JPS59111967A - Ceramic porous body - Google Patents

Ceramic porous body

Info

Publication number
JPS59111967A
JPS59111967A JP22159082A JP22159082A JPS59111967A JP S59111967 A JPS59111967 A JP S59111967A JP 22159082 A JP22159082 A JP 22159082A JP 22159082 A JP22159082 A JP 22159082A JP S59111967 A JPS59111967 A JP S59111967A
Authority
JP
Japan
Prior art keywords
porous body
ceramic
ceramic porous
dispersed
internal communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22159082A
Other languages
Japanese (ja)
Other versions
JPH0474308B2 (en
Inventor
成宮 恒昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP22159082A priority Critical patent/JPS59111967A/en
Priority to US06/469,395 priority patent/US4560478A/en
Priority to EP83101888A priority patent/EP0087789B1/en
Priority to DE8383101888T priority patent/DE3372748D1/en
Publication of JPS59111967A publication Critical patent/JPS59111967A/en
Publication of JPH0474308B2 publication Critical patent/JPH0474308B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は内部連通空間を有する三次元網状のセル構造を
なしたセラミ、り多孔体に関し、特に高温度における強
度の大きいセラミック多孔体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic porous body having a three-dimensional network cell structure having internal communication spaces, and particularly to a ceramic porous body having high strength at high temperatures.

内部連通空間を有する三次元網状のセル構造をなしたセ
ラミック多孔体は、溶融金属の炉材、触媒担体、ティー
ゼルノfティキュレートフィルター、更には通気性断熱
材等とその用途は広く、工業的に有用なものである。し
かし、これらの用途に用いる場合、多くは数百度から十
数百度にも及ぶ温度環境で使用されるので、高温時にお
ける強度の大きいセラミック多孔体が要求される。
Ceramic porous bodies with a three-dimensional network cell structure with internal communication spaces have a wide range of uses, such as molten metal furnace materials, catalyst carriers, teasel filters, and even breathable insulation materials, and are widely used in industrial applications. It is useful. However, when used in these applications, the ceramic porous body is required to have high strength at high temperatures because it is often used in environments with temperatures ranging from several hundred degrees to tens of hundreds of degrees.

このような高温での強度を必要とする場合、セラミック
多孔体をアルミナ或いはコージライト質を主成分として
形成することが好ましいが、更に高温での強度の大きい
セラミック多孔体が望まれる。
When strength at such high temperatures is required, it is preferable to form the ceramic porous body with alumina or cordierite as the main component, but a ceramic porous body with even greater strength at high temperatures is desired.

本発明者は上記事情に鑑み、高温での強度の大きい化ラ
ミ、り多孔体につき鋭意研究を行なった結果、内部連通
空間を有する三次元網状のセル構造をなしたセラミック
多孔体を形成するセラミック中に針状結晶体が分散して
いる場合、優れた耐高温クリープ性を有し、高温度での
強度が大きく、このためこのセラミック多孔体が通気性
断熱材等の高温度にさらされる用途に対し好適に使用さ
れることを知見したものである。特に、アルミナ又はコ
ージライト質を主成分とするセラミック多孔体中にアル
ミナとシリカより得られるムライト質が分散している場
合、高温度で著しく大きい強度を示すことを知見し、本
発明をなすに至ったものである。
In view of the above circumstances, the inventors of the present invention have conducted extensive research into porous materials with high strength at high temperatures, and have found that a ceramic porous material having a three-dimensional network cell structure with internal communication spaces has been developed. When needle-like crystals are dispersed in the material, it has excellent high temperature creep resistance and high strength at high temperatures, which makes this porous ceramic material suitable for applications that are exposed to high temperatures, such as breathable insulation materials. It has been found that it can be suitably used for. In particular, it has been found that when mullite obtained from alumina and silica is dispersed in a ceramic porous body mainly composed of alumina or cordierite, it exhibits significantly high strength at high temperatures. This is what we have come to.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明のセラミック多孔体は、内部連通空間を有する三
次元網状のセル構造をなしたもので、多孔体を形成する
セラミック中に針状結晶体が分散してなるものである。
The ceramic porous body of the present invention has a three-dimensional network cell structure having an internal communication space, and is made up of needle-shaped crystals dispersed in the ceramic forming the porous body.

