JPH1062018A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH1062018A
JPH1062018A JP21854796A JP21854796A JPH1062018A JP H1062018 A JPH1062018 A JP H1062018A JP 21854796 A JP21854796 A JP 21854796A JP 21854796 A JP21854796 A JP 21854796A JP H1062018 A JPH1062018 A JP H1062018A
Authority
JP
Japan
Prior art keywords
compressor
valve
refrigerant
cooler
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21854796A
Other languages
Japanese (ja)
Inventor
Toshio Sagara
寿夫 相良
Takeshi Kawaguchi
剛 川口
Hiroshi Niijima
洋 新島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21854796A priority Critical patent/JPH1062018A/en
Publication of JPH1062018A publication Critical patent/JPH1062018A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent increase in vibration and generation abnormal noise when a compressor is started by interposing a parallel circuit comprising an on/off valve and a capillary tube in a suction line from a cooler to the suction side of the compressor. SOLUTION: A parallel circuit 33 comprising a solenoid valve 31 as an on/off valve and a capillary tube 32 is connected to a suction line 11 from a cooler 6 to a suction side 1S of a compressor 16. A control device 34 closes the solenoid valve 31 when the compressor 1 is started. The refrigerant from the cooler 6 is bypassed, and sucked through the capillary tube 32, and the suction of the gas refrigerant immediately after starting the compressor 1 is limited. Even when the specific capacity of the refrigerant is reduced in starting the compressor 1, the suction of the refrigerant immediately after starting compressor 1, and the work load of compression of the compressor 1 is reduced. Vibration and abnormal noise generated in starting the compressor 1 can be prevented or controlled to lower level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機、凝縮器、
減圧装置及び冷却器などを順次環状に配管接続すると共
に、前記冷却器によって低温ショーケースや冷蔵庫など
の貯蔵室内を冷却する冷却装置に関するものである。
TECHNICAL FIELD The present invention relates to a compressor, a condenser,
The present invention relates to a cooling device in which a pressure reducing device, a cooler, and the like are sequentially connected in a circular pipe, and the cooler cools a storage room such as a low-temperature showcase or a refrigerator.

【0002】[0002]

【従来の技術】従来より所謂内蔵型と称される低温ショ
ーケースにおいては、例えば実開平6−69662号公
報(F25B1/00)に示される如き冷却装置を備え
ていた。即ち、係る従来の冷却装置100の冷媒回路を
図6に示す。即ち、この図において、1は例えばロータ
リー(回転式)式の圧縮機、2は凝縮器、3はドライヤ
ー、4は減圧装置としてのキャピラリチューブ、6は冷
却器、7は冷媒液溜としてのアキュムレータ、8は逆止
弁であり、これらは冷媒配管によって順次環状に接続さ
れている。尚、逆止弁8は圧縮機1の吸込側1Sを順方
向としている。
2. Description of the Related Art Conventionally, a so-called built-in low-temperature showcase is provided with a cooling device as disclosed in Japanese Utility Model Laid-Open No. 6-69662 (F25B1 / 00). That is, a refrigerant circuit of the conventional cooling device 100 is shown in FIG. That is, in this figure, 1 is a rotary (rotary) type compressor, 2 is a condenser, 3 is a dryer, 4 is a capillary tube as a decompression device, 6 is a cooler, and 7 is an accumulator as a refrigerant liquid reservoir. , 8 are check valves, which are sequentially connected in a ring by a refrigerant pipe. The check valve 8 has the suction side 1S of the compressor 1 in the forward direction.

【0003】以上の構成で、圧縮機1が起動されると圧
縮機1の吐出側1Dから吐出された高温高圧のガス冷媒
は凝縮器2に流入し、そこで放熱して液化する。この凝
縮器2を出た液冷媒はドライヤー3を経てキャピラリチ
ューブ4にて減圧された後、冷却器6に流入して蒸発す
る。このときに生じる吸熱作用によって、低温ショーケ
ースの図示しない貯蔵室内は冷却される。
[0003] With the above arrangement, when the compressor 1 is started, the high-temperature and high-pressure gas refrigerant discharged from the discharge side 1D of the compressor 1 flows into the condenser 2, where it radiates heat and is liquefied. The liquid refrigerant that has exited the condenser 2 is depressurized by the capillary tube 4 via the dryer 3 and then flows into the cooler 6 to evaporate. The storage chamber (not shown) of the low-temperature showcase is cooled by the heat absorption effect generated at this time.

【0004】冷却器6を出た冷媒は、この冷却器6と圧
縮機1間の吸込配管11に流入し、そこに介設されてい
るアキュムレータ7に流入して気液分離される。そし
て、ガス冷媒のみが逆止弁8を経て圧縮機1の吸込側1
Sに吸引されるものであった。
[0004] The refrigerant that has exited the cooler 6 flows into a suction pipe 11 between the cooler 6 and the compressor 1, and flows into an accumulator 7 interposed there to be separated into gas and liquid. Then, only the gas refrigerant passes through the check valve 8 and passes through the suction side 1 of the compressor 1.
S sucked.

