JPS5911179B2 - Electron beam deflection device - Google Patents

Electron beam deflection device

Info

Publication number
JPS5911179B2
JPS5911179B2 JP52135365A JP13536577A JPS5911179B2 JP S5911179 B2 JPS5911179 B2 JP S5911179B2 JP 52135365 A JP52135365 A JP 52135365A JP 13536577 A JP13536577 A JP 13536577A JP S5911179 B2 JPS5911179 B2 JP S5911179B2
Authority
JP
Japan
Prior art keywords
deflection
electron beam
sample
objective lens
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52135365A
Other languages
Japanese (ja)
Other versions
JPS5468150A (en
Inventor
進 高嶋
正次 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP52135365A priority Critical patent/JPS5911179B2/en
Publication of JPS5468150A publication Critical patent/JPS5468150A/en
Publication of JPS5911179B2 publication Critical patent/JPS5911179B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は走査電子顕微鏡による制限視野回折像の観察等
に有効な電子線装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electron beam device effective for observing selected area diffraction images using a scanning electron microscope.

走査電子顕微鏡を用いて試料の微小領域からの擬菊池パ
ターンを得るためには、平行度の良い電子線を分析目的
とする試料の微小領域を中心に角度走査する必要がある
In order to obtain a quasi-Kikuchi pattern from a microscopic region of a sample using a scanning electron microscope, it is necessary to angularly scan a well-paralleled electron beam centered on the microscopic region of the sample to be analyzed.

この様な角度走査する方法の一例としては第1図に示す
如く、試料1に対向する電子レンズ(対物レンズ)2の
上方(電子線入射側)に一段の偏向系Dを設け対物レン
ズ2の屈折力を利用する方式のものがある。
As an example of such an angular scanning method, as shown in FIG. There is a method that uses refractive power.

この方式?は試料への入射角をαとすると、対物レンズ
の球面収差により電子線は試料上の一点に固定されない
でα3に比例して試料上を移動する。
This method? When the angle of incidence on the sample is α, the electron beam is not fixed at one point on the sample due to the spherical aberration of the objective lens, but moves on the sample in proportion to α3.

これはレンズの軸外を通過する電子ビームに対する対物
レンズの焦点距離が見掛上短かくなり、試料面よりレン
ズ側で光軸と交わる現象である。
This is a phenomenon in which the focal length of the objective lens for an electron beam that passes off-axis of the lens is apparently shortened, and the electron beam intersects with the optical axis closer to the lens than the sample surface.

従来はこの球面収差による電子線の移動を避けるために
、対物レンズに補助レンズを設け、該補助レンズに偏向
系による偏向角に同期し、且つ対物レンズ強度を弱める
ようなレンズ磁場を発生するように励磁電流を与えて対
物レン〆の焦点距離を長くする方法が提案されていた。
Conventionally, in order to avoid movement of the electron beam due to this spherical aberration, an auxiliary lens was provided in the objective lens, and the auxiliary lens generated a lens magnetic field that was synchronized with the deflection angle by the deflection system and weakened the strength of the objective lens. A method was proposed in which the focal length of the objective lens was increased by applying an excitation current to the lens.

しかし乍ら、この方法では対物レンズの光軸と補助レン
ズの光軸が機械的に一致していなくてはならないという
製造上の困難があり、また補助レンズのインダクタンス
のため入力信号の速い変化に対して忠実にレンズ強度を
応答させることが困難で早い角度走査が出来ないという
欠点があった。
However, this method has manufacturing difficulties in that the optical axis of the objective lens and the optical axis of the auxiliary lens must be mechanically aligned, and the inductance of the auxiliary lens causes rapid changes in the input signal. On the other hand, it is difficult to respond faithfully to the lens strength, and it is difficult to perform fast angle scanning.

本発明は上記の欠点を除去することを目的とするもので
あり、第2図にその実施例を示す如く、対物レンズ2の
入射電子線側に2段の偏向系D1,D2を設けたことを
特徴とするものである。
The present invention is aimed at eliminating the above-mentioned drawbacks, and as shown in an embodiment thereof in FIG. 2, two-stage deflection systems D1 and D2 are provided on the incident electron beam side of the objective lens 2. It is characterized by:

第2図における偏向系D1は第1図の偏向系Dと同様の
機能を有する偏向系であり偏向系D2は対物レンズの球
面収差を補正するためのものである。
The deflection system D1 in FIG. 2 has the same function as the deflection system D in FIG. 1, and the deflection system D2 is for correcting the spherical aberration of the objective lens.

