, and high-temperature, high-pressure refrigerant flows back into the suction line 107 from the cylinder chamber. However, due to the presence of the check valve 108, the high temperature and high pressure refrigerant is prevented from flowing into the evaporator 105 up to the check valve 108.
.. It will not become a heat load for IQ6. Also, compressor 100
The pressure in the Sathanyong line 107 between the check valve 108 and the
As soon as 00 stops, the pressure increases and Sakshi=! The pressure within the upper pressure sensitive chamber 121 connected to the online line 107 also rises. When the pressure difference between the inside and outside of the upper pressure responsive element 120a becomes less than the set value, the biasing force of the spring 136 displaces the upper pressure responsive element 120a downward and closes the first valve device 131 as shown in FIG. Then, the high-temperature, high-pressure refrigerant in the condenser 101 passes through the second pressure reducer 104 and the third pressure reducer 109 to the low-temperature evaporator 105.1.
06 and prevents it from becoming a heat load.

従って、この冷媒制御弁103にて、第一のエバポレー
タ105への冷媒流入制御と、ロータリ一式の圧縮機1
00停止時に第一のエバポレータ105及び第二のエバ
ポレータ106に高温高圧冷媒が流入するのを防止し、
各エバポレータ105゜106の温度を上昇させ熱負荷
となることはない。
Therefore, this refrigerant control valve 103 controls the refrigerant inflow to the first evaporator 105 and the compressor 1 of the rotary set.
Preventing high-temperature and high-pressure refrigerant from flowing into the first evaporator 105 and the second evaporator 106 during the 00 stop,
The temperature of each evaporator 105 and 106 will not be increased and there will be no heat load.

尚図示した一実施例においては、第一の蒸発器105と
第二の蒸発器106を直列に接続したが、これに限らず
、第一の出口管111に第二の減圧器104を介して第
一の蒸発器105を接続し、又、第2の出口管112に
第3の減圧器109を介して第2の蒸発器106を接続
し、両蒸発器105.106の出口側を共にサクション
ライン107に接続してもよい。まだ、感熱筒117を
第1の蒸発器1o5に熱交換状態に配置したが、第1の
蒸発器105の配置されている室(冷蔵室)の室内空気
温度にて作動することも可能である。
In the illustrated embodiment, the first evaporator 105 and the second evaporator 106 are connected in series, but the invention is not limited to this. The first evaporator 105 is connected, and the second evaporator 106 is connected to the second outlet pipe 112 via a third pressure reducer 109, and the outlet sides of both evaporators 105 and 106 are connected to each other. It may also be connected to line 107. Although the heat-sensitive tube 117 is still placed in a heat exchange state with the first evaporator 1o5, it is also possible to operate at the indoor air temperature of the room (refrigeration room) where the first evaporator 105 is placed. .

