JPS62276806A - Apparatus and method for controlling superconducting device - Google Patents

Apparatus and method for controlling superconducting device

Info

Publication number
JPS62276806A
JPS62276806A JP61169812A JP16981286A JPS62276806A JP S62276806 A JPS62276806 A JP S62276806A JP 61169812 A JP61169812 A JP 61169812A JP 16981286 A JP16981286 A JP 16981286A JP S62276806 A JPS62276806 A JP S62276806A
Authority
JP
Japan
Prior art keywords
current
superconducting
coil
power supply
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61169812A
Other languages
Japanese (ja)
Inventor
Eiji Toyoda
豊田 栄次
Soichiro Hayashi
林 壮一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPS62276806A publication Critical patent/JPS62276806A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/67

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To improve diagnostic efficiency by providing a current reference changing by a comparatively slow sweeping gradient altering superconducting coil currents and a current reference, which does not vary superconducting coil currents and which changes by a fast sweeping gradient altering other supply currents and the currents of a superconducting wire. CONSTITUTION:When coil currents caused to flow through a superconducting coil 1 are made to rise, the superconducting coil 1 is kept previously under a superconductive state while a heater 5 is conducted and a superconducting wire 4 is brought to a normal conductive state, and output currents from a power supply 2 for the superconducting coil are controlled so as to augment coil currents up to a final command at a current increase rate where a quenching accident is not generated in the superconducting coil 1. The heater 5 is turned OFF for a period when the superconducting wire 4 can maintain the normal conductive state by its own Joule heat generation, the heater 5 is turned ON again before and after coil currents reach the final command, and the output currents from the power supply for the superconducting coil and the coil currents are equalized. Supply currents are minimized up to a zero value at a current reduction rate where a quenching accident is not generated in the superconducting line, and the operation of the power supply for the superconducting coil is stopped.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (発明の目的) (産業上の利用分野) 本発明は、核磁気共鳴を用いた医療診断装置(NHR−
CT)や電力を磁気エネルギーに変換して貯える電力貯
蔵マグネットなどの超電導永久電流ループを作り出すた
めの超電導装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Object of the Invention) (Industrial Application Field) The present invention provides a medical diagnostic device (NHR-
The present invention relates to superconducting devices for creating superconducting persistent current loops, such as CT) and power storage magnets that convert and store electric power into magnetic energy.

(従来の技術) 第6図は従来の永久電流ループを作る超電導装置の構成
図でおる。従来の超電4装置は、超電導コイル1を励磁
するための超電導コイル用電源(以下直流電源という)
2と、この超電導コイル1と並列に接続され、この超電
導コイル1と共に永久電流ループを作るための永久電流
スイッチ3と、この永久電流スイッチ3内の超電導線4
を加熱するヒータ5と、このヒータ5に通電するための
ヒータ電源6と、異常時に超電導コイル1と直流電源2
を遮断するための直流遮断器7、および、この直流遮断
器7を遮断したとき、超電導コイル1に貯えられた磁気
エネルギーを消費して超電導コイル1を保護するための
保護抵抗8などで構成されている。その超電導コイル1
と永久電流スイッチ3は超電導状態を実現するために、
極低温容器(タライオスタット)9内に買かれている。
(Prior Art) FIG. 6 is a block diagram of a conventional superconducting device that creates a persistent current loop. The conventional superconductor 4 device is a superconducting coil power source (hereinafter referred to as a DC power source) for exciting the superconducting coil 1.
2, a persistent current switch 3 connected in parallel with this superconducting coil 1 to create a persistent current loop together with this superconducting coil 1, and a superconducting wire 4 in this persistent current switch 3.
a heater 5 for heating the heater 5, a heater power supply 6 for energizing the heater 5, and a superconducting coil 1 and a DC power supply 2 in the event of an abnormality.
The superconducting coil 1 is constructed of a DC breaker 7 for interrupting the current, and a protective resistor 8 for consuming the magnetic energy stored in the superconducting coil 1 to protect the superconducting coil 1 when the DC breaker 7 is interrupted. ing. The superconducting coil 1
and persistent current switch 3 to achieve superconducting state,
It is stored in a cryogenic container (thaliostat) 9.

シャント抵抗10は、直流電源2の定電流制御時の電流
検出器として使用され、検出された電源電流11は増幅
器11を介して加減算器12に加えられる。
The shunt resistor 10 is used as a current detector during constant current control of the DC power supply 2, and the detected power supply current 11 is added to the adder/subtractor 12 via the amplifier 11.

永久電流スイッチ3は超電導線4とヒータ5で構成され
、ヒータ電源6からヒータ5に通電していない状態では
極低温容器9内の図示していない液体ヘリウム(LHe
)により冷却されて臨界温度Tc以下となり、超電導線
4は超電導状態となる。ヒータ電源6からヒータ5に通
電している状態では、超電導線4は加熱されて臨界温度
TC以上になり、常電導状態となって電気的に一定の有
限な抵抗値Rを持つようになる。
The persistent current switch 3 is composed of a superconducting wire 4 and a heater 5, and when the heater 5 is not energized from the heater power source 6, liquid helium (not shown) in the cryogenic container 9 is released.
), the temperature becomes below the critical temperature Tc, and the superconducting wire 4 enters a superconducting state. When the heater 5 is energized from the heater power supply 6, the superconducting wire 4 is heated to a temperature equal to or higher than the critical temperature TC, becomes a normal conductive state, and has an electrically constant finite resistance value R.

上記の構成で、永久電流ループを作り出すための動作は
、第7図のタイムチャートに示す通りでおる。
With the above configuration, the operation for creating a persistent current loop is as shown in the time chart of FIG. 7.