この場合、多孔体を形成するセラミックは、アルミナ又
はコージライト質を主成分としたものが好ましく、この
セラミック中にアルミナとシリカより得られるムライト
質の針状結晶体が分散しているものであることが好まし
い。更に好ましくは、アルミナ含量の多いコージライト
質をコージライト相の分解温度近((1350〜160
0℃程度)に加熱することによって得られたムライト(
3At2o3・2810□)針状結晶分散体が用いられ
る。ここで、多孔体を形成するセラミックとしてアルミ
ナを主成分として用いた場合、アルミナ含量は50〜9
5重量%とすることが好ましく、またコージライト質を
主成分とした場合、その含量は50〜95重量%とする
ことが好ましい。更に、前記針状結晶体の含量は1〜9
5重量%であることが好ましい。
In this case, the ceramic forming the porous body is preferably one whose main component is alumina or cordierite, and mullite needle-shaped crystals obtained from alumina and silica are dispersed in this ceramic. It is preferable. More preferably, cordierite with a high alumina content is prepared at a temperature close to the decomposition temperature of the cordierite phase ((1350 to 160
Mullite (approximately 0°C) obtained by heating to
3At2o3.2810□) A needle crystal dispersion is used. Here, when alumina is used as the main component as the ceramic forming the porous body, the alumina content is 50 to 9.
The content is preferably 5% by weight, and when cordierite is the main component, the content is preferably 50 to 95% by weight. Furthermore, the content of the needle-like crystals is 1 to 9.
Preferably it is 5% by weight.

上述したようなセラミック多孔体を得る場合、セル膜の
ない軟質ポリウレタンフォームにセラミック泥漿を付着
させ、これを焼結することにより前記軟質ポリウレタン
フォームを炭化除去して製造したものを用いることが好
ましい(このようにセル膜のない軟質ポリウレタンフォ
ームからセラミック多孔体を形成することにまり、正十
二面体の稜の部分のみからなる籠形のセラミック多孔体
が得られ、これは空隙率が大きいので圧力損失が少ない
状態で排気ガスが通過すると共に、内部連通空間が入り
組んでいるので、例えばこのセラミック多孔体を通気性
断熱材の用途に用いる場合、排気ガスがこの内部連通空
間を通過する際格子と確実に接触し、熱交換が効率よく
行なわれる。)、が、かかる方法でセラミック多孔体を
製造する場合に、針状結晶体を予じめセラミック泥漿中
に分散せしめておく方法を採用することができる。しか
し、この方法はセラミック泥漿の粘度が高くなる4場合
があり、このため含浸や余剰泥漿の除去が困難となって
含浸不良や多孔体の目詰りを招く場合が生じる。従って
、針状結晶体を含まないセラミック泥漿を用いて含浸と
余剰泥漿の除去、乾燥を行ない、焼成時に針状結晶体を
生成せしめる方法、或いは得られたセラミック多孔体を
針状結晶体が生成される温度に再加熱する方法が好まし
く、これによってセラミックに針状結晶体が分散したセ
ラミック多孔体を好適に得ることができる。
When obtaining the ceramic porous body as described above, it is preferable to use one produced by attaching a ceramic slurry to a flexible polyurethane foam without a cell membrane and removing carbonization from the flexible polyurethane foam by sintering the slurry ( In this way, we decided to form a ceramic porous body from a flexible polyurethane foam without a cell membrane, and a cage-shaped ceramic porous body consisting only of the ridges of a regular dodecahedron was obtained. The exhaust gas passes through with little loss, and since the internal communication space is intricate, for example, when this ceramic porous body is used as a breathable heat insulating material, when the exhaust gas passes through the internal communication space, it is (This ensures reliable contact and efficient heat exchange.) However, when producing a ceramic porous body using such a method, a method is adopted in which the needle-like crystals are dispersed in the ceramic slurry in advance. I can do it. However, this method may increase the viscosity of the ceramic slurry, making it difficult to impregnate and remove excess slurry, resulting in poor impregnation and clogging of the porous body. Therefore, there is a method in which the ceramic slurry that does not contain acicular crystals is impregnated, excess slurry is removed, and dried, and acicular crystals are produced during firing, or the obtained ceramic porous body is used to form acicular crystals. It is preferable to reheat the porous ceramic body to a temperature at which the porous ceramic material is dispersed.