今、対物レンズ2の像面に置かれた試料1へ電子線が対
物レンズ光軸3に対して入射角αで照射すると対物レン
ズの球面収差係数をC8として、電子線は試料から対物
レンズ方向へC8・α?近づいた面P1で光軸3と交わ
る。
Now, when an electron beam is irradiated onto the sample 1 placed on the image plane of the objective lens 2 at an incident angle α with respect to the optical axis 3 of the objective lens, the spherical aberration coefficient of the objective lens is set as C8, and the electron beam is directed from the sample to the objective lens. To C8・α? It intersects the optical axis 3 at the approaching plane P1.

従って試料面から対物レンズとは反対側へ距離△b=c
8・α2離れた面P2を像面位置とする02の物面位置
から電子線を対物レンズへ入射させれば電子線は試料上
で光軸と交わり、角度走査を行う際試料上の一点に照射
位置を固定することができる。
Therefore, the distance from the sample surface to the side opposite to the objective lens is △b=c
If an electron beam is incident on the objective lens from the object plane position 02, where the image plane position is plane P2, which is 8.α2 away, the electron beam intersects with the optical axis on the sample, and when performing angular scanning, it will be focused at one point on the sample. The irradiation position can be fixed.

この様な偏向を行うため、本発明は対物レンズの電子線
入射側に2段偏向系D,D2を設け、これらの偏向系に
よる偏向角βを任意に可変することにより見掛上の偏向
位置02が前述の条件を満たすように移動させることを
特徴とするものである。
In order to perform such deflection, the present invention provides two-stage deflection systems D and D2 on the electron beam incident side of the objective lens, and by arbitrarily varying the deflection angle β of these deflection systems, the apparent deflection position can be adjusted. 02 is moved so as to satisfy the above-mentioned conditions.

次に、上述した偏向を行う場合の条件を示す。Next, conditions for performing the above-described deflection will be described.

第2図において偏向系D,,D2による偏向角を01,
θ2とし、対物レンズの像面P1、物面01と偏向系D
1,D2の間の距離を図に示すように定義する。
In Fig. 2, the deflection angles by the deflection systems D, D2 are 01,
θ2, the image plane P1 of the objective lens, the object plane 01 and the deflection system D
1 and D2 are defined as shown in the figure.

又、一般にレンズの焦点距離をf、物面位aがa−△a
に移動するとbはb+△bのようにが成立つ。
In general, the focal length of the lens is f, and the object surface position a is a-△a.
When moving to , b becomes b + △b.

従って、前述した対物レンズの物面距離02と像面P2
の移動量△a,△bは次式で表わされる。
Therefore, the object surface distance 02 and the image plane P2 of the objective lens described above are
The moving amounts Δa and Δb are expressed by the following equations.

又、第2図から次の式が成り立つ。Also, from FIG. 2, the following equation holds true.

(a−△a−l2)・(θ1+θ2)==73 ,−θ
1 ””” (2)(a−△a)−(θ1+θ2
)=b ’ Ct ”” (3)(1) ? (
2) , (3)式より ?得られる。
(a-△a-l2)・(θ1+θ2)==73 ,-θ
1 ””” (2) (a-△a)-(θ1+θ2
)=b'Ct"" (3)(1)? (
2) From equation (3)? can get.

この(4) t (5)式はスカラ一方程式であり、θ
1,θ2がαと同じ方向を向いていることを表わす。
This equation (4) t (5) is a scalar equation, and θ
1, indicating that θ2 faces the same direction as α.

(4) , (5)式のθ,θ2,αをベクトルとみた
ときも、同様にθ1,θ2とαは同じ向きの量でなけれ
ばならないからα2はスカラー積でなければならない。
When θ, θ2, and α in equations (4) and (5) are viewed as vectors, similarly, θ1, θ2, and α must be quantities in the same direction, so α2 must be a scalar product.

各偏向系における偏向場は光軸3に直交する2つの偏向
場成分から成るが、この2つの方向をX方向、y方向と
すると、偏向系D1,D2による偏向角θ,,θ2と電
子線の入射角αは、i,jを各各x,y方向の単位ベク
トルとすると次の様に表わされる。
The deflection field in each deflection system consists of two deflection field components orthogonal to the optical axis 3. If these two directions are the X direction and the y direction, then the deflection angles θ, θ2 and the electron beam The incident angle α is expressed as follows, where i and j are unit vectors in each of the x and y directions.