先ず極低温容器9内の超電導コイル1および永久電流ス
イッチ3はすでに超電導状態にあり、直流電源2は電圧
、電流を出力していないものとする。この状態から超電
導コイル1に電流を流す場合、まず、時刻T1でヒータ
電源6をONL、ヒータ5により永久電流スイッチ3の
超電導線4を加熱して常電導状態にすることによって超
電導線4に抵抗値Rを持たせる。
First, it is assumed that the superconducting coil 1 and persistent current switch 3 in the cryogenic container 9 are already in a superconducting state, and the DC power supply 2 is not outputting voltage or current. When a current is applied to the superconducting coil 1 from this state, first, at time T1, the heater power source 6 is turned ON, and the heater 5 heats the superconducting wire 4 of the persistent current switch 3 to bring it into a normal conducting state, thereby resisting the superconducting wire 4. Give it the value R.

次に、時刻T2にて直流電源2を起動して電圧、電流出
力を生じざぜ超電導コイル1に通電する。
Next, at time T2, the DC power supply 2 is activated to generate voltage and current output, and the superconducting coil 1 is energized.

このとき、超電導コイル1に急激に大きな電流を流すと
、クエンチが発生し超電導状態が保たれなくなるため、
直流電源2は超電導コイル1に流す電流I3を制限され
た変化率で徐々に立上げていくように制御される。
At this time, if a large current is suddenly passed through the superconducting coil 1, quenching will occur and the superconducting state will not be maintained.
The DC power supply 2 is controlled so that the current I3 flowing through the superconducting coil 1 is gradually increased at a limited rate of change.

このため、直流電源2の電源電流が11が所定の変化率
でOからIoに変化するように基準値I refを加減
算器12に与える。すなわちこの基準値I rcfとシ
ャント抵抗10から増幅器11を介して得られる電流検
出値(フィードバック値)との偏差εに応じて直流電源
2を駆動し、極低温容器9内の超電導電流ループに流す
電源電流11をil制御する。これにより、電源電流1
1は基準値Ire「に応じた一定変化率で徐々にOから
Ioに増加する。この間、直流電源2は微少一定電圧■
を発生し、この電圧Vに応じて超電導線4には微少な一
定電流I2が流れる。従って、超電導コイル1には、電
源電流11から微少一定電流■2を靜し引いた電流13
 (I3=11−12>が第7図に示すように流れる。
Therefore, a reference value I ref is given to the adder/subtractor 12 so that the power supply current 11 of the DC power supply 2 changes from O to Io at a predetermined rate of change. That is, the DC power supply 2 is driven according to the deviation ε between this reference value I rcf and the current detection value (feedback value) obtained from the shunt resistor 10 via the amplifier 11, and the superconducting current is passed through the superconducting current loop in the cryogenic container 9. The power supply current 11 is controlled by IL. As a result, the power supply current 1
1 gradually increases from O to Io at a constant rate of change according to the reference value Ire.During this time, the DC power supply 2 maintains a very small constant voltage ■
A small constant current I2 flows through the superconducting wire 4 in accordance with this voltage V. Therefore, the superconducting coil 1 is supplied with a current 13, which is obtained by subtracting the minute constant current 2 from the power supply current 11.
(I3=11-12> flows as shown in FIG. 7).

電源電流11が増加を続け、やがて最終目標電流値Io
に到達すると、偏差εがゼロになるため、直流電源2の
発生電圧■はほぼOになる。これにより、それまで超電
導線4を流れていた電流■2は、超電導線4の抵抗弁R
と超電導コイル1のインダクタンスして決まる時定数(
τ= L/R)で減少し、Oになる( I 2 =O)
。従って、この時点で、超電導コイル1を流れる電流■
3と電源電流11とは等しくなり、電流値1oとなる(
11=13=Io)。
The power supply current 11 continues to increase and eventually reaches the final target current value Io.
When the deviation ε becomes zero, the voltage generated by the DC power supply 2 becomes approximately O. As a result, the current ■2 that had been flowing through the superconducting wire 4 until then is reduced to the resistance valve R of the superconducting wire 4.
and the time constant determined by the inductance of superconducting coil 1 (
τ = L/R) and becomes O (I 2 = O)
. Therefore, at this point, the current flowing through the superconducting coil 1 is
3 and the power supply current 11 are equal, and the current value becomes 1o (
11=13=Io).

次に、この状態で時刻T3にてヒータ電源6をOFFに
すると、超電導線4は液体ヘリウムにより冷却されて、
超電導状態になり、その抵抗値はゼロとなる。
Next, in this state, when the heater power source 6 is turned off at time T3, the superconducting wire 4 is cooled by liquid helium,
It becomes a superconductor and its resistance value becomes zero.

そして超電導線4が抵抗値ゼロになった時刻T4以降、
直流N源2に流れる電源電流11を徐々に立下げて行き
、電源電流■1の減少した分を超電導線4に逆向きの1
2として流す。すなわち、時刻T4以降ではコイル電流
I3は変化せず、この電流■3が電源電流11と超電導
線4の電流I2に分流しており、電流■1を徐々に減少
させていく分電流I2が図示矢印とは逆向きに徐々に増
加する。なお、このときにも電流11を急激に減少させ
ると超電導線4に流れる電流I2が急激に増加し、超電
導線4を常電導状態に戻すおそれがおるため、図示の破
線に示す如く、電源電流11を基Q 値I refに応
じて徐々に立下げるように電流制御をする。
After time T4 when the resistance value of the superconducting wire 4 becomes zero,
The power supply current 11 flowing through the DC N source 2 is gradually reduced, and the reduced power supply current 1 is transferred to the superconducting wire 4 in the opposite direction.
Run as 2. That is, after time T4, the coil current I3 does not change, and this current ■3 is divided into the power supply current 11 and the current I2 of the superconducting wire 4, and the current I2 that gradually decreases the current ■1 is shown in the figure. Gradually increases in the opposite direction of the arrow. Note that if the current 11 is suddenly decreased at this time, the current I2 flowing through the superconducting wire 4 will suddenly increase, and there is a risk that the superconducting wire 4 will return to the normal conductive state. Based on No. 11, the current is controlled to gradually fall according to the Q value I ref.