【0005】[0005]

【発明が解決しようとする課題】ここで、冷却装置10
0の冷却運転中に圧縮機1に吸込配管11から吸い込ま
れる冷媒ガスの比容積(体積/重量)vは大きく、即
ち、冷媒の密度が小さく、例えば冷媒としてR22を用
いた場合には、v=0.074立法メートル/kg(蒸
発温度−10℃、吸込ガス温度+15℃の場合)程であ
る。
Here, the cooling device 10
0, the specific volume (volume / weight) v of the refrigerant gas sucked from the suction pipe 11 into the compressor 1 during the cooling operation is large, that is, the density of the refrigerant is small. For example, when R22 is used as the refrigerant, v = 0.074 cubic meters / kg (when the evaporation temperature is -10 ° C and the suction gas temperature is + 15 ° C).

【0006】しかしながら、圧縮機1の停止中に凝縮器
2から冷却器6に冷媒が流入するため、圧縮機1の起動
時に吸込配管11から吸い込まれる冷媒ガスの比容積v
は小さくなり、v=0.026立法メートル/kg(雰
囲気温度+20℃、飽和ガスの場合)程になる。即ち、
圧縮機1の起動時(起動直後)に吸い込まれる冷媒の密
度は、運転中に比較して約三倍近くになるため、圧縮機
1の圧縮仕事量が増え、振動の増大や異常騒音を発する
原因となっていた。
However, since the refrigerant flows from the condenser 2 to the cooler 6 while the compressor 1 is stopped, the specific volume v of the refrigerant gas sucked from the suction pipe 11 when the compressor 1 is started.
Becomes smaller, and becomes about v = 0.026 cubic meters / kg (atmospheric temperature + 20 ° C., in the case of a saturated gas). That is,
The density of the refrigerant sucked when the compressor 1 is started (immediately after the start) is about three times as high as that during the operation, so that the compression work of the compressor 1 increases, which increases vibration and generates abnormal noise. Was causing it.

【0007】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、圧縮機の起動時における
振動の増大や異常騒音の発生を防止し、或いは、低く抑
えることができる冷却装置を提供するものである。
The present invention has been made to solve the above-mentioned conventional technical problem, and can prevent or suppress an increase in vibration and abnormal noise at the time of starting the compressor. A cooling device is provided.

【0008】[0008]

【課題を解決するための手段】請求項1の発明の冷却装
置は、圧縮機、凝縮器、減圧装置及び冷却器などを順次
環状に配管接続して成るものであって、冷却器から圧縮
機の吸込側に至る吸込配管中に、開閉弁とキャピラリチ
ューブの並列回路を介設したものである。また、請求項
2の発明の冷却装置は、圧縮機、凝縮器、減圧装置及び
冷却器などを順次環状に配管接続して成るものであっ
て、冷却器から圧縮機の吸込側に至る吸込配管中に設け
られた開閉弁を備え、この開閉弁は、入口と出口間に形
成された弁座と、この弁座に離接自在に当接して流路を
開閉する弁体と、弁座を迂回するかたちで入口と出口間
を連通する細通路を有しているものである。
According to a first aspect of the present invention, there is provided a cooling device comprising a compressor, a condenser, a decompression device, a cooler, and the like, which are sequentially connected in a ring form. A parallel circuit of an on-off valve and a capillary tube is interposed in a suction pipe reaching the suction side. A cooling device according to a second aspect of the present invention includes a compressor, a condenser, a decompression device, a cooler, and the like, which are sequentially connected in a ring shape, and a suction pipe extending from the cooler to a suction side of the compressor. An on-off valve provided therein, the on-off valve includes a valve seat formed between an inlet and an outlet, a valve body that opens and closes a flow path by abutting on the valve seat in a detachable manner, and a valve seat. It has a narrow passage communicating between the inlet and the outlet in a detour form.

【0009】請求項3の発明の冷却装置は、上記各発明
において圧縮機の起動時は開閉弁を閉じるものである。
請求項4の発明の冷却装置は、上記において圧縮機の起
動から所定期間経過後に開閉弁を開くものである。請求
項5の発明の冷却装置は、請求項3において圧縮機の起
動後、開閉弁と圧縮機間の吸込配管中の圧力が所定値以
下に低下した場合に開閉弁を開くものである。
A cooling device according to a third aspect of the present invention is the above-mentioned invention, wherein the on-off valve is closed when the compressor is started.
According to a fourth aspect of the present invention, in the cooling device described above, the on-off valve is opened after a lapse of a predetermined period from the start of the compressor. According to a fifth aspect of the present invention, in the third aspect, the opening and closing valve is opened when the pressure in the suction pipe between the opening and closing valve and the compressor decreases to a predetermined value or less after the start of the compressor.

