JPS59111761A - Sterilizing method - Google Patents

Sterilizing method

Info

Publication number
JPS59111761A
JPS59111761A JP21125982A JP21125982A JPS59111761A JP S59111761 A JPS59111761 A JP S59111761A JP 21125982 A JP21125982 A JP 21125982A JP 21125982 A JP21125982 A JP 21125982A JP S59111761 A JPS59111761 A JP S59111761A
Authority
JP
Japan
Prior art keywords
sterilization
lamp
flash discharge
irradiation
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21125982A
Other languages
Japanese (ja)
Other versions
JPS6058874B2 (en
Inventor
久司 実
上野 高尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd, Ushio Denki KK filed Critical Meiji Milk Products Co Ltd
Priority to JP21125982A priority Critical patent/JPS6058874B2/en
Publication of JPS59111761A publication Critical patent/JPS59111761A/en
Publication of JPS6058874B2 publication Critical patent/JPS6058874B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は食品容器の様な被処理物を大量に処理できる殺
菌方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sterilization method capable of processing large quantities of objects to be processed, such as food containers.

従来、菌類の殺菌には、簡便な方法の1つとして、殺菌
灯による照射が利用されている。
Conventionally, irradiation with a germicidal lamp has been used as one of the simple methods for sterilizing fungi.

従来の殺菌灯は、消費電力が数十ワット程度のものが普
通で、特殊なもので200ワツト程紋である。たソし、
200ワット程度になると殺菌灯の長さが2米程の長大
なものとなり、単位アーク長当りの殺菌線の量は、特に
著しく増大すると言うものではない。
Conventional germicidal lamps typically consume a few tens of watts of power, with special types consuming around 200 watts. Tasoshi,
When the power is about 200 watts, the length of the germicidal lamp becomes about 2 meters long, and the amount of germicidal radiation per unit arc length does not particularly increase significantly.

ところで、菌類にも非常に多種類あって、例えば、黒カ
ビのように光を良く吸収する菌の場合は、表面の黒カビ
しか殺菌されず、重なって、表面の黒カビの下層に位置
するものは非常に殺菌しにくい。したがって、従来の殺
菌灯では、黒カビのように光をよく吸収する菌に対して
は、殺菌時間が長かったり、殺菌率が低かったりして、
あまり良い殺菌方法とは言えない欠点がある。
By the way, there are many types of fungi, and for example, in the case of fungi that absorb light well, such as black mold, only the black mold on the surface is sterilized, and the superimposed black mold located below the surface black mold is extremely sterilized. difficult to sterilize. Therefore, with conventional germicidal lamps, the sterilization time is long and the sterilization rate is low for bacteria that absorb light well, such as black mold.
There are drawbacks that make it not a very good sterilization method.

一般に、殺菌灯による紫外線殺菌効果は次の式1式% No: 紫外線照射シnの菌数 N : 紫外線照射後の菌数 Q : 菌に固有の定数 t : 殺菌に有効な波長域の紫外線の強度4 : 菌
の表面層へ照射される上記紫外線の強度t : 照射時
間 α : 菌の上記紫外線吸収係数 −二 定数 L : 菌の層の表面からの深さ である。したがって、これらの式より、殺菌を有効に行
うためには、2−1の値を大きくすれば良いことが分る
。α、βは茜の固有の定数であるので結局、tを大きく
するか、もしくはti大きくするかである。従来の殺菌
灯では、t0シたがってtも小さいのでtを大きくせざ
るを得なかったが、それでも、黒カビの場合などでは表
面層の殺菌しかできず、殺菌率は低かった。
In general, the UV sterilization effect of germicidal lamps is determined by the following formula: % No: Number of bacteria after UV irradiation N: Number of bacteria after UV irradiation Q: Constant specific to bacteria t: UV rays in the wavelength range effective for sterilization Intensity 4: Intensity t of the ultraviolet rays irradiated to the surface layer of the bacteria. Irradiation time α: The above ultraviolet absorption coefficient of the bacteria - 2. Constant L: Depth from the surface of the bacterial layer. Therefore, from these equations, it can be seen that in order to effectively perform sterilization, it is sufficient to increase the value of 2-1. Since α and β are constants specific to Akane, the final decision is whether to increase t or ti. With conventional germicidal lamps, since t0 is small, t has to be increased, but even so, in the case of black mold, etc., only the surface layer could be sterilized, and the sterilization rate was low.