ここで、l x ,l y等の添字は各々X,y方向で
あることを示す。
Here, subscripts such as l x and ly indicate the X and y directions, respectively.

又、(6)式のαを3乗して12=j2=1及びi j
= Oの関係を用いてまとめると次の(6)′式が成
立つ。
Also, by raising α in equation (6) to the third power, 12=j2=1 and i j
When summarized using the relationship = O, the following equation (6)' holds true.

α3−i(α3X十へ・α2)+j(α3y+αy・α
2ωy ・・・(6)′ (6) ? (6)’式におけるα及びα3を(4)式
へ代入し、そのθ1の式と(6)のθ1の式における1
,Jの係数が等しいとおくと、次の(7) t (s)
式が得られ、同様にして(6) , (6)’式におけ
るα及びα3の式を(5)式へ代入し、そのθ2の式と
(6)のθ2の式におけるi,jの係数が等しいとおく
と、次の(9) , (10)式が得られる。
α3-i (α3X to ten・α2)+j(α3y+αy・α
2ωy...(6)' (6)? Substituting α and α3 in equation (6)' into equation (4), the equation for θ1 and 1 in the equation for θ1 in (6)
, J are equal, the following (7) t (s)
The equation is obtained, and in the same way, the equations for α and α3 in equations (6) and (6)' are substituted into equation (5), and the coefficients of i, j in the equation for θ2 and the equation for θ2 in (6) are obtained. Assuming that they are equal, the following equations (9) and (10) are obtained.

θIX−K1゜ctX一K2゜ax3−K2゜(OtX
゜ay2!・・(7)θ1y:K1may−K2*ay
s−K2●αy+αX2...(8)θ2X二K3・α
エ十K4・叫3+K4・αエ・αy2...(9)θ2
y=K3・α+ヘ・αy3十K4・αy・αX2・・・
(1o)y が得られる。
θIX-K1゜ctX-K2゜ax3-K2゜(OtX
゜ay2! ...(7) θ1y: K1may−K2*ay
s-K2●αy+αX2. .. .. (8) θ2X2K3・α
E1K4・Scream 3+K4・αe・αy2. .. .. (9) θ2
y=K3・α+he・αy30K4・αy・αX2...
(1o)y is obtained.

但し、K1tK2 ,KstK4は次の様に表わされる
However, K1tK2 and KstK4 are expressed as follows.

■式のK1,K2,K3,K4は光学系の位置関係及び
球面収差係数によって決まる定数である。
K1, K2, K3, and K4 in equation (2) are constants determined by the positional relationship of the optical system and the spherical aberration coefficient.

従って、偏向系DI ,D2によるX方向、y方向の偏
向角θI X tθl y tθ2 X 2θ2yを(
7)〜(10)式を満足するように変化させれば、電子
線を試料の一点に固定した状態で角度走査せしめること
ができる。
Therefore, the deflection angle θI X tθl y tθ2 X 2θ2y in the X direction and y direction by the deflection systems DI and D2 is (
By changing the equations 7) to (10) to satisfy the equations, it is possible to angularly scan the electron beam with the electron beam fixed at one point on the sample.

所で、角度走査される電子線によって試料から発生する
信号を検出した情報は多くの場合ブラウン管を用いて表
示される。
Incidentally, information obtained by detecting signals generated from a sample by an angle-scanned electron beam is often displayed using a cathode ray tube.

この場合、ブラウン管内における電子線の水平方向及び
垂直方向の偏向角を夫々試料照射電子線の入射角成分α
え,αアに比例させるのが普通である。
In this case, the horizontal and vertical deflection angles of the electron beam in the cathode ray tube are determined by the incident angle component α of the electron beam irradiating the sample, respectively.
Well, it is normal to make it proportional to αa.

従って、ブラウン管の偏向系へ印加する(鋸歯状)掃引
信号発生回路からの掃引電圧vX,vyに比例させるの
が普通であるから比例係数を01 とすると次の関係が
成り立つ。
Therefore, since it is normal to make the sweep voltages vX and vy from the (sawtooth) sweep signal generation circuit applied to the deflection system of the cathode ray tube proportional to the sweep voltages vX and vy, assuming that the proportionality coefficient is 01, the following relationship holds true.