この結果、時刻T5で電源電流■1は完全にOとなり、
永久電流13=12=IOの還流する超電導永久電流ル
ープが直流電源2から切り離されて得られる。
As a result, the power supply current ■1 becomes completely O at time T5,
A circulating superconducting persistent current loop of persistent current 13=12=IO is obtained by being disconnected from the DC power supply 2.

(発明が解決しようとする問題点〉 この従来の超電導装置を適用した医療診断装置(N)I
R−CT)は画像化したい対象原子核がプロトン(水素
の原子核)一種のみでおり且つ、病院の診断至に固定し
て設置するタイプのものが一般的であった。このため、
従来のN1(I?−CTは前述した超電導コイル1の発
生磁場強度も一定で良く、且つ長時間、この超電導永久
電流ループを保持し、この間に多聞の患者の診断を行う
手法がとられていた。
(Problems to be solved by the invention) Medical diagnostic device (N)I applying this conventional superconducting device
The target atomic nucleus to be imaged in R-CT is only one type of proton (hydrogen nucleus), and it has generally been a type that is fixedly installed at a hospital for diagnosis. For this reason,
In the conventional N1 (I?-CT), the intensity of the magnetic field generated by the superconducting coil 1 described above can be kept constant, and a method is adopted in which this superconducting persistent current loop is maintained for a long period of time, and many patients are diagnosed during this period. Ta.

すなわち、超電導装置の発生磁場の強度をひんばんに変
更する必要性が少なかった。
That is, there was little need to frequently change the strength of the magnetic field generated by the superconducting device.

ところが、最近の診断医学ではプロトン(水素の原子核
〉以外の原子核、例えば、フッ素(F)やナトリウム(
Na>やリン(P)等の原子核を画像化し、より精密な
診断を行いたいと言う要求がある。この要求を実現する
には、対象原子核の核磁気共鳴周波数に合せた最適な強
度の磁場を作る必要がある。とうぜんのことながら、こ
の発生磁場値は画像化したい対象原子核毎に異なってあ
り、異なる原子核の画像を得るためには、超電導装置の
発生磁場の強度を変更する必要がある。
However, in recent diagnostic medicine, nuclei other than protons (hydrogen nuclei), such as fluorine (F) and sodium (
There is a demand for more precise diagnosis by imaging atomic nuclei such as Na> and phosphorus (P). To achieve this requirement, it is necessary to create a magnetic field of optimal strength matching the nuclear magnetic resonance frequency of the target atomic nucleus. Of course, the value of this generated magnetic field varies depending on the target atomic nucleus to be imaged, and in order to obtain images of different atomic nuclei, it is necessary to change the intensity of the generated magnetic field of the superconducting device.

ざらに、最近の診断医学では前述した超電導装置を含む
医療診断装置一式を大型のトレーラ−にのせて、各地を
診断して回るMRI診断車(核磁気共鳴医療診断車)が
検討されている。
Generally speaking, in recent diagnostic medicine, an MRI diagnostic vehicle (nuclear magnetic resonance medical diagnostic vehicle) is being considered, which carries a set of medical diagnostic equipment including the above-mentioned superconducting device on a large trailer and travels around to diagnose various locations.

この場合、一旦、永久電流ループで運転している超電導
装置の発生磁場の強度をゼロ又は極めて弱くして、移動
する必要がある。これは診断時の発生磁場が一般的には
0.3 Te5laから2.0 Te5la(1丁es
la=10,000 Gauss)と強磁場でおるため
、このままでトレーラ−による移動が不可能であるため
である。
In this case, it is necessary to first reduce the strength of the magnetic field generated by the superconducting device operating in a persistent current loop to zero or extremely weak before moving. This means that the magnetic field generated during diagnosis generally ranges from 0.3 Te5la to 2.0 Te5la (1 tes
This is because the magnetic field is as strong as la=10,000 Gauss, so it is impossible to move it by trailer as it is.

このようにMRI診断車の場合も超電導装置の発生磁場
強度をひんばんに変更する要求が出てくる。
In this way, in the case of MRI diagnostic vehicles as well, there is a need to frequently change the strength of the magnetic field generated by the superconducting device.

しかしながら、上記従来の超電導装置の制御方法では、
第7図に示した通り直流電源2を用いて超電導コイル1
の電流■3を立上げている桿引勾配と、一旦永久電流ル
ープが得られた後、電源電流11を立下げている(工引
勾配が同じであるため、所定の永久電流ループを得て電
源2が停止するまでの時間が非常に長くなると言う不具
合があった。
However, in the conventional superconducting device control method described above,
As shown in Fig. 7, the superconducting coil 1 is
Once the persistent current loop is obtained, the power supply current 11 is decreased (since the drawn gradient is the same, the specified persistent current loop can be obtained. There was a problem in that it took a very long time until the power supply 2 stopped.

これを前述した医療診断装置(NMR−CT )で説明
すると、一連の制御時間が数時間にも達する場合があり
、この間は当然ながら患者の診断が行えず、本来の診断
機能が発揮できないムダ時間となる。
To explain this in terms of the medical diagnostic equipment (NMR-CT) mentioned above, the series of control times can reach several hours, and during this time it is a waste time during which the patient cannot be diagnosed and the original diagnostic function cannot be performed. becomes.

これは診断効率の面から見ると重大な欠陥であり、改善
が求められていた。
This is a serious defect from the standpoint of diagnostic efficiency, and improvements have been sought.