更には、食品用の容器や包装紙などの被処理物を殺菌す
る際には、高い殺菌率が要請されるとともに、殺菌中に
万一にもランプなどが破損してその破片が被処理物に付
着することは許されない。
Furthermore, when sterilizing objects to be processed such as food containers and wrapping paper, a high sterilization rate is required, and in the unlikely event that a lamp or the like breaks during sterilization, its fragments may fall onto the objects to be processed. It is not allowed to adhere to the

そこで本発明は、食品用の容器や包装紙などの被処理物
を高い殺菌率で安全かつ大量に処理できる殺菌方法を提
供することを目的とし、その特徴とするところは、稀ガ
スを発生成分とする閃光放電灯を発光せしめ、順次移動
して殺菌ステーションに到達した被処理物に石英壁を通
して該発光を照射して被処理物表面の菌類を殺菌するこ
とにある。
Therefore, the purpose of the present invention is to provide a sterilization method that can safely and in large quantities process objects such as food containers and wrapping paper with a high sterilization rate. The purpose is to sterilize fungi on the surfaces of the objects by emitting light from a flash discharge lamp and irradiating the objects through the quartz wall as they move sequentially and reach a sterilization station.

閃光放電灯自体は既に産業界で広く利用されているが、
この閃光放電灯は、発光成分として稀ガスを含み、瞬間
発光出方は、殺菌灯に比べ、104倍から101倍の強
さをもっているので、本発明−利用すると好適な結果が
期待できる。実験によれば、10mの照射距離に、1c
ciJIQ’個培養された黒カビの存在する試料を配置
し、従来の殺菌灯としては、アーク長50ons電圧3
07.電流0.8A、バルブ内径1.2錆のものを設計
して連続照射し、他方、同一寸法形の閃光放電灯として
、アーク長30crn、バルブ内径1.2 cm、パル
ス巾1m−(6)0.(ハルスの尖高値の7の高さにお
ける時間巾:ユ波面長)、1回の発光エネルギー200
ジュール、1秒に5回発光と言う条件下で閃光発光照射
を夫々行うと、前者で10秒後の菌数が104個、後者
で8秒後10個となシ、夫々殺菌率で言うと、前者が9
9チ、後者が99.999チとなった。
Although flash discharge lamps themselves are already widely used in industry,
This flash discharge lamp contains a rare gas as a luminescent component, and its instantaneous luminescence is 104 to 101 times as strong as that of a germicidal lamp. Therefore, when used in the present invention, favorable results can be expected. According to experiments, at a irradiation distance of 10m, 1c
A sample containing ciJIQ' cultured black mold was placed, and as a conventional germicidal lamp, an arc length of 50 ounces and a voltage of 3
07. A lamp with a current of 0.8 A and a bulb inner diameter of 1.2 cm was designed for continuous irradiation, while a flash discharge lamp of the same size was used with an arc length of 30 crn, a bulb inner diameter of 1.2 cm, and a pulse width of 1 m (6). 0. (Duration at the height of 7 of Hals peak value: U wavefront length), one emission energy 200
When flash light is irradiated under the conditions of 5 joules per second, the number of bacteria after 10 seconds in the former is 104, and the number of bacteria in the latter is 10 after 8 seconds, in terms of sterilization rate. , the former is 9
9ch, and the latter was 99.999ch.

残存菌数で言うと、閃光放電灯による場合は、殺菌灯の
場合の一ニーである。
In terms of the number of remaining bacteria, the number of bacteria remaining when using a flash discharge lamp is about the same as when using a germicidal lamp.