本発明のセラミック多孔体は、主として高温ガスや液体
を通過せしめる個所、例えば溶融全屈の泥材、触媒担体
、ディゼルパティキーレートフィルター1通気性断熱材
等の用途に好適に用いられ、とりわけ通気性断熱材とし
て効果的に用いられる。
The ceramic porous body of the present invention is suitably used in places where high-temperature gases and liquids are allowed to pass, such as molten mud materials, catalyst carriers, diesel particulate filter 1, and air-permeable heat insulating materials. It is effectively used as a thermal insulation material.

本発明のセラミック多孔体を上述したような用途に用い
る場合、セラミック多孔体としてはその嵩比重が0.2
5〜0.6であり、内部連通空間の平均直径が0.2〜
10闇でいずれの方向にも目詰りのないものであり、空
隙率が75〜95チであり、かつ空気の圧力損失が毎秒
風速1mで1副の厚みを通過するのに水柱0.1〜40
間であることが好適である。とりわけ通気性断熱材とし
て使用する場合は、その嵩比重が0,25〜0.6、好
ましくは0.25〜0.5、平均直径が0.2〜10 
mm−好ましくは0.2〜5 mm、更に好ましくは0
.3〜1.5 mn 。
When the ceramic porous body of the present invention is used for the above-mentioned purposes, the bulk specific gravity of the ceramic porous body is 0.2.
5 to 0.6, and the average diameter of the internal communication space is 0.2 to 0.6.
10 in darkness, without clogging in any direction, with a porosity of 75 to 95 cm, and with a pressure loss of 0.1 to 0.1 in water column when air passes through one sub-thickness at a wind speed of 1 meter per second. 40
Preferably, it is between. Especially when used as a breathable heat insulating material, the bulk specific gravity is 0.25 to 0.6, preferably 0.25 to 0.5, and the average diameter is 0.2 to 10.
mm - preferably 0.2 to 5 mm, more preferably 0
.. 3-1.5 mn.

空隙率が75〜95%、好壕しくけ80〜95%、空気
の圧力損失が毎秒風速1mで1tynの厚みを通過する
のに水柱0.1〜40IIII++、好ましくは5〜3
0調であることが必要であり、これにより通気性と断熱
性の両者に優れ、効果の高い通気性断熱材が得られる。
The porosity is 75-95%, the trench density is 80-95%, and the pressure drop of air is 0.1-40III++, preferably 5-3 in water column when passing through a thickness of 1 tyn at a wind speed of 1 m/s.
It is necessary that the temperature is 0, and as a result, a highly effective air-permeable heat insulating material with excellent both air permeability and heat insulation properties can be obtained.

これに対し、上記範囲をはずれる場合は良好な通気性断
熱材とならない。即ち、嵩比重が0.25より小さいと
断熱材としての強度が不十分であり、嵩比重が0.6よ
り大きいと目詰りが発生して圧力損失が高くなり、また
、平均直径が0.2胴より小さいと強度が低下し、圧力
損失の上昇を招き、平均直径が10問より大きくなると
断熱材と排気ガスとの接触が不十分となる上、断熱材の
表面(加熱側)から裏面(排気側)への輻射熱の漏れが
発生するので、良好な通気性断熱材とならない。更に、
空隙率が75係より小さい場合は、固体内熱伝導が良く
なって断熱材表裏面間の温度差が小さくなり、このため
断熱材裏面(排気側)からの輻射熱の逸散を招き、また
、空隙率が95チを超えると強度が低下し、なお更に、
圧力損失が40晒を超えるものは、加熱炉等の燃焼に不
具合をもたらす場合が多く、同様に良好な通気性断熱材
が得られないものである。
On the other hand, if it deviates from the above range, it will not provide a good breathable heat insulating material. That is, if the bulk specific gravity is less than 0.25, the strength as a heat insulating material is insufficient, and if the bulk specific gravity is greater than 0.6, clogging will occur and pressure loss will increase, and if the average diameter is 0. If the diameter is smaller than 2, the strength will decrease, leading to an increase in pressure loss, and if the average diameter is larger than 10, the contact between the insulation material and the exhaust gas will be insufficient, and the insulation material will not have enough contact with the exhaust gas from the front side (heating side) to the back side. Since radiant heat leaks to the exhaust side (exhaust side), it is not a good breathable insulation material. Furthermore,
When the porosity is less than 75 coefficients, the heat conduction within the solid improves and the temperature difference between the front and back surfaces of the insulation material becomes small, leading to the dissipation of radiant heat from the back surface (exhaust side) of the insulation material. When the porosity exceeds 95 inches, the strength decreases, and furthermore,
Those with a pressure loss of more than 40% often cause problems in combustion in heating furnaces, etc., and likewise cannot provide good air permeable heat insulating materials.