発明の効果 以上の説明からも明らかな様に本発明は高圧容器形ロー
タリ一式の圧縮機、凝縮器、減圧器、複数の蒸発器及び
冷媒制御弁より構成し、冷媒制御弁は、圧縮機の運転・
停止に同期する冷凍装置内圧力変化により開閉動作する
第一〇弁装置と一方の蒸発器あるいは、この蒸発器にて
冷却される室の温度変化により開閉動作する第二の弁装
置を内蔵し、第1の弁装置を凝縮器の下流に配置し、第
1の弁装置の出口冷媒通路は、一方の蒸発器に接続する
抵抗の大きい第二の減圧器と、上流の蒸発器をバイパス
して他方の蒸発器に接続する抵抗の小なる第三の減圧器
を有し、バイパス通路の入口部に第二の弁装置を配置し
たものであるから、圧縮機が停止時、凝縮器の下流に配
置している第一の弁装置が閉路し、蒸発器に凝縮器から
減圧器を通じて高温高圧冷媒が流入するのを防止し、蒸
発器が高温高圧冷媒にて温度上昇し、熱負荷となること
がない。又圧縮機運転中、上流の蒸発器の温度が所定の
温度より高い時は、第2の弁装置を閉路し、上流の蒸発
器、下流の蒸発器へと冷媒を流入させ、前詰蒸発器を冷
却させる。そして、上流の蒸発器が所定の温度より低下
すると第2の弁装置が開路し冷媒は第2の弁装置・第三
の減圧器に大半が流れ、第一の蒸発器の冷却を停止させ
るので、従来の様に2つの電磁升を用いることなく、1
つの冷媒制御弁でかつ電気入力も必要とせず、圧縮機停
止時に蒸発器に高温冷媒が流入し熱負荷となるのを防止
するとともに、圧縮機運転中、第一のエバポレータへの
冷媒制御を自動的に行なうので、低騒音でかつ省電力な
冷凍装置を得られるものである。
Effects of the Invention As is clear from the above explanation, the present invention is composed of a high-pressure container type rotary set including a compressor, a condenser, a pressure reducer, a plurality of evaporators, and a refrigerant control valve. driving·
It has a built-in valve device No. 10 that opens and closes depending on the pressure change inside the refrigeration system that synchronizes with the stoppage, and a second valve device that opens and closes depending on the temperature change of one of the evaporators or the chamber cooled by this evaporator. A first valve device is arranged downstream of the condenser, and the outlet refrigerant passage of the first valve device is connected to a second pressure reducer having a large resistance connected to one evaporator and bypassing the upstream evaporator. It has a third pressure reducer with lower resistance connected to the other evaporator, and a second valve device is placed at the inlet of the bypass passage, so when the compressor is stopped, the The first valve device installed closes and prevents high-temperature, high-pressure refrigerant from flowing into the evaporator from the condenser through the pressure reducer, causing the evaporator to rise in temperature with the high-temperature, high-pressure refrigerant, creating a heat load. There is no. Also, when the temperature of the upstream evaporator is higher than a predetermined temperature during compressor operation, the second valve device is closed to allow refrigerant to flow into the upstream evaporator and downstream evaporator, and the pre-packed evaporator Allow to cool. When the temperature of the upstream evaporator drops below a predetermined temperature, the second valve device opens and most of the refrigerant flows to the second valve device and third pressure reducer, stopping cooling of the first evaporator. , without using two electromagnetic cells as in the past, 1
Two refrigerant control valves that do not require electrical input, prevent high-temperature refrigerant from flowing into the evaporator and creating a heat load when the compressor is stopped, and automatically control the refrigerant to the first evaporator while the compressor is running. Since it is carried out in a consistent manner, it is possible to obtain a low-noise and power-saving refrigeration system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍装置のシステム図、第2図は従来の
冷凍装置の電気配線図、第3図は、本発明の一実施例を
示す冷凍装置の圧縮機停止時のシステム図、第4図は本
発明の冷凍装置の圧縮機運転時のシステム図である。 100・・・・・・ロータリ圧縮機、101 ・・・・
凝縮器、102・・・・・・第一の減圧器、11o・・
・・・・入口管、111・・ ・第一の出口管、112
・・・・・・第二の出口管、103・・ ・冷媒制御弁
、104・・・・・・第二の減圧器、105・・ 第一
の蒸発器、106・・・・・第二の蒸発器、108・・
・・逆止弁、109・・・・第三の減圧器、131・ 
・第一の弁装置、132・・・・・・第二の弁装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 21!4 2 第3図 or
Fig. 1 is a system diagram of a conventional refrigeration system, Fig. 2 is an electrical wiring diagram of a conventional refrigeration system, and Fig. 3 is a system diagram of a refrigeration system when the compressor is stopped, showing an embodiment of the present invention. FIG. 4 is a system diagram of the refrigeration system of the present invention when the compressor is in operation. 100...Rotary compressor, 101...
Condenser, 102...First pressure reducer, 11o...
...Inlet pipe, 111... -First outlet pipe, 112
...Second outlet pipe, 103... Refrigerant control valve, 104... Second pressure reducer, 105... First evaporator, 106... Second evaporator, 108...
・・Check valve, 109・・・Third pressure reducer, 131・
- First valve device, 132... second valve device. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 21!4 2 Figure 3 or