【0010】即ち、請求項1または請求項2の発明によ
れば、請求項3の如く圧縮機の起動時に開閉弁を閉じる
ことにより、圧縮機はキャピラリチューブ、或いは、細
通路を介して冷却器から冷媒を吸い込むようになる。即
ち、キャピラリチューブ、或いは、細通路によって、圧
縮機の起動直後におけるガス冷媒の吸込量を制限するこ
とができるので、起動時に発生する振動や異常騒音を防
止し、或いは、低く抑制することができるようになるも
のである。
That is, according to the first or second aspect of the present invention, by closing the on-off valve at the time of starting the compressor as in the third aspect, the compressor can be cooled through a capillary tube or a narrow passage. The refrigerant comes to be sucked from. That is, since the suction amount of the gas refrigerant immediately after the start of the compressor can be limited by the capillary tube or the narrow passage, the vibration and abnormal noise generated at the time of start can be prevented or reduced. It is something that will be.

【0011】特に、請求項2の発明では開閉弁中に細通
路を設けているので、開閉弁にキャピラリチューブを並
列接続する必要が無くなり、部品点数の削減によるコス
トの低減と組立作業性の向上を図ることができるように
なるものである。また、請求項4の発明によれば、請求
項3に加えて圧縮機の起動から所定期間経過して冷媒量
制限をする必要が無くなった後は、開閉弁を開くように
しているので、開閉弁の開放後は流路抵抗差により、冷
媒はキャピラリチューブ、或いは、細通路を全く若しく
は殆ど流れなくなる。従って、その後は支障無く通常の
冷却運転に移行することができるようになるものであ
る。
In particular, according to the second aspect of the present invention, since the narrow passage is provided in the on-off valve, there is no need to connect a capillary tube to the on-off valve in parallel, so that the number of parts is reduced and the cost is reduced and the assembling workability is improved. Can be achieved. Further, according to the invention of claim 4, in addition to the constitution of claim 3, the opening / closing valve is opened after the lapse of a predetermined period from the start of the compressor and there is no need to limit the refrigerant amount. After the valve is opened, the refrigerant hardly or hardly flows through the capillary tube or the narrow passage due to the flow resistance difference. Therefore, after that, it is possible to shift to the normal cooling operation without any trouble.

【0012】更に、請求項5の発明によれば、請求項3
に加えて圧縮機の起動後、圧縮機に吸い込まれる冷媒量
の低下により開閉弁と圧縮機間の吸込配管中の圧力が所
定値以下に低下して、冷媒量制限をする必要が無くなっ
た場合には、開閉弁を開くようにしたので、同様に開閉
弁の開放後は流路抵抗差により、冷媒はキャピラリチュ
ーブ、或いは、細通路を全く若しくは殆ど流れなくな
る。従って、その後は支障無く通常の冷却運転に移行す
ることができるようになるものである。
Furthermore, according to the invention of claim 5, according to claim 3,
In addition to the above, after the compressor is started, the pressure in the suction pipe between the on-off valve and the compressor is reduced to a predetermined value or less due to a decrease in the amount of refrigerant sucked into the compressor, and it is no longer necessary to limit the amount of refrigerant. In this case, the on-off valve is opened. Similarly, after the on-off valve is opened, the refrigerant does not flow at all or hardly through the capillary tube or the narrow passage due to the flow path resistance difference. Therefore, after that, it is possible to shift to the normal cooling operation without any trouble.

【0013】[0013]

【発明の実施の形態】以下、図面に基づき本発明の実施
形態を詳述する。図1は本発明の冷却装置21を適用し
た低温ショーケース22の斜視図、図2は本発明の冷却
装置21の冷媒回路図、図3は冷却装置21の運転モー
ドを示す図である。尚、以下の各図中図6と同一符号は
同一のものとする。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a perspective view of a low-temperature showcase 22 to which the cooling device 21 of the present invention is applied, FIG. 2 is a refrigerant circuit diagram of the cooling device 21 of the present invention, and FIG. In the following figures, the same reference numerals as those in FIG. 6 are the same.

【0014】実施例の低温ショーケース22は、スーパ
ーマーケットやコンビニエンスストアの店舗に設置され
て食品や飲料などの商品を陳列販売するものであり、内
部に冷却装置21を収納する本体23の上方に透明ガラ
ス24・・及び前面のガラス扉26にて囲繞された貯蔵
室27が形成されている。この貯蔵室27内には複数段
の棚28・・が架設されており、この棚28・・上に前
記商品が陳列される。
The low-temperature showcase 22 of the embodiment is installed in a supermarket or a convenience store to display and sell products such as foods and beverages, and is transparent above a main body 23 in which a cooling device 21 is housed. A storage room 27 surrounded by the glass 24... And the front glass door 26 is formed. A plurality of shelves 28 are provided in the storage room 27, and the products are displayed on the shelves 28.