なお本発明に係るセラミック多孔体を通気性断熱材とし
て用いる場合、上述した構成のセラミック多孔体中に輻
射症向上剤を分散させるか又はセラミック多孔体の格子
全体もしくは排気ガス流入側の格子を輻射症向上剤で被
罹することができ、これにより通気性断熱材の輻射性能
をより高くすることができる。この場合、輻射症向上剤
としては、炭化硅素や窒化硅素等を使用することもでき
るが、特に顕著な効果を示すものは遷移金属酸化物であ
す、バナジウム、クロム、マンガン、鉄、コバルト、ニ
ッケルの酸化物が好適に使用し得る。なおこれら輻射症
向上剤をセラミック多孔体中に分散させる場合は、セラ
ミック多孔体の製造時にセラミック泥漿中に輻射症向上
剤を混入してセラミック多孔体を形成することにより、
輻射症向上剤をセラミック多孔体中に分散させることが
でき、また輻射症向上剤をセラミック多孔体の格子に被
覆させる場合は、形成されたセラミック多孔体の全体も
しくは一部は水等の溶剤に輻射症向上剤を分散させてな
る分散液中に浸漬し、乾燥或いは焼結することにより、
輻射症向上剤を液種することができる。前記輻射症向上
剤の使用量は、セラミック多孔体全重量00〜90係、
特に1〜50%と ・することが好捷しく、これによシ
高い輻射効果を発揮させることができる。1だ、上記遷
移金属酸化物のほか、或いは上記遷移金属酸化物に加え
て金属窒化物、金属炭化物の1種又は2種以上をセラミ
ック多孔体十の格子中に分散又は格子表面に付着、波峰
させることができ、これによりセラミック多孔体の輻射
熱を高めたり、耐熱衝撃性や耐熱性を高めることができ
るので、通気性断熱材等の用途に好適である。窒化物と
してはTiN 、 ZrN。
In addition, when the ceramic porous body according to the present invention is used as a breathable heat insulating material, a radiation sickness improving agent is dispersed in the ceramic porous body having the above-mentioned structure, or the entire lattice of the ceramic porous body or the lattice on the exhaust gas inflow side is treated with radiation. The radiation performance of the breathable heat insulating material can be further improved by treating the disease with a disease-improving agent. In this case, silicon carbide, silicon nitride, etc. can be used as radiation sickness improvers, but those that show particularly remarkable effects are transition metal oxides such as vanadium, chromium, manganese, iron, cobalt, and nickel. The oxides can be suitably used. In addition, when dispersing these radiation sickness improving agents in a ceramic porous body, by mixing the radiation sickness improving agent into the ceramic slurry to form the ceramic porous body during the production of the ceramic porous body,
The radiation sickness improving agent can be dispersed in the ceramic porous body, and when the radiation sickness improving agent is coated on the lattice of the ceramic porous body, the entire or part of the formed ceramic porous body is soaked in a solvent such as water. By immersing it in a dispersion containing a radiation sickness improver and drying or sintering it,
The radiation sickness improver can be made into a liquid form. The amount of the radiation sickness improving agent used is based on the total weight of the ceramic porous body from 00 to 90,
In particular, it is preferable to set the amount to 1 to 50%, thereby achieving a high radiation effect. 1. In addition to the above transition metal oxides, or in addition to the above transition metal oxides, one or more metal nitrides and metal carbides are dispersed in the lattice of the ceramic porous body or attached to the lattice surface, and wave peaks are formed. This makes it possible to increase the radiant heat of the ceramic porous body and improve the thermal shock resistance and heat resistance, so it is suitable for applications such as breathable heat insulating materials. Nitrides include TiN and ZrN.

