JPS59111381A - Thermoswitch for superconductive magnet - Google Patents

Thermoswitch for superconductive magnet

Info

Publication number
JPS59111381A
JPS59111381A JP57221253A JP22125382A JPS59111381A JP S59111381 A JPS59111381 A JP S59111381A JP 57221253 A JP57221253 A JP 57221253A JP 22125382 A JP22125382 A JP 22125382A JP S59111381 A JPS59111381 A JP S59111381A
Authority
JP
Japan
Prior art keywords
magnetic field
current
superconducting
temperature
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221253A
Other languages
Japanese (ja)
Inventor
Etsuo Ban
伴 悦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP57221253A priority Critical patent/JPS59111381A/en
Publication of JPS59111381A publication Critical patent/JPS59111381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To shorten the insensitive band td improving the responsiveness of a thermoswitch by a method wherein a solenoid is provided on a part of superconductive member to impress there with a magnetic field more intensive than the marginal magnetic field of said member as well as with the current for impressing the magnetic field simultaneously with supplying a heater with current or earlier than that. CONSTITUTION:In order to turn a switch off, i.e. to release a shortcircuit between (a) and (a'), a coil 8 is supplied with current simultaneously with supplying heater current Ih from a control circuit 9 or earlier than that to impress superconductive member 6 with a magnetic field. A limited resistance value may be attained after t1 or td' since the magnetic field is so quick to rise up that the marginal magnetic field is attained at the time t3. For a while after transmitting to the normal conductive status of the super conductive member 6 by a magnetic field, the temperature of the member 6 is heated up to the temperature exceeding the marginal temperature. Therefore even if the impression of the magnetic field is stopped at this time, the temperature of said superconductive member 6 may be maintained at the temperature in the normal conductive status. Besides, the insensitive band td' may be extremely shortened down to around 1sec i.e. 1/10 compared with the conventional one.

Description

【発明の詳細な説明】 本発明は超電導コイルの永久電流モードを迅速にオンオ
フするための熱スィッチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal switch for rapidly turning on and off the persistent current mode of a superconducting coil.

例えば核磁気共鳴装置においては、高い分解能を得るた
めに強磁界を発生する超電導磁石が使用されている。こ
の超電導磁石では超電導コイル(主コイル及びシムコイ
ル)を永久電流状態にしたり該永久電流を解除すること
が必要であり、従来からその目的のために熱スイッチが
用いられている。
For example, in a nuclear magnetic resonance apparatus, a superconducting magnet that generates a strong magnetic field is used to obtain high resolution. In this superconducting magnet, it is necessary to bring the superconducting coils (main coil and shim coil) into a persistent current state and to release the persistent current, and a thermal switch has conventionally been used for this purpose.

第1図は従来の超電導磁石の概略を示す図であり、1は
デユワ−12は該デユワ−内に注入された液体ヘリウム
である。このデユワ−内には超電導コイル3が液体ヘリ
ウム2に浸漬されており、該コイルは極低温に冷却され
、超電導状態に保持されている。該超電導コイルは常導
線4を介して図示外の直流電源に接続されており、コイ
ル3を永久電流モードにしたり或いはそのモードを解除
できるようになっている。又、該超電導コイル3の両端
a、a’ 間には熱スィッチ5が接続されており、前記
永久電流′E−ドのオンオフを行なえる。
FIG. 1 is a diagram schematically showing a conventional superconducting magnet, in which a dewar 12 is liquid helium injected into the dewar. A superconducting coil 3 is immersed in liquid helium 2 within this dewar, and the coil is cooled to an extremely low temperature and maintained in a superconducting state. The superconducting coil is connected to a DC power source (not shown) via a normal conducting wire 4, so that the coil 3 can be placed in a persistent current mode or released from that mode. Further, a thermal switch 5 is connected between both ends a and a' of the superconducting coil 3, so that the persistent current 'E-' can be turned on and off.

該熱スィッチは超電導部材と加熱ヒータとより溝底され
、その加熱ヒータに外部から加熱電流Ihを供給すると
超電導部材の一部が臨界温度以上になり、超電導状態が
破壊し、常伝導状態となってa、a’間の短絡が解除さ
れる。これらモードの切換えにあたっては上記熱スィッ
チ5が迅速に作動することが好ましく、特にシムコイル
においては作斬時間の遅れは補正精度に著しい影響を与
えるので応答性の^いスイッチが要求されているわけで
ある。
The thermal switch is made up of a superconducting member and a heater, and when a heating current Ih is supplied to the heater from the outside, a part of the superconducting member reaches a critical temperature or higher, breaking the superconducting state and changing to a normal conducting state. The short circuit between a and a' is released. When switching between these modes, it is preferable that the thermal switch 5 operates quickly. Especially in the case of shim coils, a delay in cutting time has a significant effect on correction accuracy, so a switch with high responsiveness is required. be.