α=C −V jαy=C1−Vy−fl2)XIX 又、一般に偏向コイルに流れる電流iと偏向角θは偏向
コイルの偏向感度C2を定数として次の様に表わされる
α=C −V jαy=C1−Vy−fl2)XIX In general, the current i flowing through the deflection coil and the deflection angle θ are expressed as follows, with the deflection sensitivity C2 of the deflection coil as a constant.

θ=C2 ・i ・・・・・・
・・・(L3)今、試料照射電子線に対する偏向コイル
D1,D2に供給される電流と偏向感度を夫々、11X
,11y l ”2Xt i2ytc3 ,C4 と
すると前述した(7)〜(10)式は次の様に表わされ
る。
θ=C2 ・i ・・・・・・
...(L3) Now, the current and deflection sensitivity supplied to the deflection coils D1 and D2 for the sample irradiation electron beam are set to 11X, respectively.
, 11y l ''2Xt i2ytc3 ,C4, the above-mentioned equations (7) to (10) can be expressed as follows.

11X=K1・A1・iX−K2・A2・iX8−K2
・A2・ix−iy2 ・・・・・・・・・α
滲11y=K,・A,・ly K2・A2・t y3一
K2・A2・iy−ix2 ・・・・・・・・
・(Lつ12X=K3・B1・iX+K4・B2・ix
3十K4・B2・I X ” 1 y” ・・
・・・・・・・(16)12y−K3・B1・iy+K
4・B2・iy3+K,・B2・i −iX2
・・・・・・・・・αηy 但し、AI ,A2tB1 ,B2は次のように表わさ
れる。
11X=K1・A1・iX-K2・A2・iX8-K2
・A2・ix-iy2 ・・・・・・・・・α
滲11y=K,・A,・ly K2・A2・t y3−K2・A2・iy−ix2 ・・・・・・・・・
・(L 12X=K3・B1・iX+K4・B2・ix
30K4・B2・I
・・・・・・・・・(16) 12y-K3・B1・iy+K
4・B2・iy3+K,・B2・i −iX2
......αηy However, AI, A2tB1, and B2 are expressed as follows.

これらの式は全て偏向手段として磁場発生用コイルを用
いた場合に導かれる式であるが、静電偏向による偏向手
段を用いた場合には上記(14)〜αη式における11
xtl2X,l1y,12yを各静電偏向電極に印加さ
れる偏向電圧V1 x t V 1 y t V2 z
,”2 yで置き換え比例定数A1,A2,B1,B2
をA1′,A2’ ,B1’ t B2’によって置き
換えれば次の関係式が成立する。
All of these equations are equations derived when a magnetic field generating coil is used as a deflection means, but when a deflection means based on electrostatic deflection is used, 11 in equations (14) to αη above are obtained.
xtl2X, l1y, 12y are deflection voltages applied to each electrostatic deflection electrode V1 x t V 1 y t V2 z
,”2 Replace with y proportionality constants A1, A2, B1, B2
If A1', A2', B1' t B2' are replaced, the following relational expression is established.

V1X=K1・A儒vX−K2・A2′・VX3−K2
−A2’ −VX−V 2−−−−・−・−(14)’
y V,y二K1・B1′・Vy−K.・B2′・Vy3−
K, −B2’ −V −VX2 ......
...(151/y V2X=K3・B1′・VX+K4・B2′・VX3+
K4−B2’−VX−Vy” −・−・・・・ α
6)′v2y二K3・B1′・Vy十K4・B2′・v
y3+K2−B2’−V,”VX””””” aη′次
に(14)’〜(17)’の関係式を満たす偏向回路の
一例を第3図に基づいて説明する。
V1X=K1・AjuvX−K2・A2′・VX3−K2
-A2' -VX-V 2-----・--(14)'
y V, y2K1・B1′・Vy−K.・B2'・Vy3-
K, -B2' -V -VX2 . .. .. .. .. ..
.. .. .. (151/y V2X=K3・B1'・VX+K4・B2'・VX3+
K4-B2'-VX-Vy” −・−・・α
6)'v2y2K3・B1'・Vy1K4・B2'・v
y3+K2-B2'-V, "VX"""""aη' Next, an example of a deflection circuit that satisfies the relational expressions (14)' to (17)' will be explained based on FIG.

第3図は試料に電子線を照射する光学系4における第1
段目の静電偏向電極5Xに供給される偏向電圧V1Xを
掃引信号発生回路の掃引電圧Vx tVyによって求め
るための回路構成を示すものである。
Figure 3 shows the first part of the optical system 4 that irradiates the sample with an electron beam.
This figure shows a circuit configuration for determining the deflection voltage V1X to be supplied to the electrostatic deflection electrode 5X of the third stage using the sweep voltage Vx tVy of the sweep signal generation circuit.