【0015】一方、図2の冷却装置21において、1は
ロータリー(回転式)式の圧縮機、2は凝縮器、3はド
ライヤー、4は減圧装置としてのキャピラリチューブ、
6は冷却器、7は冷媒液溜としてのアキュムレータ、8
は逆止弁である。尚、逆止弁8は圧縮機1の吸込側1S
を順方向としている。これらは順次環状に配管接続され
ると共に、冷却器6から圧縮機1の吸込側1Sに至る吸
込配管11中には、開閉弁としての電磁弁31とキャピ
ラリチューブ32の並列回路33が接続され、これによ
って、冷却装置21の冷媒回路が構成される。
On the other hand, in the cooling device 21 of FIG. 2, 1 is a rotary (rotary) compressor, 2 is a condenser, 3 is a dryer, 4 is a capillary tube as a decompression device,
6 is a cooler, 7 is an accumulator as a coolant reservoir, 8
Is a check valve. The check valve 8 is connected to the suction side 1S of the compressor 1.
Is the forward direction. These are sequentially connected in a ring shape, and in a suction pipe 11 extending from the cooler 6 to the suction side 1S of the compressor 1, a parallel circuit 33 of an electromagnetic valve 31 as an on-off valve and a capillary tube 32 is connected. Thus, a refrigerant circuit of the cooling device 21 is configured.

【0016】前記圧縮機1、凝縮器2などは前記本体2
3に形成された図示しない機械室に設置されると共に、
冷却器6は本体23内に形成された図示しないダクト内
に設置されている。このダクトは前記貯蔵室27と連通
しており、このダクト内には更に冷却器6と熱交換した
冷気を貯蔵室27内に循環する図示しない送風機が配設
される。また、前記電磁弁31はタイマーTを備えた制
御装置34に接続されている。
The compressor 1, the condenser 2, etc.
While being installed in a machine room (not shown) formed in 3,
The cooler 6 is installed in a duct (not shown) formed in the main body 23. The duct communicates with the storage room 27, and a blower (not shown) for circulating cool air, which has exchanged heat with the cooler 6, into the storage room 27 is provided in the duct. The solenoid valve 31 is connected to a control device 34 having a timer T.

【0017】以上の構成で図3を参照しながら低温ショ
ーケース22の冷却装置21の動作を説明する。貯蔵室
27には図示しないサーモスタット或いは温度センサー
が取り付けられており、これらは前記制御装置34に接
続されている。そして、制御装置34は、これらサーモ
スタットなどが所定の上限温度(例えば+5℃)を検出
した時点で圧縮機1を起動すると共に、所定の下限温度
(例えば+3℃)を検出した時点で停止する。
The operation of the cooling device 21 of the low-temperature showcase 22 will be described with reference to FIG. A thermostat or a temperature sensor (not shown) is attached to the storage room 27, and these are connected to the control device 34. Then, the control device 34 starts the compressor 1 when the thermostat or the like detects a predetermined upper limit temperature (for example, + 5 ° C.) and stops when the thermostat or the like detects a predetermined lower limit temperature (for example, + 3 ° C.).

【0018】圧縮機1が運転されると圧縮機1の吐出側
1Dから吐出された高温高圧のガス冷媒は凝縮器2に流
入し、そこで放熱して液化する。この凝縮器2を出た液
冷媒はドライヤー3を経てキャピラリチューブ4にて減
圧された後、冷却器6に流入して蒸発する。このときに
冷却器6は吸熱作用を発揮する。この冷却器6と熱交換
した冷気は前記送風機にて貯蔵室27内に循環され、こ
れによって、貯蔵室27内は平均+4℃などの冷蔵温度
に維持される。
When the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant discharged from the discharge side 1D of the compressor 1 flows into the condenser 2, where it radiates heat and is liquefied. The liquid refrigerant that has exited the condenser 2 is depressurized by the capillary tube 4 via the dryer 3 and then flows into the cooler 6 to evaporate. At this time, the cooler 6 exhibits an endothermic effect. The cool air that has exchanged heat with the cooler 6 is circulated into the storage room 27 by the blower, whereby the inside of the storage room 27 is maintained at a refrigeration temperature such as + 4 ° C. on average.

【0019】冷却器6を出た冷媒は吸込配管11に流入
し、電磁弁31が開いている状態ではキャピラリチュー
ブ32との流路抵抗差により電磁弁31内を通過してア
キュムレータ7に流入する。アキュムレータ7では気液
分離が行われ、ガス冷媒のみが逆止弁8を経て圧縮機1
の吸込側1Sに吸引される。尚、電磁弁31が開いてい
る状態ではキャピラリチューブ32には全く、或いは、
殆ど冷媒は流れない。
The refrigerant flowing out of the cooler 6 flows into the suction pipe 11, and when the solenoid valve 31 is open, flows through the solenoid valve 31 due to the difference in flow path resistance with the capillary tube 32 and flows into the accumulator 7. . In the accumulator 7, gas-liquid separation is performed, and only the gas refrigerant passes through the check valve 8 to the compressor 1
To the suction side 1S. When the solenoid valve 31 is open, the capillary tube 32 is completely or
Almost no refrigerant flows.