ざらに第7図にも示した通り、直流電源2を用いて超電
導コイル1の電流I3を立上げている間、ヒータ電源6
をON状態にしてヒータ5の加熱状態を継続しているの
で極低温容器9内が不必要に加熱されて、冷却剤である
高価な液体ヘリウムを不必要に蒸発させ、経済的にも機
器の寿命上にも悪影響が生じる問題点があった。
As roughly shown in FIG. 7, while the current I3 of the superconducting coil 1 is being started up using the DC power supply 2,
Since the heater 5 is kept in the ON state, the inside of the cryogenic container 9 is heated unnecessarily, and the expensive liquid helium used as a coolant is unnecessarily evaporated, resulting in economic damage to the equipment. There was also a problem in that it had an adverse effect on the lifespan.

本発明の第1の目的は上記事情に基づいてなされたもの
でおり、コストアップにつながる超電導電源の定格を上
げたり、超電導コイルの構造を変えて電流変化率を向上
させる手法をとらずに、所定の永久電流ループを得て、
電源を停止させるまでの一連の制御時間を最小にし、診
断効率を向上させた超電導装置の制御方法を提供するこ
とである。
The first object of the present invention has been made based on the above circumstances, and it is possible to solve the problem without increasing the rating of the superconducting power source or changing the structure of the superconducting coil to improve the current rate of change, which would increase the cost. Obtaining a given persistent current loop,
It is an object of the present invention to provide a control method for a superconducting device that minimizes a series of control times until stopping the power supply and improves diagnostic efficiency.

さらに本発明の第2の目的は、高価な液体ヘリウムの蒸
発を少なく抑えると共に、機器の寿命も延ばすことので
きる経済的で信頼性の高い超電導装置を提供することに
おる。
A second object of the present invention is to provide an economical and highly reliable superconducting device that can suppress evaporation of expensive liquid helium and extend the life of the device.

本発明の第3の目的は、超電導装置の発生磁場の強度を
変更することによって異なる原子核の画像を得ることの
できる超電導装置を提供することにある。
A third object of the present invention is to provide a superconducting device that can obtain images of different atomic nuclei by changing the intensity of the magnetic field generated by the superconducting device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、超電導コイルとこのコイル
と並列接続された永久電流スイッチ(超電導線とこれを
常電導状態にするためのヒータとから構成されている)
とを極低温容器内に収容し、前記超電導コイルおよび永
久電流スイッチに対して出力を任意に変化し得る直流電
源を接続して成り、前記超電導コイルと超電導線で形成
した閉ループに所定の大きさの電流を還流させ永久電流
ループを作り出す超電導装置において、超電導コイル電
流を変化させる第1の掃引勾配を持つ電流基準値と、超
電導コイル電流が所定の目標値になるような電流設定値
と、超電導コイル電流が目標値に達した後、この電流は
変化させずに直流電源、超電導線にそれぞれ流れる電流
を変化させる第2の掃引勾配を持つ電流基準値とを有す
る基準発生部と、この2つの電流基準値および前記ヒー
タの通電時期を所定のタイミングで切換えるタイミング
制御手段を設け、前記第1の掃引勾配の絶対値よりも、
第2の掃引勾配の絶対値を大きくすることを特徴とする
ものである。
(Means for solving the problem) In order to achieve the above purpose, a permanent current switch (consisting of a superconducting coil and a persistent current switch (superconducting wire and a heater for bringing it into a normal conduction state) connected in parallel with the coil is used. )
is housed in a cryogenic container, and a DC power source whose output can be arbitrarily changed is connected to the superconducting coil and persistent current switch, and a closed loop formed by the superconducting coil and superconducting wire has a predetermined size. In a superconducting device that creates a persistent current loop by circulating a current of a reference generator having a current reference value having a second sweep gradient that changes the current flowing through the DC power source and the superconducting wire without changing the current after the coil current reaches the target value; A timing control means is provided for switching the current reference value and the energization timing of the heater at a predetermined timing, and the absolute value of the first sweep gradient is
This is characterized by increasing the absolute value of the second sweep gradient.

(作 用) 本発明は超電導コイルに流すコイル電流を立上げる時、
予め超電導コイルを超電導状態に維持すると共に、前記
ヒータに通電して前記超電導線を常電導状態にした後、
前記超電導コイルにクエンチ事故が発生しないような電
流増加率でコイル電流を最終目標値まで増加するように
前記超電導コイル用電源の出力電流を制御し、そのコイ
ル電流の増加過程において前記超電導線が自己のジュー
ル発熱により常電導状態を維持できる期間前記ヒータを
オフさせ、コイル電流が最終目標値に到達する前後に再
び前記ヒータを所定の時定数τ=L/R(但しL:超電
導コイルのインダクタンス、R:超電導線の抵抗)より
算出される所望の時間だけオンさせ、前記超電導コイル
用電源の出力電流とコイル電流とが等しくなった後前記
超電導線のクエンチ事故を発生しないような電流減少率
で電源電流を零値まで減少させ、超電導コイル用電源の
運転を停止させるようにしたものでおる。
(Function) When starting up the coil current flowing through the superconducting coil, the present invention
After maintaining the superconducting coil in a superconducting state in advance and turning the superconducting wire into a normal conducting state by energizing the heater,
The output current of the superconducting coil power supply is controlled so that the coil current increases to the final target value at a current increase rate that does not cause a quench accident in the superconducting coil, and in the process of increasing the coil current, the superconducting wire The heater is turned off for a period during which the normal conductivity state can be maintained due to Joule heat generation of R: resistance of the superconducting wire), and after the output current of the superconducting coil power source and the coil current become equal, the current reduction rate is such that a quenching accident of the superconducting wire does not occur. The power supply current is reduced to zero and the operation of the power supply for the superconducting coil is stopped.