図中6,7は夫々掃引電圧VX,Vyを発生する掃引電
圧発生回路を示し、その出力の一部は増巾器(図示せず
)を介して直接ブラウン管8の偏向電極9xt9yへ印
加される。
In the figure, 6 and 7 indicate sweep voltage generation circuits that generate sweep voltages VX and Vy, respectively, and a part of their output is directly applied to the deflection electrode 9xt9y of the cathode ray tube 8 via an amplifier (not shown). .

一方、回路6,7の出力の一部は二乗回路10,11へ
供給され、該二乗回路10.11の出力は加算回路12
に印加されて(V2+V2)の信号が得られる。
On the other hand, a part of the outputs of the circuits 6 and 7 are supplied to the squaring circuits 10 and 11, and the outputs of the squaring circuits 10 and 11 are supplied to the adding circuit 12.
is applied to obtain a signal of (V2+V2).

該信号は更にxy 増巾器13で(一K2・A2′)倍されて積算回路14
の一方の入力端子に印加される。
The signal is further multiplied by (-K2·A2') by the xy amplifier 13 and sent to the integrating circuit 14.
is applied to one input terminal of

積算回路14の他方の入力端子には信号VXが印加され
ているので積算回路12の出力は一K2・A 2 ’・
(vX3+vX−Vy′)となる。
Since the signal VX is applied to the other input terminal of the integrating circuit 14, the output of the integrating circuit 12 is -K2·A 2 '·
(vX3+vX-Vy').

該信号出力は加算回路15において増幅器16の信号出
力K1・A I ’・VXと加算されα→′式を満すv
1X=K,・A1′・VX−K2・A2′・vX3−K
2・A2′・vX−Vy2の出力信号が得られる。
The signal output is added to the signal output K1, A I ', VX of the amplifier 16 in the adder circuit 15, and v which satisfies the equation α→' is added.
1X=K,・A1'・VX-K2・A2'・vX3-K
An output signal of 2.A2'.vX-Vy2 is obtained.

第3図に示す回路はα滲′式で表わされる偏向信号v1
Xを得るためのものであるが、(19′〜αD′式に表
わされる偏向信号を発生する回路も第3図に示す回路と
同様にして構成される。
The circuit shown in FIG.
The circuit for generating the deflection signals expressed by equations (19' to αD') is also constructed in the same manner as the circuit shown in FIG.

又、偏向コイルを用いる場合にも第3図に示す回路と略
同様の構成を有する回路が用いられることは云うまでも
ない。
Furthermore, it goes without saying that when a deflection coil is used, a circuit having substantially the same configuration as the circuit shown in FIG. 3 is used.

尚、試料照射電子線に対する2段の偏向系のうち、第2
段目の偏向系が対物レンズの主面に一致している場合に
は、第2図におけるl2が零となり、(7) t (s
)式等の式中のK2が零となる。
Of the two-stage deflection system for the sample irradiation electron beam, the second
When the deflection system of the second stage coincides with the main surface of the objective lens, l2 in FIG. 2 becomes zero, and (7) t (s
), etc., K2 becomes zero.

従って(7) t (8)式は次の様になり、 θ1X=K1.αエ ・・・・・・・・・
(7)′θ1y=Kピαy ・・・・・・
・・・(8)’偏向系による偏向角と試料入射角が比例
することになる。
Therefore, equation (7) t (8) becomes as follows, θ1X=K1. αE・・・・・・・・・
(7)'θ1y=Kpiαy...
...(8)' The deflection angle by the deflection system and the sample incident angle are proportional.

これら(力/ ,(S)/式を満たす回路としては第
3図に示す回路の代りに単一の増巾器を用いればよいの
で装置を著しく簡略化することができる。
Since a single amplifier may be used instead of the circuit shown in FIG. 3 as a circuit satisfying these (force/, (S)/ expressions), the apparatus can be significantly simplified.

次に、第2段目の偏向系D2が対物レンズの物面に一致
している場合には、第2図におけるaがa= l2とな
り、αυ式のK1はK1=Oとなり、(7),(8)式
は次の様になる。
Next, when the second-stage deflection system D2 coincides with the object plane of the objective lens, a in Fig. 2 becomes a=l2, K1 in the αυ equation becomes K1=O, and (7) , (8) is as follows.