【0020】ここで、前記圧縮機1の起動時には制御装
置34は電磁弁31を閉じる。電磁弁31が閉じられる
と、冷却器6からの冷媒はバイパスされ、キャピラリチ
ューブ32を介して吸引されるかたちとなるので、圧縮
機1の起動直後におけるガス冷媒の吸込量は制限される
(図3のキャピラリチューブバイパス運転期間)。即
ち、圧縮機1の起動時に冷媒の比容積が小さくなってい
ても、圧縮機1の起動直後における冷媒吸込量を制限す
るので、圧縮機1の圧縮仕事量が軽減され、それによっ
て、圧縮機1の起動時に発生する振動や異常騒音を防止
し、或いは、低く抑制することができるようになる。
When the compressor 1 is started, the control device 34 closes the solenoid valve 31. When the solenoid valve 31 is closed, the refrigerant from the cooler 6 is bypassed and sucked through the capillary tube 32, so that the suction amount of the gas refrigerant immediately after the start of the compressor 1 is limited (FIG. 3) Capillary tube bypass operation period. That is, even if the specific volume of the refrigerant is small when the compressor 1 is started, the amount of refrigerant suctioned immediately after the start of the compressor 1 is limited, so that the compression work of the compressor 1 is reduced, and thus the compressor 1 Thus, it is possible to prevent or suppress the vibration and abnormal noise generated at the time of start-up.

【0021】尚、制御装置34は圧縮機1の起動後、タ
イマーTの積算に基づき、例えば5秒乃至30秒で電磁
弁31を開放する。即ち、起動から所定期間経過して冷
媒の比容積が正常に戻った後は、電磁弁31が開放さ
れ、開放後はキャピラリチューブ32との流路抵抗差に
より、冷媒はキャピラリチューブ32に全く若しくは殆
ど流れなくなり、電磁弁31を介して流れるようになる
ので、その後は支障無く通常の冷却運転に移行すること
ができるようになる。
After starting the compressor 1, the control device 34 opens the solenoid valve 31 in, for example, 5 to 30 seconds based on the integration of the timer T. That is, after the specific volume of the refrigerant returns to normal after a predetermined period from the start, the solenoid valve 31 is opened, and after the opening, the refrigerant is completely or completely removed to the capillary tube 32 due to a difference in flow path resistance with the capillary tube 32. Since the flow hardly flows and flows through the electromagnetic valve 31, the cooling operation can be shifted to the normal cooling operation without any trouble.

【0022】次に、図4は本発明の他の実施例を示して
いる。尚、この図において図1乃至図3と同一符号は同
一のものとし、説明を省略する。この場合、制御装置3
4にはタイマーTは設けられず、その代わりに電磁弁3
1とアキュムレータ7間の吸込配管11中の圧力を検出
する圧力センサー36が設けられている。この場合も制
御装置34は前述同様圧縮機1の起動時には電磁弁31
を閉じる。このとき、電磁弁31が閉じられると、圧縮
機1の排除量よりもキャピラリチューブ32を通過する
冷媒量の方が小さいため、吸込配管11中の圧力は圧縮
機1の起動後から低下して行く。
FIG. 4 shows another embodiment of the present invention. In this figure, the same reference numerals as those in FIGS. 1 to 3 denote the same parts, and a description thereof will be omitted. In this case, the control device 3
4 is not provided with a timer T.
A pressure sensor 36 is provided for detecting the pressure in the suction pipe 11 between the valve 1 and the accumulator 7. Also in this case, the control device 34 controls the solenoid valve 31 when the compressor 1 is started, as described above.
Close. At this time, when the solenoid valve 31 is closed, the amount of refrigerant passing through the capillary tube 32 is smaller than the amount of rejection of the compressor 1, so that the pressure in the suction pipe 11 decreases after the compressor 1 is started. go.

【0023】そして、吸込配管11中の圧力が例えば0
kg/平方センチメートル(通常の冷却運転中における
吸込配管11中の圧力は3kg/平方センチメートル程
である。)に低下すると、制御装置34は圧力センサー
36によりそれを検知して電磁弁31を開放する。即
ち、圧縮機1の起動後、キャピラリチューブ32により
圧縮機1に吸い込まれる冷媒量が制限されて電磁弁31
とアキュムレータ7間の吸込配管11中の圧力が低下
し、冷媒量制限をする必要が無くなった場合には、電磁
弁31を開くので、同様に電磁弁31の開放後はキャピ
ラリチューブ32との流路抵抗差により、冷媒はキャピ
ラリチューブ32を全く若しくは殆ど流れなくなる。従
って、その後は支障無く通常の冷却運転に移行すること
ができるようになる。
The pressure in the suction pipe 11 is, for example, 0
When the pressure drops to kg / square centimeter (the pressure in the suction pipe 11 during a normal cooling operation is about 3 kg / square centimeter), the control device 34 detects this by the pressure sensor 36 and opens the solenoid valve 31. That is, after the compressor 1 is started, the amount of refrigerant sucked into the compressor 1 by the capillary tube 32 is restricted, and the electromagnetic valve 31
When the pressure in the suction pipe 11 between the compressor and the accumulator 7 decreases and the refrigerant amount need not be restricted, the solenoid valve 31 is opened. Similarly, after the solenoid valve 31 is opened, the flow with the capillary tube 32 is started. Due to the path resistance difference, the refrigerant does not or does not flow at all through the capillary tube 32. Therefore, after that, it is possible to shift to the normal cooling operation without any trouble.