(実施例) 以下、本発明の実施例を図面を参照して説明する。第1
図は本発明の一実施例に係る超電導装置の制御方法を示
したものである。図中、第6図と同一符号は同一または
相当部分を示し、第4図と異なる点は、掃引勾配設定器
13A、 13B、目標電流設定器15、基準発生器1
6、タイミング制御部17、運転指令スイッチ18、運
転方式切換スイッチ19を付加した点でおる。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure shows a method of controlling a superconducting device according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 6 indicate the same or corresponding parts, and the differences from FIG.
6. A timing control section 17, an operation command switch 18, and an operation mode changeover switch 19 are added.

上記、設定器13Aは超電導コイル電流を変化させる場
合に使用するj1引勾配Aを設定するもので、設定器1
33はコイル電流を変化させず、電′#、電流や超電導
線の電流のみを変化させる場合に使用する掃引勾配Bを
設定するものである。また設定器15は従来装置と同様
に目標電流Ioを設定する設定器である。基準発生器1
6は目標電流設定器15で設定した目標電流Ioと掃引
勾配設定器13Aまたは1313で設定した掃引勾配A
またはBを読み込んで、電源に流れる電流11が目標電
流1oまたはゼロに到達するまで設定器13Aまたは1
33で設定した掃引勾配AまたはBに従って変化する電
流基準IAまたはIBを出力する機器でおる。タイミン
グ制御部17は電源電流■1や目標電流Ioを読み込ん
で、相互に比較しヒータ電源の0N−OFFや電流基準
IAまたはIBの切換タイミングを検出する機器でおる
The above setting device 13A is used to set the j1 draft angle A used when changing the superconducting coil current.
Reference numeral 33 is for setting a sweep gradient B used when changing only the voltage, the current, and the current of the superconducting wire without changing the coil current. Further, the setting device 15 is a setting device for setting the target current Io similarly to the conventional device. Reference generator 1
6 is the target current Io set by the target current setter 15 and the sweep gradient A set by the sweep gradient setter 13A or 1313.
or B, and set the setting device 13A or 1 until the current 11 flowing to the power supply reaches the target current 1o or zero.
It is a device that outputs a current reference IA or IB that changes according to the sweep gradient A or B set in step 33. The timing control unit 17 is a device that reads the power supply current (1) and the target current Io, compares them with each other, and detects ON-OFF timing of the heater power supply and switching timing of the current reference IA or IB.

第2図(八) 、 (B)および(C)は上記基準発生
器赳の詳細な制御フローチャートを、第2図(D)。
FIGS. 2(8), 2(B) and 2(C) are detailed control flowcharts of the reference generator, and FIG. 2(D) is a detailed control flowchart of the reference generator.

(E)および(F)は上記タイミング制御部Vの詳細な
il制御フローチャートをそれぞれ示す。
(E) and (F) show detailed il control flowcharts of the timing control unit V, respectively.

以上説明の第1図、第2図(八)〜([)および第3図
にもとづいて、超電導コイル1を無励磁状態から所定の
電流の大きさの永久電流ループを作り出す場合の動作を
説明する。この場合は運転方式切換スイッチ19を無励
磁状態からスタートする側合スイッチ18をONするこ
とによりタイミング1lll制御部Hは第2図(D) 
、 (E) #よび([)で示した所定の処理(設定器
15のIo (I4)設定、目標電流Io (14)の
取り込み、記憶、無励磁か否かの判別)をした後、ヒー
タ電源6をONする(時刻下11)。これにより超電導
線4は加熱される。
Based on FIG. 1, FIG. 2 (8) to ([), and FIG. 3 explained above, the operation when creating a persistent current loop of a predetermined current magnitude in the superconducting coil 1 from a non-excited state will be explained. do. In this case, by turning on the side switch 18 that starts the operation mode changeover switch 19 from the non-excited state, the timing 1llll control section H is set as shown in Fig. 2 (D).
, (E) After performing the predetermined processing indicated by # and ([) (setting Io (I4) on the setting device 15, capturing the target current Io (14), storing it, and determining whether or not it is non-excited), the heater Turn on the power supply 6 (time 11). As a result, the superconducting wire 4 is heated.

次にタイミング制御部17はこのヒータ電源6をONし
た後超電導腺4が超電導状態から常電導状態に成るまで
に要する所定時間t11経過後の予定時刻T12におい
て、基準発生器16に対して電流基準IAの出力指令を
出す。一方、基準発生器16も第2図(A) 、 (B
) cl”;よび(C)に示した所定の処理(設定器1
3Aによる勾配Aの設定、勾配Aの取り込み及び記憶、
設定器13Bによる勾配Bの設定、勾配Bの取り込み及
び記憶、設定器15による目標電流Io (I4)の設
定、IO(I4)の取り込み及び記憶、カウント値N=
0.a=A (4rm引勾配)、b=oの設定)を行っ
ている。このIAは設定器13Aで事前に設定しである
掃引勾配Aすなわち電流の変化率に従って目標電流設定
器15で設定した目標電流Ioまで電源電流11を徐々
に変化させるための基準値である。ここで重要なことは
、この目標電流IAに従って超電導コイル■3も変化す
るため、この変化率は前述したクエンチ防止の面から、
コイル]の@造で決まる変化率以下に設定されている点
である。このためこの変化率に従ってコイル電流I3が
変化している間はコイル1はクエンチしない。
Next, the timing control unit 17 sets the current reference to the reference generator 16 at a scheduled time T12 after a predetermined time t11 required for the superconducting gland 4 to change from the superconducting state to the normal conducting state after turning on the heater power source 6. Issue an IA output command. On the other hand, the reference generator 16 is also
) cl”; and the predetermined processing shown in (C) (setting device 1
Setting of gradient A by 3A, importing and storing gradient A,
Setting of slope B by setter 13B, loading and storing slope B, setting of target current Io (I4) by setting unit 15, loading and storing of IO (I4), count value N=
0. a=A (4rm drag slope), b=o settings). This IA is a reference value for gradually changing the power supply current 11 to the target current Io set by the target current setting device 15 according to the sweep gradient A, that is, the rate of change of current, which is preset by the setting device 13A. What is important here is that since the superconducting coil (3) also changes according to this target current IA, this rate of change is
The point is that the rate of change is set below the rate of change determined by the @ structure of the coil. Therefore, while the coil current I3 is changing according to this rate of change, the coil 1 is not quenched.