θ =一K・αB−K2・αエ・αy2 ・・・・・
・(7)“IX2X θ1y=一K2・αy”−K2・αy・αエ′ ・・・
・・・(8)“又、第1段目の偏向系が対物レンズの物
面に一致している場合には、第2図におけるaがa =
l! 1+l2となりαη式のK3はK3=Oとなり
(9),αO)式は次の様になる。
θ = 1K・αB−K2・αE・αy2 ・・・・・・
・(7) “IX2X θ1y=-K2・αy”−K2・αy・αe'...
...(8) "Also, if the first stage deflection system coincides with the object plane of the objective lens, a in FIG. 2 becomes a =
l! 1+l2, and K3 in the αη equation becomes K3=O (9), and the αO) equation becomes as follows.

θ2X=K4・αX3+K4・α ・α2 ・・・・・
・(9)′xy θ2 =K4・α3+K4・α ・α2 ・・・・・・
(10)’y y yx又
、第2段目の偏向系が対物レンズの主面に一致すると同
時に第1段目の偏向系が対物レンズの物面に一致してい
る場合には、第2図においてl1=a t l 2 ”
’ Oとなり、(11)式のK2tKsはK2=0,K
3=Oとなり(7)〜(10)式は次の様になる。
θ2X=K4・αX3+K4・α・α2・・・・・・
・(9)′xy θ2 =K4・α3+K4・α ・α2 ・・・・・・
(10)'y y yx Also, if the second-stage deflection system coincides with the main surface of the objective lens, and at the same time the first-stage deflection system coincides with the object plane of the objective lens, the second stage deflection system coincides with the object plane of the objective lens, In the figure, l1=a t l 2 ”
'O, and K2tKs in equation (11) is K2=0,K
3=O, and equations (7) to (10) become as follows.

θ1X=K,・αエ ・・・・・・
(7)///θ1y=K1・αy ・・
・・・・(8)//7θ2X=K4・αX3+K,・α
エ・αy2 ・・・・・・(9)“′θ2y−K4・
αy’+K,・αy・αX′ ・・・・・・α『上述の
如き特殊な条件においては(7)〜(10)式がより簡
略化されるので、それに応じて偏向回路の構成も簡略化
される。
θ1X=K,・αE ・・・・・・
(7) ///θ1y=K1・αy...
...(8)//7θ2X=K4・αX3+K,・α
E・αy2・・・・・・(9) “′θ2y−K4・
αy'+K, ・αy・αX' ・・・・・・α ``Under the above-mentioned special conditions, equations (7) to (10) are simplified, so the configuration of the deflection circuit is also simplified accordingly. be converted into

第4図は本発明の更に他の実施例装置の要部を示す略図
である。
FIG. 4 is a schematic diagram showing the main parts of a device according to still another embodiment of the present invention.

図の装置は第2図に示す第2段目の偏向コイルD2を2
段の偏向系D3 ,D4に分割したもので、合計3段の
偏向系によって角度走査が行われる。
The device shown in the figure has two deflection coils D2 in the second stage shown in FIG.
The angle scanning is performed by a total of three stages of deflection systems D3 and D4.

第2段目と第3段目の偏向系D3,D4は角度走査を行
わない通常の試料面走査の時には対物レンズの中心を電
子ビームが通過するよθ1なる関係式が成り立つように
構成されている。
The second and third stage deflection systems D3 and D4 are configured so that the relational expression θ1 holds true so that the electron beam passes through the center of the objective lens during normal sample surface scanning without angular scanning. There is.

一方、第1段目の偏向系D。On the other hand, the first stage deflection system D.

の対物レンズ側に(制限視野)絞り17が設けられてお
り、この絞りを物面として試料上に絞りの縮小像が形成
されるように対物レンズの焦点距離が定められる。
A (limited field) diaphragm 17 is provided on the objective lens side, and the focal length of the objective lens is determined so that a reduced image of the diaphragm is formed on the sample with this diaphragm as the object surface.

第4図に示す如く試料への電子線入射角をα、偏向コイ
ルD3とD4による電子線の偏向角を夫々θ3及びθ4
とし、更に偏向コイルD。
As shown in Fig. 4, the incident angle of the electron beam on the sample is α, and the deflection angles of the electron beam by the deflection coils D3 and D4 are θ3 and θ4, respectively.
and a deflection coil D.

により偏向された電子線が光軸となす角度をθ。The angle between the electron beam deflected by and the optical axis is θ.