しかしながら、上記するような従来の熱スィッチは超電
導部材の温度のみを可変し、該超電導部材の温度を臨界
値TO以上に上昇させるようなヒーター電力を供給する
ようになしであるため、充分に早いスイッチ動作は得ら
れない。第2図は従来の熱スィッチの特性乃至は動作状
態を示すもので、図中横軸は温度Tを、又縦軸]−1は
印加磁界を示しである。斜線部分は超電導領域を示し、
超電導状態にあるA点の超電導部材はヒーターによる加
熱により臨界点Bを通過して常伝導領域の例えば0点に
達する。図中のTCは超電導部材の臨界温度、)lcは
臨界磁界強度を示しである。上記A点からB点に達する
までかなり長時間かかり、その間スイッチが不感帯とな
る。第3図はその説明をする図であり、(a)4よ加熱
ヒーターへの供給電流であり、時刻t1において供給を
開始した場合である。該供給電流に対し、超電導部材は
その構造的な問題もあって同図(b)のようにゆるやか
に温度上昇をし、時刻t2においてようやく臨界温度T
Oに達する。従って、(0)図に示すように有限の抵抗
Rの発生は時刻t1からtdだけ遅れた時刻t2どなる
。この遅れ時間tdは通常数乃至数十秒にも達し、著し
く長い不感帯となる。
However, the conventional heat switch as described above only changes the temperature of the superconducting member and does not supply heater power that would raise the temperature of the superconducting member above the critical value TO, so it is not fast enough. Switch action cannot be obtained. FIG. 2 shows the characteristics or operating state of a conventional thermal switch, in which the horizontal axis represents the temperature T, and the vertical axis ]-1 represents the applied magnetic field. The shaded area indicates the superconducting region,
The superconducting member at point A, which is in a superconducting state, passes through critical point B by heating with a heater and reaches, for example, the 0 point in the normal conduction region. In the figure, TC indicates the critical temperature of the superconducting member, and )lc indicates the critical magnetic field strength. It takes quite a long time to reach point B from point A, and the switch becomes a dead zone during that time. FIG. 3 is a diagram for explaining this, and (a) 4 shows the current supplied to the heating heater, and shows the case where supply is started at time t1. In response to the supplied current, the superconducting member's temperature rises slowly as shown in FIG.
Reach O. Therefore, as shown in Figure (0), the finite resistance R occurs at time t2, which is delayed by td from time t1. This delay time td usually reaches several to several tens of seconds, resulting in an extremely long dead zone.

而して、本発明は上記不感帯tdを短縮し、熱スィッチ
の応答性を向上することを目的とするものである。
Therefore, the present invention aims to shorten the dead zone td and improve the responsiveness of the thermal switch.

本発明の梠成上の特徴は超電導コイルの両端に接続され
、超電導部材と加熱用ヒータとを有し、該ヒータへ加熱
電流を供給して前記超電導コイルの永久電流モードを解
除するようになした熱スィッチにおいて、前記超電導部
材の一部に該超電導部材の臨界磁界以上の強磁界を与え
るためのソレノイドコイルを設け、前記加熱ヒータへの
電流供給と同時又はそれより早く前記ソレノイドコイル
に磁界発生用の電流を供給するようにしIc超電導磁石
装置用熱スィッチにある。
The feature of the structure of the present invention is that it has a superconducting member and a heater connected to both ends of the superconducting coil, and a heating current is supplied to the heater to release the persistent current mode of the superconducting coil. In the thermal switch, a solenoid coil for applying a strong magnetic field higher than the critical magnetic field of the superconducting member is provided in a part of the superconducting member, and a magnetic field is generated in the solenoid coil at the same time as or earlier than the current supply to the heating heater. The thermal switch for the Ic superconducting magnet device is designed to supply current for the Ic superconducting magnet device.

第4図は本発明の詳細な説明するための図であり、第2
図に対応するものである。本発明では単に温度の変化の
みでスイッチのオフ動作をさせるのではなく、磁界の併
用により動作させるものである。図中、点Aは従来と同
じ超電導部材の超電導動作点を示し、該A点から常伝導
状態にするのにD−+E→F−)Cの経路を辿るように
なしている。
FIG. 4 is a diagram for explaining the present invention in detail, and the second
This corresponds to the figure. In the present invention, the switch is not turned off simply by a change in temperature, but is turned off by the combined use of a magnetic field. In the figure, point A indicates the superconducting operating point of the conventional superconducting member, and the path D-+E→F-)C is followed from point A to the normal conduction state.