直流電源2は加減算器12からの偏差信号εに基づき一
定変化率で電源電流11を立上げるように制御される。
The DC power supply 2 is controlled to raise the power supply current 11 at a constant rate of change based on the deviation signal ε from the adder/subtractor 12.

この結果、直流電源2から微少一定電圧Vが発生して、
超電導コイル]に電流■3、超電導線4に電流■2を流
すことは前述した通りである。しかし、本実施例の場合
には液体ヘリウムの無用な蒸発を防ぐため、超電導線4
が常電導化した時点で、ヒータ電源6を0FFt、、後
は自己発熱により常電導を維持させるようにしでいる。
As a result, a minute constant voltage V is generated from the DC power supply 2,
The current (3) is passed through the superconducting coil and the current (2) is passed through the superconducting wire 4 as described above. However, in the case of this embodiment, in order to prevent unnecessary evaporation of liquid helium, the superconducting wire
When it becomes normal conductivity, the heater power source 6 is turned to 0FFt, and thereafter normal conductivity is maintained by self-heating.

このため、時刻T12から超電導線4が常電導状態を保
持できるまでの待時間t12経過後の時刻T13におい
て、タイミング制御器17は停止指令を出力してヒータ
電源6をOFFする。
Therefore, at time T13 after the waiting time t12 from time T12 until the superconducting wire 4 can maintain the normal conductivity state, the timing controller 17 outputs a stop command and turns off the heater power supply 6.

一方、設定器15から目標電流値Ioを読み取ったタイ
ミング制御部17は、このJoよりも所定の値αだけ小
さい電流値1o−α=I6を予め計算しておぎ、シャン
1−抵抗10より検出された電源電流11がこの電流値
I6に到達したことを検出した時、時刻T14において
再びヒータ電源6に対して起動指令を出力し同電源6を
ONする。
On the other hand, the timing control unit 17 that has read the target current value Io from the setting device 15 calculates in advance a current value 1o - α = I6 that is smaller than this Jo by a predetermined value α, and detects it from the shan 1 - the resistor 10. When it is detected that the power supply current 11 has reached this current value I6, a start command is outputted to the heater power supply 6 again at time T14, and the power supply 6 is turned on.

電源電流11と目C,電流Ioとが等しくなれば、前述
したように電流■2が減少するため超電導線4自体に生
ずるジュール熱(RI22)のみで常電導化を保持する
ことはできないが、事前にヒータ電源6をONすること
によって、超電導線4の常電導状態を保持する。なお、
R4,に超電導線4が常電導状態における抵抗値である
。これにより超電導コイル電流(13)=目標電流(I
o)か実現できる。タイミング制御部17は時刻T14
より計測して電流I3が確実に目標電流Ioに到達する
までの時間t13経過後の時刻T15でヒータ電源6を
OFFする指令を出力する。時刻T15でヒータ電源6
を0FFL、たため、超電導線4は図示していない液体
ヘリウムLHeにより冷却されて超電導状態となる。
If the power supply current 11 becomes equal to the current C and the current Io, the current 2 decreases as described above, so normal conductivity cannot be maintained only by the Joule heat (RI22) generated in the superconducting wire 4 itself. By turning on the heater power source 6 in advance, the normal conducting state of the superconducting wire 4 is maintained. In addition,
R4 is the resistance value when the superconducting wire 4 is in a normal conducting state. As a result, superconducting coil current (13) = target current (I
o) can be realized. The timing control unit 17 is at time T14.
A command to turn off the heater power source 6 is output at time T15 after the elapse of time t13 until the current I3 reaches the target current Io. Heater power supply 6 at time T15
0FFL, the superconducting wire 4 is cooled by liquid helium LHe (not shown) and enters a superconducting state.

尚、超電導線4が時刻T15から超電導状態になるまで
の所要時間はLHeの冷却能力と永久電流スイッチ3の
熱容量で事前に決まりこれが所定時間t14である。タ
イミング制御部17はヒータ電源6をOFFしてからこ
の所定時間t14経過俊、基準発生器16に対して電流
基準IBの出力指令を出す。このIBは設定器13Bで
事前に設定しであるj市川勾配Bに従って設定器15で
設定した目標電流Ioから電流ゼロまで徐々に変化する
。加減算器12の偏差で制御されている直流電源2は、
基準値II3が徐々に減少するため、このIBに従って
電源電流■125!、立下げていく。ここで重要なこと
は1Bの掃引勾配BはIAの(吊用勾配Aより、はるか
に速い勾配で電流を変化させていることである。
The time required for the superconducting wire 4 to enter the superconducting state from time T15 is determined in advance by the cooling capacity of LHe and the heat capacity of the persistent current switch 3, and is the predetermined time t14. When the predetermined time t14 has elapsed since the heater power supply 6 was turned off, the timing control section 17 issues an output command of the current reference IB to the reference generator 16. This IB gradually changes from the target current Io set by the setter 15 to zero current according to the jIchikawa gradient B set in advance by the setter 13B. The DC power supply 2 controlled by the deviation of the adder/subtractor 12 is
Since the reference value II3 gradually decreases, the power supply current ■125! , and lower it. What is important here is that the sweep gradient B of 1B changes the current at a much faster gradient than the (hanging gradient A) of IA.