St、N4等が挙げられ、炭化物としては’l”ic 
、 ZrC1HfC,VC、TaC、NbC、WC、B
IC、SIC等が挙げられる。また金属硼化物、例えば
AtB 、 SIB 、 TiB2 。
Examples of carbide include St, N4, etc., and 'l”ic as a carbide.
, ZrC1HfC, VC, TaC, NbC, WC, B
Examples include IC and SIC. Also metal borides, such as AtB, SIB, TiB2.

ZrB2. HfB + VB2 、TaB 、 WB
等を格子中に分散又は格子表面に付着させることもでき
る。
ZrB2. HfB + VB2, TaB, WB
etc. can also be dispersed in the grating or attached to the grating surface.

以下、実施例を示す。Examples are shown below.

〔実施例〕〔Example〕

セルilUのない軟質ポリウレタンフォームにアルミナ
85重量%、それにシリカ等を含むセラミック原料より
つくったセラミック泥漿を付着し、乾燥後、最高温度1
450℃で焼成して、いずれの方向にも目詰りのない内
部連通空間を有する三次元網状のセル構造をなしたセラ
ミック多孔体を得た。
Ceramic slurry made from ceramic raw materials containing 85% alumina and silica, etc. is attached to flexible polyurethane foam without cell ILU, and after drying, it is heated to a maximum temperature of 1.
By firing at 450° C., a ceramic porous body having a three-dimensional network cell structure having internal communication spaces without clogging in any direction was obtained.

このセラミック多孔体を約1000倍の電子顕微鏡写真
をとって観察したところ、針状結晶体(ムライト)が分
散していることが確認された。
When this ceramic porous body was observed by taking an electron micrograph at a magnification of approximately 1000 times, it was confirmed that needle-like crystals (mullite) were dispersed.

なお、このセラミック多孔体の嵩比重は0.42、であ
った。
Note that the bulk specific gravity of this ceramic porous body was 0.42.

次に、上記セラミック多孔体(長さ150wn。Next, the above ceramic porous body (length 150wn).

幅50萌、厚さ20 wn ) aを図面に示すように
支持体す、b上に乗せ、1400℃に加熱してそのとき
のたわみ量Δdを測定した結果はOmmであり、耐高温
クリープ性に優れていることが知見された。
Width: 50 mm, thickness: 20 wn) A was placed on supports S and B as shown in the drawing, heated to 1400°C, and the deflection amount Δd at that time was measured. The result was Omm, indicating high temperature creep resistance. It was found that it was excellent.

【図面の簡単な説明】[Brief explanation of drawings]

図面はセラミック多孔体のたわみ量の測定方法の説明図
である。
The drawing is an explanatory diagram of a method for measuring the amount of deflection of a porous ceramic body.

Claims (1)

【特許請求の範囲】 1、 内部連通空間を有する三次元網状のセル構造をな
したセラミ、り多孔体において、該多孔体を形成するセ
ラミック中に針状結晶体が分散していることを特徴とす
るセラミック多孔体。 2、セラミ、り多孔体が、嵩比重が0.25〜0.6で
あり、内部連通空間がいずれの方向にも目詰りがなく、
その平均直径が0.2〜10mgであり、圧チであるも
のである特許請求の範囲第1項記載のセラミック多孔体
。 3、 セラミ、り多孔体がアルミナもしくはコージライ
ト質を主成分としてなり、針状結晶体がムライトからな
る特許請求の範囲第1項又は第2項記載のセラミ、り多
孔体。
[Claims] 1. A ceramic or porous body having a three-dimensional network cell structure with internal communication spaces, characterized in that needle-like crystals are dispersed in the ceramic forming the porous body. Ceramic porous body. 2. The ceramic or porous body has a bulk specific gravity of 0.25 to 0.6, and the internal communication space is not clogged in any direction.
2. The ceramic porous body according to claim 1, which has an average diameter of 0.2 to 10 mg and is compressed. 3. The ceramic or porous body according to claim 1 or 2, wherein the ceramic or porous body is mainly composed of alumina or cordierite, and the acicular crystals are made of mullite.
JP22159082A 1982-02-26 1982-12-17 Ceramic porous body Granted JPS59111967A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22159082A JPS59111967A (en) 1982-12-17 1982-12-17 Ceramic porous body
US06/469,395 US4560478A (en) 1982-02-26 1983-02-24 Porous ceramic article
EP83101888A EP0087789B1 (en) 1982-02-26 1983-02-25 Porous ceramic article
DE8383101888T DE3372748D1 (en) 1982-02-26 1983-02-25 Porous ceramic article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22159082A JPS59111967A (en) 1982-12-17 1982-12-17 Ceramic porous body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5278980A Division JP2507976B2 (en) 1993-10-12 1993-10-12 Method for manufacturing ceramic porous body