即ち、本発明では超電導から常伝導への転移を温度的の
みでなくインパルス的な磁界の印加を併用して行なうも
ので、これにより急速な転移を行なわしめてスイッチの
不感帯を極めて短くしたものである。
That is, in the present invention, the transition from superconductivity to normal conduction is achieved not only by temperature but also by the application of an impulse magnetic field, thereby achieving a rapid transition and extremely shortening the dead zone of the switch. .

以下第5図に示す一実施例に基づき本発明を説明する。The present invention will be explained below based on an embodiment shown in FIG.

図中3は超電、導コイル、5は熱スィッチであり、該熱
スィッチは超電導コイルの両端間aとa′に接続されて
いる。熱スィッチは超電導部材6と加熱ヒーター7と磁
界発生用ソレノイドコイル8とより構成され、ヒーター
及びコイルは制御回路9に接続されている。そして、夫
々lh、1mなる電流が供給される。該ヒーター電流1
hは第3図(a )に示す従来と同様な電流であり、第
6図(b)に示しである。又、磁界発生電流lll1は
第4図のD点にお(プる臨界磁界以上の磁界を発生でる
電流であり、該電流の供給により第6図(a )に示す
ようなインパルス状の磁界が超電導部材6に印加される
In the figure, 3 is a superconducting coil, and 5 is a thermal switch, which is connected between both ends a and a' of the superconducting coil. The thermal switch is composed of a superconducting member 6, a heater 7, and a solenoid coil 8 for generating a magnetic field, and the heater and coil are connected to a control circuit 9. Then, currents of lh and 1m are supplied, respectively. The heater current 1
h is a current similar to the conventional one shown in FIG. 3(a), and is shown in FIG. 6(b). In addition, the magnetic field generating current lll1 is a current that can generate a magnetic field greater than the critical magnetic field (approximately A voltage is applied to the superconducting member 6.

斯かる構成において、スイッチをオフ、つまりa、a’
間の短絡を解除する場合には制御回路9よりヒーター電
流1hを供給すると同時に、又はそれよりも早くコイル
8の電流を供給して第6図(a )のような磁界を超電
導部材6に印加する。
In such a configuration, switch off, i.e. a, a'
To release the short circuit between the two, the control circuit 9 supplies 1 h of heater current, or at the same time, the coil 8 current is supplied to apply a magnetic field as shown in FIG. 6(a) to the superconducting member 6. do.

該磁界は同図より明らかなように極めて立ち上りが早く
、時刻t3には臨界磁界TCに′達覆るため(d )図
のようにtlからtd′後に有限の抵抗値を持つように
なる。超電導部材6の常伝導状態への磁界による転移の
後、しばらくすると(C)図に示すようにヒーター加熱
によ゛り超電導部材の温度は上昇し、臨界温度以上に達
する。従って、この時点で(a )図のように磁界の印
加を遮断しても超電導部材は温度的に常伝導状態を維持
することになる。上記td’ は極めて短く1秒程度と
なり、従来に出し1/10程麿にすることができる。
As is clear from the figure, the magnetic field rises very quickly and reaches the critical magnetic field TC at time t3, so that it has a finite resistance value after td' from tl as shown in the diagram (d). After the superconducting member 6 transitions to the normal conductive state due to the magnetic field, the temperature of the superconducting member 6 rises due to heating by the heater and reaches a critical temperature or higher, as shown in FIG. Therefore, even if the application of the magnetic field is cut off at this point, as shown in Figure (a), the superconducting member will maintain a normal conduction state in terms of temperature. The above td' is extremely short, about 1 second, and can be reduced to about 1/10 of the conventional value.

尚、上記は本発明の一例であり、実際には種々の変更が
可能である。例えば、上記は磁界をインパルス的に印加
したが常伝導状態に達した後、一定の磁界を印加し続け
ても良い。この場合、動作点は第4図の0点ではなくE
点と0点の中間、例えばF点になる。
Note that the above is an example of the present invention, and various modifications are possible in reality. For example, although the magnetic field is applied in an impulse manner in the above example, a constant magnetic field may be continued to be applied after the normal conduction state is reached. In this case, the operating point is not the 0 point in Figure 4 but E.
The point is between point and 0, for example, point F.