これは前述した通り電源2側から見た負荷側すなわち超
電導コイル1と超電導線4が抵抗U口の超電導状態にな
っており、ざらにこの区間は超電導コイル電流■3は変
化せず、超電導線2の電流■2と電源電流■1のみが変
化しているだ(プでおるため、速い掃引勾配Bで電流を
変化させても問題ないためである。
As mentioned above, this is because the load side viewed from the power supply 2 side, that is, the superconducting coil 1 and the superconducting wire 4, are in a superconducting state with the resistor U. Roughly speaking, in this section, the superconducting coil current 3 does not change, and the superconducting wire Only the current (2) and the power supply current (2) are changing.

一方、タイミング制御部17はこの電源電流11を入力
しており、I1がぜ口に到達したタイミングを検出する
。これが時刻T17でおり、これから所定の時間t11
3経過後、基準発生器16に対して電流基準IBの停止
指令を出力し、同時に直流電源2を完全に停止して一連
の制御を終了する。
On the other hand, the timing control section 17 receives this power supply current 11 as input, and detects the timing when I1 reaches the opening. This is time T17, and from now on a predetermined time t11
After 3 lapses, a command to stop the current reference IB is output to the reference generator 16, and at the same time, the DC power supply 2 is completely stopped to complete the series of controls.

次に、所定電流Ioの永久電流ループ状態から別の所定
電流■4の永久電流ループ状態を作り出す場合の動作を
第4図を用いて説明する。この場合は運転方式切換スイ
ッチ19を励磁状態からスタートする側に切換えてあく
。この時点で基準発生器16は前回運転した目標電流I
oを記憶するとともに、電流設定器15て別の目標電流
I4を設定し、このI4を入力する。
Next, the operation when creating a persistent current loop state of another predetermined current (4) from a persistent current loop state of a predetermined current Io will be explained with reference to FIG. In this case, the operation mode selector switch 19 is switched to the side that starts from the excitation state. At this point, the reference generator 16 outputs the target current I that was operated last time.
o is stored, another target current I4 is set using the current setting device 15, and this I4 is input.

まず、時刻T21において運転指令スイッチ18をON
することによりタイミング制御部17は基準発生器16
に対して電流uQII3の出力指令を出す。
First, at time T21, the operation command switch 18 is turned on.
By doing so, the timing control section 17 is controlled by the reference generator 16.
An output command of current uQII3 is issued to the current uQII3.

このIBは前述した通り設定器13bで事前に設定して
必る掃引勾配Bの電流変化率に従って15で前回の運転
時に設定した目標電流1oまで電源電流11を徐々に変
化させるための基準値である。ここで重要なことは、負
荷側である超電導コイル1と超電導線4は抵抗ゼロの永
久電流I3が還流する永久電流状態になっており、前述
した変化率の速い掃引勾配B側を使用できる。この電流
基準IBに従って電源2を運転し電源電流11を目標値
1oまで立上げる。時刻T22において、タイミング制
御81)は電源電流11が前回運転時の目標値Ioに到
達したターイミングを検出した後、所定の時間t 22
だけ待機して、時刻T23においてヒータ電源6をON
ざぜる指令を出力する。ここでヒータ電源がONし所定
時間↑23経過俊超電導線4が常電導に成ると超電導線
4が有限な抵抗値Rを待ち、電源電流■1が超電導コイ
ル電流I3と永久電流スイッチ電流■2に分流する。タ
イミング設定器17はヒータ電源をONした後所定の時
間t 23経過後、基準電流発生器16に対して電流基
準IAを出力するように切換指令を出す。この時が図中
時刻T24である。そしてこの電流基準IAは運転前に
設定した目標電流■4に向って掃引勾配Aで変化する基
準値である。
This IB is a reference value for gradually changing the power supply current 11 up to the target current 1o set during the previous operation at 15 according to the current change rate of the sweep gradient B that must be set in advance with the setting device 13b as described above. be. What is important here is that the superconducting coil 1 and the superconducting wire 4 on the load side are in a persistent current state in which a persistent current I3 with zero resistance flows back, and the above-mentioned sweep gradient B side with a fast rate of change can be used. The power supply 2 is operated according to this current reference IB to raise the power supply current 11 to the target value 1o. At time T22, the timing control 81) detects the timing when the power supply current 11 reaches the target value Io during the previous operation, and then controls the timing control 81) for a predetermined time t22.
The heater power supply 6 is turned on at time T23.
Outputs the ZAZZER command. Here, the heater power is turned on and a predetermined time ↑23 has elapsed. When the superconducting wire 4 becomes normal conductive, the superconducting wire 4 waits for a finite resistance value R, and the power supply current ■1 becomes the superconducting coil current I3 and the persistent current switch current ■2. Divided into. The timing setter 17 issues a switching command to the reference current generator 16 to output the current reference IA after a predetermined time t23 has elapsed after turning on the heater power supply. This time is time T24 in the figure. This current reference IA is a reference value that changes at a sweep gradient A toward the target current 4 set before operation.

このIAに従って制御されている電源2により超電導コ
イル電流■3も変化する。またタイミング制御部17は
電流基QIへを出力した図中時刻T24より超電導線4
が常電導状態を維持するのに充分な時間t 24経過後
にヒータ電源6をOFFする指令を出力する。これが時
刻T25である。
The superconducting coil current 3 also changes due to the power supply 2 controlled according to this IA. In addition, the timing control unit 17 outputs the superconducting wire 4 from time T24 in the figure when it outputs the signal to the current base QI.
After a time t24 sufficient for maintaining the normal conductivity state, a command to turn off the heater power source 6 is output. This is time T25.