 000 つまり、閃光放電灯による場合は、殺菌灯による場合よ
りも、短時間でしかも高殺菌率を得ることが分る。
000 In other words, it can be seen that when using a flash discharge lamp, a higher sterilization rate can be obtained in a shorter time than when using a germicidal lamp.

次に、より高い発光エネルギー範囲における殺菌実験の
結果を説明する。使用した試料と閃光放電灯とは前記と
同じであるが、閃光放電灯の本数を増し、照射距離を2
.5cInとし、1回の発光エネルギーを600,90
0.1!150ジユールと変化させた。そして試料と閃
光放電灯との間に石英壁を介在させた。106個の黒カ
ビの殺菌率と発光回数との関係を第1図に示すが、ここ
で折線Aは1650ジユール、折線Bは900ジユール
、折線Cは600ジユールにおける特性曲線であり、完
全殺菌するには1350ジユールでは1回、900ジユ
ールでは3回、600ジユールでは7回発光すればよく
、これよシ高エネルギーを瞬間照射した方が殺菌効率は
高いと云えるが、いずれにしても短時間で高い殺狛率を
得ることができる。なお、石英壁を介在させずに同じ実
験を行なったが結果はほとんど同じであり、石英壁が紫
外線をほとんど吸収しないことが確認できた。
Next, the results of a sterilization experiment in a higher emission energy range will be explained. The samples and flash discharge lamps used were the same as above, but the number of flash discharge lamps was increased and the irradiation distance was increased by 2.
.. 5cIn, one emission energy is 600,90
It was changed to 0.1!150 joules. A quartz wall was interposed between the sample and the flash discharge lamp. The relationship between the sterilization rate of 106 black molds and the number of luminescence is shown in Fig. 1, where the broken line A is the characteristic curve at 1650 Joules, the broken line B is the characteristic curve at 900 Joules, and the broken line C is the characteristic curve at 600 Joules. For 1,350 Joules, it is only necessary to emit light once, for 900 Joules, it is necessary to emit light three times, and for 600 Joules, it is necessary to emit light seven times.It can be said that instantaneous irradiation with high energy is more effective at sterilizing, but in any case, it can be done in a short time. A high killing rate can be obtained. The same experiment was conducted without the quartz wall, but the results were almost the same, confirming that the quartz wall absorbs almost no ultraviolet light.

次に第2図は深底容器の被処理物を殺菌する方法の説明
図であるが、被処理物1は連続または間欠運動するベル
トコレベヤ−2で順次殺菌ステーションに運搬されて来
る。照射灯具3d、コンペヤー2が間欠運動するときは
殺菌ステーションにおいて上下動可能に、連続運動のと
きは上下動の他にコンベヤー2に同期して前進可能とな
っている。照射灯具6は容器内部に挿入可能な石英壁4
が取付けられ、その内部でU字型バルブのキセノンフラ
ッシュランプからなる閃光放電灯5が発光する。そして
コンベヤー2で被処理物1が殺菌ステーションに運ばれ
て来たことが図示略の検知器で検知されると照射灯具6
が降下して容器内部で発光して殺菌される。もっとも、
被処理物1が上昇して容器内部に閃光放電灯5を受容す
るようにしてもよい。なお、被処理物1が平面状の包装
紙や浅底容器の場合は、直管状の閃光放電灯5と平板状
の石英壁4とで照射灯具6を構成し、これを被処理物1
に近接させて発光させ、殺菌される。
Next, FIG. 2 is an explanatory diagram of a method for sterilizing objects to be processed in a deep container, in which objects 1 to be processed are sequentially transported to a sterilization station by a belt conveyor 2 that moves continuously or intermittently. The irradiation lamp 3d can move up and down in the sterilization station when the conveyor 2 moves intermittently, and can move forward in synchronization with the conveyor 2 in addition to up and down movement when it moves continuously. The irradiation lamp 6 has a quartz wall 4 that can be inserted into the container.
is attached, and a flash discharge lamp 5 consisting of a U-shaped bulb xenon flash lamp emits light inside it. When a detector (not shown) detects that the object 1 to be treated has been transported to the sterilization station by the conveyor 2, the irradiation lamp 6
falls down and emits light inside the container, sterilizing it. However,
The workpiece 1 may be raised to receive the flash discharge lamp 5 inside the container. When the object 1 to be treated is a flat wrapping paper or a shallow container, an irradiation lamp 6 is constituted by a straight tube-shaped flash discharge lamp 5 and a flat quartz wall 4.
It is sterilized by placing it in close proximity and emitting light.