【0024】次に、図5はもう一つの本発明に係る電磁
弁31の断面図を示している。尚、この場合の電磁弁3
1も図2、図4の冷媒回路の電磁弁31と同様の位置に
接続されるが、キャピラリチューブ32は削除される。
また、後述する電磁弁31の開閉制御は図2乃至図4同
様であるものとする。この場合の電磁弁31は、吸込配
管11の冷却器6側に接続される入口41とアキュムレ
ータ7側に接続される出口42とを備えた本体43と、
この本体43内に形成され、入口41と出口42間を連
通する流路44と、この流路44中に形成された弁座4
6と、この弁座46に離接自在に設けられ、前記流路4
4を開閉する弁体47と、この弁体47が固定されたプ
ランジャー48と、このプランジャー48を上下駆動す
るためのソレノイドコイル49とから成る。
FIG. 5 is a sectional view of another solenoid valve 31 according to the present invention. In this case, the solenoid valve 3
1 is also connected to the same position as the solenoid valve 31 of the refrigerant circuit shown in FIGS. 2 and 4, but the capillary tube 32 is omitted.
The opening and closing control of the solenoid valve 31 described later is the same as in FIGS. In this case, the electromagnetic valve 31 includes a main body 43 having an inlet 41 connected to the cooler 6 side of the suction pipe 11 and an outlet 42 connected to the accumulator 7 side,
A flow path 44 formed in the main body 43 and communicating between the inlet 41 and the outlet 42, and a valve seat 4 formed in the flow path 44.
6 and the valve seat 46 are provided so as to be freely separated from each other.
The plunger 48 includes a valve body 47 for opening and closing the plunger 4, a plunger 48 to which the valve body 47 is fixed, and a solenoid coil 49 for vertically driving the plunger 48.

【0025】更に、本体43には弁座46を迂回するか
たちで入口41と出口42側の流路44を連通する通路
断面積の小さい細通路51が形成されている。以上の構
成で圧縮機1の起動時、制御装置34はソレノイドコイ
ル49を非通電とする。これによって、プランジャー4
8は自重にて落下し、弁体47を弁座46に押し付けて
閉じるので、電磁弁31の流路44は細通路51のみに
て入口41と出口42間が連通されることになり、結果
的に圧縮機1の冷媒吸込量が前述同様に制限される。
Further, a narrow passage 51 having a small passage cross-sectional area is formed in the main body 43 so as to bypass the valve seat 46 and communicate the inlet 41 and the flow passage 44 on the outlet 42 side. With the above configuration, when the compressor 1 is started, the controller 34 turns off the solenoid coil 49. Thereby, plunger 4
8 falls under its own weight and closes the valve body 47 by pressing it against the valve seat 46, so that the flow path 44 of the solenoid valve 31 communicates between the inlet 41 and the outlet 42 by only the narrow passage 51, and as a result Therefore, the refrigerant suction amount of the compressor 1 is limited as described above.

【0026】そして、所定期間経過後、或いは、圧力の
低下後に制御装置34はソレノイドコイル49に通電
し、プランジャー48を吸引して引き上げる。これによ
って、弁体47は弁座46から離れて開放するので、以
後は流路抵抗差により冷媒は全く或いは殆ど細通路51
を流れず、弁座46を通過して流れるようになる。即
ち、係る構成の電磁弁31によれば、前述の如き効果に
加えて電磁弁31に前述の如きキャピラリチューブ32
を並列接続する必要が無くなり、部品点数の削減による
コストの低減と組立作業性の向上を図ることができるよ
うになる。
After a lapse of a predetermined period or after a decrease in pressure, the control device 34 energizes the solenoid coil 49 to suck and pull up the plunger 48. As a result, the valve element 47 is separated from the valve seat 46 and opened, so that no or almost no refrigerant flows due to the difference in flow path resistance.
, And flows through the valve seat 46. That is, according to the solenoid valve 31 having such a configuration, in addition to the above-described effects, the capillary tube 32 as described above is added to the solenoid valve 31.
Need not be connected in parallel, so that cost can be reduced by reducing the number of parts and assembly workability can be improved.

【0027】尚、上記各実施例における数値はそれに限
られるものでは無く、機器の容量や能力に応じて適宜設
定するものとする。また、実施例では低温ショーケース
に本発明を適用したが、それに限らず、冷蔵庫や空気調
和機などにも本発明は有効である。
It should be noted that the numerical values in each of the above embodiments are not limited to those values, and are set appropriately according to the capacity and capacity of the device. In the embodiment, the present invention is applied to a low-temperature showcase. However, the present invention is not limited thereto, and the present invention is also effective for refrigerators, air conditioners, and the like.