とすると、次式で表わされる幾何学的関係が成立する。Then, the geometrical relationship expressed by the following equation holds true.

(a−△a)・(θ4−03)巳へa・θ。(a-△a)・(θ4-03) a・θ to the snake.

・・・・・・ (20)l3・θ3=l4・(θ4
−03) ・・・・・・ (21)一方、第4
図の装置においても前述の装置と同じく偏向角θ3及び
θ4を調整して(1)式の関係が成立つようにしなけれ
ばならない。
...... (20) l3・θ3=l4・(θ4
-03) ...... (21) Meanwhile, the fourth
In the device shown in the figure as well as in the above-described device, the deflection angles θ3 and θ4 must be adjusted so that the relationship expressed by equation (1) holds true.

そこで、(1),α9),(20) t (2υ式を連
立させると次の式が成立つ。
Therefore, by combining the equations (1), α9), and (20) t (2υ), the following equation is established.

@,(ハ)式は一次元のものであるが、二次元で考える
には、α,θ3,θ4をベクトルとみなしてi,jを各
々X,y方向の単位ベクトルとして次のように表わす。
@, Equation (c) is one-dimensional, but to think about it in two dimensions, α, θ3, and θ4 are regarded as vectors, and i and j are unit vectors in the X and y directions, respectively, and can be expressed as follows. .

(自)式のαを3乗して12=j2=1及びi−j−0
の関係を用いてまとめると、次(24)’式が成立つ。
(self) Raise α to the third power and get 12=j2=1 and i-j-0
When summarized using the relationship, the following equation (24)' holds true.

α3=i・(α3+α ・α2)十j・(αν十αア・
α2x)xxy ・・・・・・(24)’ (自)と(24)’式のαとα3を(19) , (2
2)及び(23)式へ代入しそのθ。
α3=i・(α3+α・α2)tenj・(ανtenαa・
α2x)xxy ......(24)' (auto) and (24)' α and α3 are (19), (2
Substitute into equations 2) and (23) and find θ.

,θ3,θ4を表わす関係式が(24)式におけるiと
jの係数が等しいとおくと次の(29式が得られる。
, θ3, θ4, if it is assumed that the coefficients of i and j in equation (24) are equal, the following equation (29) is obtained.

但し、Ko’,K’は次の式で表わされる。However, Ko' and K' are expressed by the following equations.

第4図には偏向系D。Deflection system D is shown in Figure 4.

t D3 ,D4へ供給する偏商電流を切り換えて通常
の試料面走査と角度走査を行うための構成が示されてい
る。
A configuration for performing normal sample surface scanning and angle scanning by switching the polarized currents supplied to t D3 and D4 is shown.

即ち、互いに連動した切り換えスイッチ18a,18b
をa側端子へ切り換えると、偏向系D。
That is, the changeover switches 18a and 18b are interlocked with each other.
Deflection system D when switched to the a side terminal.

へは励磁が零となり、偏向系D3,D4へは通常の走査
信号が走査信号発生回路19から鋸歯状の走査信号が供
給される。
The excitation becomes zero, and a normal scanning signal and a sawtooth scanning signal are supplied from the scanning signal generating circuit 19 to the deflection systems D3 and D4.

又、切り換えスイッチ18at18bをb側へ切り換え
ると上記(25)式の関係を満たす偏向信号が角度走査
信号発生回路20より各偏向コイルDO t D3 t
D4へ供給される。
Furthermore, when the changeover switch 18at18b is switched to the b side, a deflection signal that satisfies the above equation (25) is sent from the angle scanning signal generation circuit 20 to each deflection coil DO t D3 t
It is supplied to D4.

以上に詳説した如く、試料照射電子線の角度走査を2段
以上の偏向系を用いて一定の関係を満たす様に行うこと
により、高速度の角度走査を、対物レンズの球面収差の
影響を受けることなく行うことが可能となる。
As explained in detail above, by performing angular scanning of the electron beam irradiating the sample using a two or more stage deflection system so as to satisfy a certain relationship, high-speed angular scanning can be performed without being affected by the spherical aberration of the objective lens. It is possible to do it without any trouble.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料に照射する電子線を角度走査する場合を説
明するための略図、第2図は本発明による角度走査の原
理を説明するための略図、第3図及び第4図は本発明を
実施する装置の要部を示す略図である。 1・・・試料、2・・・対物レンズ、8・・・ブラウン
管。
Fig. 1 is a schematic diagram for explaining the case of angular scanning of the electron beam irradiated to the sample, Fig. 2 is a schematic diagram for explaining the principle of angular scanning according to the present invention, and Figs. 3 and 4 are the diagrams according to the present invention. 1 is a schematic diagram showing the main parts of an apparatus for implementing the 1... Sample, 2... Objective lens, 8... Braun tube.