本発明は上記の通り、従来の殺菌灯に代えて瞬間発光出
力の著しく大きい閃光放電灯を使用するので殺菌率が非
常に大きく、更に石英壁を通して被処理物に照射するよ
うにしたので、万一ランプが破損してもその破片が被処
理物に付着する事を防止できるので食品用容器の様に異
物混入が許されないものを殺菌するのに適している。そ
して石英壁はバイ17ツクスガラスや並カラスの様に紫
外線を吸収することがないので、石英壁の存在により出
力がロスする不具合が生じない。また、コンベヤーなど
で被処理物が順次殺菌ステーションに運搬される、よう
にし、そのステーションで連続的に処理するよXうにし
たので、大賢の被処理物を効率よく殺菌できる利点も有
する。
As described above, the present invention uses a flash discharge lamp with a significantly large instantaneous light output in place of a conventional germicidal lamp, resulting in a very high sterilization rate.Furthermore, since the object to be treated is irradiated through a quartz wall, it is possible to Even if one lamp is damaged, it is possible to prevent its fragments from adhering to the object to be processed, making it suitable for sterilizing objects such as food containers that cannot be allowed to contain foreign matter. Since the quartz wall does not absorb ultraviolet rays like bi-17x glass or ordinary glass, the presence of the quartz wall does not cause a problem of loss of output. In addition, since the objects to be processed are sequentially conveyed to the sterilization station by a conveyor or the like and are continuously processed at the station, there is also the advantage that the objects to be processed can be sterilized efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はデーターの説明図、第2図は殺菌方法の説明図
である。 1・・・被処理物  6・・・照射灯具  4・・・石
英壁5・・・閃光放電灯 出願人 ウシオ電機株式会社 代理人 弁理士 田原寅之助 第1図 発L@本 手続補正書(自発) 昭和58年12月26F3 特許庁長官 若杉和夫殿 1、事件め表示 昭和57年  特許 願第211259号2、発明の名
称  殺菌方法 3、 補正をする者 事件との関係 特許出願人 代表者湯本太蔵 4、代理人 6、補正により増加する発明の数 ナシ(1)特許請求
の範囲を次の通り補正する。 稀ガスを発大成分とする閃光放電灯を発光せしめ、順次
移動して殺菌ステーションに到達した被処理物に石英壁
を通して該発光を照射して被処理物表面の菌類を殺菌す
ることを特徴とする殺菌方法。 (2)明細書箱4頁6行目の1発生成分」を1発光酸分
」に補正する。 以上
FIG. 1 is an explanatory diagram of the data, and FIG. 2 is an explanatory diagram of the sterilization method. 1... Object to be treated 6... Irradiation lamp 4... Quartz wall 5... Flash discharge lamp Applicant USHIO INC. Co., Ltd. agent Patent attorney Toranosuke Tahara Figure 1 L @ Written amendment to this procedure (spontaneous) ) December 26, 1983 Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case 1988 Patent Application No. 2112592, Title of the invention Sterilization method 3, Relationship with the person making the amendment case Taizo Yumoto, representative of the patent applicant 4. Agent 6: Number of inventions increased by amendment N/A (1) The scope of claims is amended as follows. It is characterized by emitting light from a flash discharge lamp containing a rare gas as a major emitting component, and irradiating the light emitted through a quartz wall onto the workpieces that have moved sequentially and reached a sterilization station to sterilize fungi on the surface of the workpieces. sterilization method. (2) Correct "1 generated component" on page 4, line 6 of the specification box to "1 luminescent acid component."that's all