【0028】[0028]

【発明の効果】以上詳述した如く、請求項1または請求
項2の発明によれば、請求項3の如く圧縮機の起動時に
開閉弁を閉じることにより、圧縮機はキャピラリチュー
ブ、或いは、細通路を介して冷却器から冷媒を吸い込む
ようになる。即ち、キャピラリチューブ、或いは、細通
路によって、圧縮機の起動直後におけるガス冷媒の吸込
量を制限することができるので、起動時に発生する振動
や異常騒音を防止し、或いは、低く抑制することができ
るようになるものである。
As described in detail above, according to the first or second aspect of the present invention, by closing the on-off valve when the compressor is started as in the third aspect, the compressor can be a capillary tube or a fine tube. The refrigerant is sucked from the cooler through the passage. That is, since the suction amount of the gas refrigerant immediately after the start of the compressor can be limited by the capillary tube or the narrow passage, the vibration and abnormal noise generated at the time of start can be prevented or reduced. It is something that will be.

【0029】特に、請求項2の発明では開閉弁中に細通
路を設けているので、開閉弁にキャピラリチューブを並
列接続する必要が無くなり、部品点数の削減によるコス
トの低減と組立作業性の向上を図ることができるように
なるものである。また、請求項4の発明によれば、請求
項3に加えて圧縮機の起動から所定期間経過して冷媒量
制限をする必要が無くなった後は、開閉弁を開くように
しているので、開閉弁の開放後は流路抵抗差により、冷
媒はキャピラリチューブ、或いは、細通路を全く若しく
は殆ど流れなくなる。従って、その後は支障無く通常の
冷却運転に移行することができるようになるものであ
る。
In particular, according to the second aspect of the present invention, since the narrow passage is provided in the on-off valve, it is not necessary to connect a capillary tube to the on-off valve in parallel, so that the number of parts is reduced and the cost is reduced and the assembling workability is improved. Can be achieved. Further, according to the invention of claim 4, in addition to the constitution of claim 3, the opening / closing valve is opened after the lapse of a predetermined period from the start of the compressor and there is no need to limit the refrigerant amount. After the valve is opened, the refrigerant hardly or hardly flows through the capillary tube or the narrow passage due to the flow resistance difference. Therefore, after that, it is possible to shift to the normal cooling operation without any trouble.

【0030】更に、請求項5の発明によれば、請求項3
に加えて圧縮機の起動後、圧縮機に吸い込まれる冷媒量
の低下により開閉弁と圧縮機間の吸込配管中の圧力が所
定値以下に低下して、冷媒量制限をする必要が無くなっ
た場合には、開閉弁を開くようにしたので、同様に開閉
弁の開放後は流路抵抗差により、冷媒はキャピラリチュ
ーブ、或いは、細通路を全く若しくは殆ど流れなくな
る。従って、その後は支障無く通常の冷却運転に移行す
ることができるようになるものである。
Further, according to the invention of claim 5, according to claim 3,
In addition to the above, after the compressor is started, the pressure in the suction pipe between the on-off valve and the compressor is reduced to a predetermined value or less due to a decrease in the amount of refrigerant sucked into the compressor, and it is no longer necessary to limit the amount of refrigerant. In this case, the on-off valve is opened. Similarly, after the on-off valve is opened, the refrigerant does not flow at all or hardly through the capillary tube or the narrow passage due to the flow path resistance difference. Therefore, after that, it is possible to shift to the normal cooling operation without any trouble.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷却装置を適用した低温ショーケース
の斜視図である。
FIG. 1 is a perspective view of a low-temperature showcase to which a cooling device of the present invention is applied.

【図2】本発明の冷却装置の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of the cooling device of the present invention.

【図3】本発明の冷却装置の運転モードを示す図であ
る。
FIG. 3 is a diagram showing an operation mode of the cooling device of the present invention.

【図4】本発明の他の実施例の冷却装置の冷媒回路図で
ある。
FIG. 4 is a refrigerant circuit diagram of a cooling device according to another embodiment of the present invention.

【図5】もう一つの本発明の冷却装置の電磁弁の縦断側
面図である。
FIG. 5 is a longitudinal side view of another solenoid valve of the cooling device of the present invention.