Claims (1)

【特許請求の範囲】[Claims] 1 電子レンズに入射する電子線を2段以上の偏向系に
よって前記電子レンズの軸外へ入射させ、前記電子レン
ズの屈折力によって電子線が常に試料の一点を照射する
ようになした装置において、前記電子レンズ光軸に垂直
な面上で直交するX,y方向の角度成分αエ,αアで表
わされる前記試料照射電子線の入射角αの角度走査を行
う場合に、前記2段以上の偏向系の夫々へ前記角度成分
αエ,αアの関数として与えられる偏向信号を供給する
手段を設けたことを特徴とする電子線偏向装置。
1. In an apparatus in which an electron beam incident on an electron lens is made to be incident off-axis of the electron lens by a deflection system of two or more stages, and the electron beam always irradiates one point of the sample using the refractive power of the electron lens, When performing angular scanning of the incident angle α of the sample irradiation electron beam represented by angular components αE and αA in the X and Y directions orthogonal to the optical axis of the electron lens on a plane perpendicular to the optical axis of the electron lens, An electron beam deflection apparatus characterized in that means is provided for supplying a deflection signal given as a function of the angular components αe and αa to each of the deflection systems.
JP52135365A 1977-11-11 1977-11-11 Electron beam deflection device Expired JPS5911179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52135365A JPS5911179B2 (en) 1977-11-11 1977-11-11 Electron beam deflection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52135365A JPS5911179B2 (en) 1977-11-11 1977-11-11 Electron beam deflection device

Publications (2)

Publication Number Publication Date
JPS5468150A JPS5468150A (en) 1979-06-01
JPS5911179B2 true JPS5911179B2 (en) 1984-03-14

Family

ID=15150019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52135365A Expired JPS5911179B2 (en) 1977-11-11 1977-11-11 Electron beam deflection device

Country Status (1)

Country Link
JP (1) JPS5911179B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014739A (en) * 1983-07-06 1985-01-25 Jeol Ltd Electron beam diffraction apparatus
JPS60105150A (en) * 1983-11-11 1985-06-10 Jeol Ltd Electron microscope
US10319558B2 (en) * 2013-09-30 2019-06-11 Hitachi High-Technologies Corporation Charged particle beam device
WO2017002243A1 (en) * 2015-07-01 2017-01-05 株式会社日立ハイテクノロジーズ Aberration correction method, aberration correction system, and charged particle beam device

Also Published As

Publication number Publication date
JPS5468150A (en) 1979-06-01

Similar Documents

Publication Publication Date Title
US4455485A (en) Laser beam scanning system
US7381949B2 (en) Method and apparatus for simultaneously depositing and observing materials on a target
JP2010067530A (en) Charged particle beam apparatus
JPH04242060A (en) Reflecting electronic microscope
JP5493029B2 (en) Charged particle beam application equipment
US4044254A (en) Scanning corpuscular-beam transmission type microscope including a beam energy analyzer
JPS5911179B2 (en) Electron beam deflection device
JP4431459B2 (en) Focused ion beam apparatus and focused ion beam irradiation method
JP2019164886A (en) Beam irradiation device
US10297418B2 (en) Method of reducing coma and chromatic aberration in a charged particle beam device, and charged particle beam device
JPH0234139B2 (en)
US20050167607A1 (en) Multipole field-producing apparatus in charged-particle optical system and aberration corrector
JPH0729544A (en) Electronic energy loss simultaneous measuring device
US6894277B2 (en) Scanning electron microscope
US2986634A (en) Method of examining the quality of electron-optical images and devices for carrying out this method
JP2000149843A (en) Optical system of charged particle beam map
JPS61217014A (en) Scanning type inspecting instrument
JP2001076659A (en) Manufacture of charged-particle beam microscope, defect- inspecting device, and semiconductor device
JPS6093746A (en) Electron ray deflector
JPH02236936A (en) Charged beam apparatus
JPS5820098B2 (en) Electron beam deflection scanning device
JP2022156347A (en) Electron beam application device
JPS585954A (en) Dynamic focus correcting device
JPS6329379B2 (en)
JPS6252838A (en) Scanning type electron microscope