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、減圧器、複数の蒸発器、一方の蒸発器
をバイパスするバイパス回路及び入口管と、第1の出口
管、第2の出口管を有する冷媒制御弁より構成し、前記
冷媒制御弁は、圧縮機の運転、停止に同期する冷凍装置
内圧力変化により開閉動作する第一の弁装置と前記一方
のあるい(は、この蒸発器にて冷却される室の温度変化
により開閉動作する第二の弁装置を内蔵し前記第一0弁
装置を、前記凝縮器の下流に配置し、前記第一の弁装置
の出口冷媒通路は一方の蒸発器に接続する抵抗の犬なる
第二の減圧器に接続し、前記一方の蒸発器をバイパスし
て他方の蒸発器に接続する抵抗の小なる第三の減圧器を
有し前記第三の減圧器の入口部に前記第二の弁装置を配
置した冷凍装置。
The refrigerant control valve includes a compressor, a condenser, a pressure reducer, a plurality of evaporators, a bypass circuit that bypasses one of the evaporators, an inlet pipe, a first outlet pipe, and a second outlet pipe, and The control valve includes a first valve device that opens and closes depending on the pressure change in the refrigeration system that synchronizes with the operation and stop of the compressor, and a first valve device that opens and closes depending on the temperature change in the chamber cooled by the evaporator. The tenth valve device incorporating an operative second valve device is disposed downstream of the condenser, and the outlet refrigerant passage of the first valve device is connected to one of the evaporators. A third pressure reducer with low resistance is connected to the second pressure reducer and bypasses the one evaporator and connects to the other evaporator. Refrigeration equipment equipped with a valve device.
JP22277982A 1982-12-17 1982-12-17 Refrigerator Granted JPS59112163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22277982A JPS59112163A (en) 1982-12-17 1982-12-17 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22277982A JPS59112163A (en) 1982-12-17 1982-12-17 Refrigerator

Publications (2)

Publication Number Publication Date
JPS59112163A true JPS59112163A (en) 1984-06-28
JPH0320663B2 JPH0320663B2 (en) 1991-03-19

Family

ID=16787757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22277982A Granted JPS59112163A (en) 1982-12-17 1982-12-17 Refrigerator

Country Status (1)

Country Link
JP (1) JPS59112163A (en)

Also Published As

Publication number Publication date
JPH0320663B2 (en) 1991-03-19

Similar Documents

Publication Publication Date Title
JPS59164860A (en) Refrigeration cycle of refrigerator
JPH09318166A (en) Refrigerating apparatus
JP3495899B2 (en) Screw refrigerator
JPS59112163A (en) Refrigerator
JPH085172A (en) Cooler for refrigerator with deep freezer
JPS59147969A (en) Control valve for refrigerant
JP2000118231A (en) Refrigerating cycle
JPS5819677A (en) Refrigerator
JPS60245966A (en) Air conditioner
JPH025316Y2 (en)
JPS5816167A (en) Refrigerator
KR200309880Y1 (en) A direct cooling-typed refrigerator
JPS59157473A (en) Cold and hot changeover type storehouse
JPS62228849A (en) Valve gear for refrigeration cycle
JPS6099960A (en) Refrigerator
JPS60245967A (en) Air conditioner
JPS626461Y2 (en)
JPH06241583A (en) Freezer device
JPH0593548A (en) Refrigerator
KR20020087801A (en) Fluid flowing backward prevention apparatus in refrigeration system
JPS644049Y2 (en)
JPH089576Y2 (en) Refrigeration cycle of heat pump type air conditioner
JPS59200161A (en) Refrigeration cycle
JPH01234780A (en) Heat storage type refrigerator
JPH1062018A (en) Cooling device