Publications (2)

Publication Number Publication Date
JPS59111967A true JPS59111967A (en) 1984-06-28
JPH0474308B2 JPH0474308B2 (en) 1992-11-25

Family

ID=16769130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22159082A Granted JPS59111967A (en) 1982-02-26 1982-12-17 Ceramic porous body

Country Status (1)

Country Link
JP (1) JPS59111967A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141682A (en) * 1984-12-12 1986-06-28 東芝セラミツクス株式会社 Ceramic foam and manufacture
JPS61259870A (en) * 1985-05-13 1986-11-18 Bridgestone Corp Filter medium for iron casting
JPH06239673A (en) * 1993-10-12 1994-08-30 Bridgestone Corp Porous ceramic material
US7138034B2 (en) 2001-06-25 2006-11-21 Matsushita Electric Industrial Co., Ltd. Electrode member used in a plasma treating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141682A (en) * 1984-12-12 1986-06-28 東芝セラミツクス株式会社 Ceramic foam and manufacture
JPH058148B2 (en) * 1984-12-12 1993-02-01 Toshiba Ceramics Co
JPS61259870A (en) * 1985-05-13 1986-11-18 Bridgestone Corp Filter medium for iron casting
JPH0694065B2 (en) * 1985-05-13 1994-11-24 株式会社ブリヂストン For iron castings
JPH06239673A (en) * 1993-10-12 1994-08-30 Bridgestone Corp Porous ceramic material
US7138034B2 (en) 2001-06-25 2006-11-21 Matsushita Electric Industrial Co., Ltd. Electrode member used in a plasma treating apparatus

Also Published As

Publication number Publication date
JPH0474308B2 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
EP2487342B1 (en) Erosion resistant mounting material and method of making and using the same
JP3548914B2 (en) Method for producing catalyst carrier
US4560478A (en) Porous ceramic article
US5853444A (en) Porous permeable molded body
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
GB2164580A (en) Heat-resistant, highly expansible sheet material for supporting catalyst carrier and process for the preparation thereof
JPH07187845A (en) Ceramic porous body and its production
EP2067756B1 (en) Silicon carbide based porous material and method for preparation thereof
JPS59111967A (en) Ceramic porous body
Das et al. Influence of clay content on microstructure and flexural strength of in situ reaction bonded porous SiC ceramics
JPH01145378A (en) Silicon carbide honeycomb structure and production thereof
JPS6191076A (en) Porous silicon carbide sintered body and manufacture
JPS6245344A (en) Catalyst carrier and its preparation
JP2507976B2 (en) Method for manufacturing ceramic porous body
JPS61191575A (en) Porous silicon carbide sintered body and manufacture
JP4041879B2 (en) Ceramic porous body and method for producing the same
JPS58151382A (en) Porous ceramic structure
JPS6046980A (en) Inorganic porous body structure
JPS5832090A (en) Gas permeable heat insulator
JP2743250B2 (en) Radiant tube type heating device
JPS6153176A (en) Porous ceramic body
JPH0230287B2 (en)
JPH0615044B2 (en) Catalyst carrier composed of porous silicon carbide sintered body
JPH11209185A (en) Ceramic sheet using porous fiber and its production
JPH07100633B2 (en) Porous silicon carbide sintered body and method for producing the same