【図6】従来の冷却装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 4 キャピラリチューブ(減圧装置) 6 冷却器 11 吸込配管 31 電磁弁(開閉弁) 32 キャピラリチューブ 33 並列回路 34 制御装置 36 圧力センサー 41 入口 42 出口 44 流路 46 弁座 47 弁体 51 細通路 T タイマー DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 4 Capillary tube (decompression device) 6 Cooler 11 Suction piping 31 Solenoid valve (opening / closing valve) 32 Capillary tube 33 Parallel circuit 34 Controller 36 Pressure sensor 41 Inlet 42 Outlet 44 Flow path 46 Valve seat 47 Valve Body 51 Narrow passage T timer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置及び冷却器な
どを順次環状に配管接続して成る冷却装置において、 前記冷却器から圧縮機の吸込側に至る吸込配管中に、開
閉弁とキャピラリチューブの並列回路を介設したことを
特徴とする冷却装置。
1. A cooling device comprising a compressor, a condenser, a decompression device, a cooler, and the like connected in series in a ring shape, wherein an on-off valve and a capillary are provided in a suction pipe from the cooler to a suction side of the compressor. A cooling device, wherein a parallel circuit of tubes is provided.
【請求項2】 圧縮機、凝縮器、減圧装置及び冷却器な
どを順次環状に配管接続して成る冷却装置において、 前記冷却器から圧縮機の吸込側に至る吸込配管中に設け
られた開閉弁を備え、この開閉弁は、入口と出口間に形
成された弁座と、この弁座に離接自在に当接して流路を
開閉する弁体と、前記弁座を迂回するかたちで前記入口
と出口間を連通する細通路を有していることを特徴とす
る冷却装置。
2. A cooling device in which a compressor, a condenser, a decompression device, a cooler, and the like are sequentially connected in a ring-like manner, wherein an on-off valve provided in a suction pipe from the cooler to a suction side of the compressor. The on-off valve includes a valve seat formed between an inlet and an outlet, a valve body that comes into contact with the valve seat so as to be able to freely contact and open and closes the flow path, and the inlet that bypasses the valve seat. And a narrow passage communicating between the outlet and the outlet.
【請求項3】 圧縮機の起動時は開閉弁を閉じることを
特徴とする請求項1または請求項2の冷却装置。
3. The cooling device according to claim 1, wherein the on-off valve is closed when the compressor is started.
【請求項4】 圧縮機の起動から所定期間経過後に開閉
弁を開くことを特徴とする請求項3の冷却装置。
4. The cooling device according to claim 3, wherein the on-off valve is opened after a lapse of a predetermined period from the start of the compressor.
【請求項5】 圧縮機の起動後、開閉弁と前記圧縮機間
の吸込配管中の圧力が所定値以下に低下した場合に前記
開閉弁を開くことを特徴とする請求項3の冷却装置。
5. The cooling device according to claim 3, wherein, after starting the compressor, the on-off valve is opened when a pressure in a suction pipe between the on-off valve and the compressor falls below a predetermined value.
JP21854796A 1996-08-20 1996-08-20 Cooling device Pending JPH1062018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21854796A JPH1062018A (en) 1996-08-20 1996-08-20 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21854796A JPH1062018A (en) 1996-08-20 1996-08-20 Cooling device

Publications (1)

Publication Number Publication Date
JPH1062018A true JPH1062018A (en) 1998-03-06

Family

ID=16721654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21854796A Pending JPH1062018A (en) 1996-08-20 1996-08-20 Cooling device

Country Status (1)

Country Link
JP (1) JPH1062018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155992A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Heat pump cycle device
ITPD20130166A1 (en) * 2013-06-11 2014-12-12 Mta Spa REFRIGERATION APPARATUS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155992A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Heat pump cycle device
ITPD20130166A1 (en) * 2013-06-11 2014-12-12 Mta Spa REFRIGERATION APPARATUS
WO2014199317A1 (en) 2013-06-11 2014-12-18 M.T.A. S.P.A. Refrigeration apparatus
US10156371B2 (en) 2013-06-11 2018-12-18 M.T.A. S.P.A. Refrigeration apparatus

Similar Documents

Publication Publication Date Title
US9909786B2 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
US10072884B2 (en) Defrost operations and apparatus for a transport refrigeration system
EP2737264B1 (en) Startup logic for refrigeration system
JP4653616B2 (en) Cooling storage
JPH0828969A (en) Cooling system
JPS59164860A (en) Refrigeration cycle of refrigerator
US7475557B2 (en) Refrigerator
US5531077A (en) Refrigerating system with auxiliary compressor-cooling device
JP4253957B2 (en) refrigerator
US20080184717A1 (en) Transcritical Refrigeration With Pressure Addition Relief Valve
JP3003356B2 (en) Vending machine cooling and heating equipment
JPH1062018A (en) Cooling device
CN104508408B (en) Refrigerator
JPH04251164A (en) Freezing cycle device
JP2006125843A (en) Cooling cycle and refrigerator
JP2003194427A (en) Cooling device
JPH085172A (en) Cooler for refrigerator with deep freezer
JP4153203B2 (en) Cooling system
JPH0650646A (en) Refrigerator
JPH0512702Y2 (en)
JPS58217177A (en) Cooling device
KR100704359B1 (en) The joint structure for separating fluid of kim-chi refrigerator
JPH10197125A (en) Freezer and refrigerator
JPH0534026A (en) Freezing cycle device
KR19990065321A (en) Standalone refrigerator and its operation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026