Claims (1)

【特許請求の範囲】[Claims] 稀ガスを発生成分とする閃光放電灯を発光せしめ、順次
移動して殺菌ステーションに到達した被処理物に石英壁
を通して該発光を照射して被処理物表面の菌類を殺菌す
ることを特徴とする殺菌方法。
It is characterized by emitting light from a flash discharge lamp containing a rare gas as a generating component, and irradiating the light emitted through a quartz wall onto the workpieces that have moved sequentially and reached the sterilization station to sterilize fungi on the surface of the workpieces. Sterilization method.
JP21125982A 1982-12-03 1982-12-03 Sterilization method Expired JPS6058874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21125982A JPS6058874B2 (en) 1982-12-03 1982-12-03 Sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21125982A JPS6058874B2 (en) 1982-12-03 1982-12-03 Sterilization method

Publications (2)

Publication Number Publication Date
JPS59111761A true JPS59111761A (en) 1984-06-28
JPS6058874B2 JPS6058874B2 (en) 1985-12-21

Family

ID=16602944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21125982A Expired JPS6058874B2 (en) 1982-12-03 1982-12-03 Sterilization method

Country Status (1)

Country Link
JP (1) JPS6058874B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227357A (en) * 1986-03-28 1987-10-06 株式会社 フジミツク Ultraviolet instantaneous sterilization apparatus
JP2003072719A (en) * 2001-08-28 2003-03-12 Toppan Printing Co Ltd Sterilizing filling method and method for sterilizing container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227357A (en) * 1986-03-28 1987-10-06 株式会社 フジミツク Ultraviolet instantaneous sterilization apparatus
JP2003072719A (en) * 2001-08-28 2003-03-12 Toppan Printing Co Ltd Sterilizing filling method and method for sterilizing container

Also Published As

Publication number Publication date
JPS6058874B2 (en) 1985-12-21

Similar Documents

Publication Publication Date Title
US4464336A (en) Method of sterilization
US3780308A (en) Process and apparatus for surface sterilization of materials
US6821272B2 (en) Electromagnetic energy distributions for electromagnetically induced cutting
DE3476627D1 (en) Device for the production of short, high intensity electromagnetic radiation pulses in the wavelength region under 100 nm
JP2774796B2 (en) Method and apparatus for food preservation
US1981583A (en) Method of preserving fruits, vegetables, etc.
ES2094405T3 (en) CONTAINER FOR PRECOCIED FOOD PRODUCT.
DE69731242D1 (en) Process for the sterilization of medical products by radiation and equipment
EP0772226A3 (en) Ultraviolet irradiating apparatus and components thereof
SE9603736L (en) Sterilization method for closed packages
JPS59111761A (en) Sterilizing method
US6248986B1 (en) Preferential heating of materials by use of non-ionizing electromagnetic radiation
US4571665B1 (en)
JP2000107262A (en) Sterilization method by photoirradiation
US6614876B1 (en) System for X-ray irradiation
JPS60116359A (en) Flash light emitting pasturizing method
JPS6240597Y2 (en)
JPS6240596Y2 (en)
JP7228950B2 (en) Container sterilization method
JPS60116357A (en) Flash light emitting pasturizing method
AU2401297A (en) Method and apparatus for sterilising medical and veterinary wastes
JPS6058978B2 (en) Sterilization method for the inner surface of irregularly shaped containers
WO2020189437A1 (en) Decontamination method
CN113966943A (en) Preparation method of dustproof drinking pipe
RU2333871C1 (en) Method of disinfection of consumer package with ultraviolet radiation made of polymer material