以上詳説したような構成となせば、スイッチオフ動作を
極めて迅速に行なうことができ、超電導磁石装置の使用
上問題となるような不感帯は生じない。
With the configuration described in detail above, the switch-off operation can be performed extremely quickly, and a dead zone that poses a problem when using the superconducting magnet device does not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超電導磁石装置の概略を示す図、第2図
及び第3図は従来の熱スィッチの動作状態を示す図、第
4図は本発明の詳細な説明する図、第5図は本発明の一
実施例を示す概略図、第6図は第5図実施例の動作説明
図である。 3:超電導コイル 5:熱スイッチ 6:超電導部材 7:加熱ヒーター 8:磁界発生用コイル 9:制御回路 特許出願人 日本電子株式会社 代表者 伊腔 −夫 第1図 k   →丁 第5図 々 ^     Tc−7→
FIG. 1 is a diagram showing an outline of a conventional superconducting magnet device, FIGS. 2 and 3 are diagrams showing the operating state of a conventional thermal switch, FIG. 4 is a diagram explaining the present invention in detail, and FIG. 6 is a schematic diagram showing an embodiment of the present invention, and FIG. 6 is an explanatory diagram of the operation of the embodiment of FIG. 3: Superconducting coil 5: Thermal switch 6: Superconducting member 7: Heating heater 8: Coil for magnetic field generation 9: Control circuit Patent applicant JEOL Ltd. Representative Ikuo - Figure 1 k → Figure 5 ^ Tc-7→

Claims (1)

【特許請求の範囲】[Claims] 超電導コイルの両端に接続され、超電導部材と加熱用ヒ
ータとを有し、該ヒータへ加熱電流を供給して前記超電
導コイルの永久電流モードを解除するようになした熱ス
ィッチにおいて、前記超電導部材の一部に該超電導部材
の臨界磁界以上の強磁界を与えるためのソレノイドコイ
ルを設け、前記加熱ヒータへの電流供給と同時又はそれ
より早く前記ソレノイドコイルに磁界発生用の電流を供
給するように構成したことを特徴とする超電導磁石装置
用熱スィッチ。
A thermal switch connected to both ends of a superconducting coil, having a superconducting member and a heating heater, and configured to release a persistent current mode of the superconducting coil by supplying a heating current to the heater. A solenoid coil for applying a strong magnetic field higher than the critical magnetic field of the superconducting member is provided in a part of the superconducting member, and a current for generating a magnetic field is supplied to the solenoid coil at the same time as or earlier than the current supply to the heater. A thermal switch for a superconducting magnet device, which is characterized by:
JP57221253A 1982-12-17 1982-12-17 Thermoswitch for superconductive magnet Pending JPS59111381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221253A JPS59111381A (en) 1982-12-17 1982-12-17 Thermoswitch for superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221253A JPS59111381A (en) 1982-12-17 1982-12-17 Thermoswitch for superconductive magnet

Publications (1)

Publication Number Publication Date
JPS59111381A true JPS59111381A (en) 1984-06-27

Family

ID=16763867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221253A Pending JPS59111381A (en) 1982-12-17 1982-12-17 Thermoswitch for superconductive magnet

Country Status (1)

Country Link
JP (1) JPS59111381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870379A (en) * 1988-01-29 1989-09-26 Hitachi, Ltd. Superconducting switching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870379A (en) * 1988-01-29 1989-09-26 Hitachi, Ltd. Superconducting switching device

Similar Documents

Publication Publication Date Title
US11320502B2 (en) Magnetic resonance imaging system capable of rapid field ramping
US8384504B2 (en) Superconducting quick switch
Li et al. Investigation on the transformer-rectifier flux pump for high field magnets
KR101351586B1 (en) Persistent switch control system, superconducting magnet apparatus employing the same, and method of controlling persistent switch
US4994935A (en) Superconducting magnet apparatus with an emergency run-down system
JPH0687447B2 (en) Superconducting magnet device
JPS59111381A (en) Thermoswitch for superconductive magnet
JPH10144545A (en) Current limiting device
JP2562553B2 (en) Excitation / Demagnetization Method for Superconducting Coil that Achieves Predetermined Magnetic Field Attenuation Quickly
JPH06120573A (en) Exciting device for superconductive coil
JPS5998572A (en) Thermal switch for superconductive magnet device
Gray et al. Thin film superconducting switches
JPS62244110A (en) Superconducting coil device
JPH03142907A (en) Superconductive magnet
JPS62276806A (en) Apparatus and method for controlling superconducting device
Bae et al. Characteristic analysis of a heater-triggered switching system for the charging of Bi-2223 double-pancake load
Purcell et al. Superconducting rectifiers
JP2004336839A (en) Superconducting magnetic gradient levitation system
JPH08330640A (en) Magnetic persistent current switch
Cavallari et al. The Tuner System for the SC 352MHz LEP 4-Cell Cavities
JPS61269301A (en) Superconductive-coil device
JPS58110014A (en) Superconducting permanent magnet device
JPS60218808A (en) Magnetic field generating apparatus
LeBlanc et al. Simple Demonstration of Voltages Generated by Vortex Motion in Type‐II Superconductors
JPS61107704A (en) Method of stabilizing superconductive coil