一方、最終目標電流I4と電源電流11を入力している
タイミング制御部17はこの電流■4に対して所定の値
αだけ小さい14〜α−I4を計算し、電源電流11が
このI4に到達した信号を検出する。そして図中T26
においてこの信号により再びヒータ電源6をONする指
令を出力する。これにより前述と同様に超電導コイル電
流13=最終目標電流I4が実現できる。そして時刻T
27にてヒータ電源6をOFFすることによって超電導
線4は超電導状態に成り、この状態が時刻T2Bである
On the other hand, the timing control unit 17 inputting the final target current I4 and the power supply current 11 calculates 14 to α-I4, which is smaller than this current 4 by a predetermined value α, so that the power supply current 11 reaches this I4. detect the signal. And T26 in the figure
In response to this signal, a command is issued to turn on the heater power supply 6 again. As a result, the superconducting coil current 13=final target current I4 can be realized as described above. and time T
By turning off the heater power source 6 at step 27, the superconducting wire 4 enters a superconducting state, and this state is at time T2B.

タイミング制御部17はここで基準電流発生製画16に
対して電流基準IBへ切換える信号を出力する。このI
aは掃引勾配Bに従って電流ゼロまで変化する。そして
、この区間は超電導コイル電流I3は変化せず、超電導
線4の電流■2と電源電流■1のみが変化しているため
、速い掃引勾配Bで電源電流11を立下げることができ
る。■1がゼロになった時刻T29において、これを検
出したタイミング制御部は所定の時間t28経過後電流
基準発生器16に対して電流基準IBの停止指令を出力
し、同時に直流電源2を完全に停止して一連の制御を終
了する。
The timing control unit 17 then outputs a signal to the reference current generator 16 to switch to the current reference IB. This I
a changes according to the sweep gradient B until the current is zero. In this section, the superconducting coil current I3 does not change, and only the current (2) of the superconducting wire 4 and the power supply current (2) change, so that the power supply current 11 can be lowered with a fast sweep gradient B. ■At time T29 when 1 becomes zero, the timing control unit detects this and outputs a command to stop the current reference IB to the current reference generator 16 after a predetermined time t28 has elapsed, and at the same time completely shuts off the DC power supply 2. Stop and complete the series of controls.

また、この説明において目標電流■4をIoより高く設
定したが、Ioより低く設定することも可能であり、さ
らにゼロに設定しコイルを無励磁状態にすることもでき
る。
Further, in this explanation, the target current (4) is set higher than Io, but it can also be set lower than Io, and furthermore, it can be set to zero to put the coil in a non-excited state.

ざらに、前)ホした実施例では超電導線4の超電導又は
常電導状態の検出に、ヒータ電源6のON又はOFFか
ら所定の時間が経過した時点で検出しているが、超電導
線4の近傍に温度センサ等を取付は同線4の温度を直接
監視することにより、超電導又は常電導状態を確実に検
出することもできる。このようにすることによってヒー
タ電源6の0Ntll1間をざらに短くすることができ
、強いては液体ヘリウムを消費をさらに抑制することが
できる。
In general, in the embodiment described above, the superconducting or normal conducting state of the superconducting wire 4 is detected after a predetermined period of time has elapsed since the heater power source 6 was turned on or off. By attaching a temperature sensor or the like to directly monitor the temperature of the wire 4, it is also possible to reliably detect the superconducting or normal conducting state. By doing so, it is possible to roughly shorten the period between 0Ntll1 of the heater power source 6, and it is possible to further suppress the consumption of liquid helium.

又更に、前述した実施例では超電導コイル電流I3を立
上げる場合であるが、立下げる場合についても同様に実
施できることは言うまでもない。
Further, although the above-described embodiment deals with the case where the superconducting coil current I3 is started up, it goes without saying that the same can be applied to the case where the superconducting coil current I3 is turned down.

この電流■3立下げの実施例のタイムチャートは第5図
に示す通りである。
A time chart of this embodiment of the current (3) fall is as shown in FIG.

(発明の効果〕 以上述べたように本発明によれば、超電導コイル電流を
変化させる比較的あそい掃引勾配で変化する電流基準と
、超電導コイル電流は変化せず、他の電源電流や超電導
線の電流を変化させる速い掃引勾配で変化する電流基準
を設け、この2つの電流基準を所定のタイミングで切換
えることにより、超電導コイルをクエンチさせる不具合
を起さず、且つ、所定の永久電流ループを1qて電源を
停止さすまでの一連の制御時間を最小にし、診断効率を
向上させた超電導装置の制御方法を提供することができ
る。
(Effects of the Invention) As described above, according to the present invention, there is a current reference that changes with a relatively slow sweep gradient that changes the superconducting coil current, and a superconducting coil current that does not change and other power supply currents or superconducting wires. By providing a current reference that changes with a fast sweep gradient that changes the current of It is possible to provide a control method for a superconducting device that minimizes a series of control times until the power supply is stopped and improves diagnostic efficiency.

さらに本発明によれば、永久電流スイッチの超電導線を
常電導状態にして通電し、その超電導線が自己発熱によ
り常電導状態を保持できる区間は、ヒータ電源を0FF
L、て極低温容器内に不必要な熱の発生を抑えるように
したので、高価な液体ヘリウムの消費を抑制すると共に
、機器の寿命を延ばすことができ、経済的で信頼性の高
い超電導装置が得られる。
Furthermore, according to the present invention, the superconducting wire of the persistent current switch is turned on in a normal conductive state, and the heater power source is turned off to
By suppressing unnecessary heat generation in the cryogenic container, we can suppress the consumption of expensive liquid helium and extend the life of the equipment, creating an economical and highly reliable superconducting device. is obtained.

また、超電導コイル1の発生磁場を変更する場合も、電
流設定器15の設定値を例えばIoから14へ変更し、
W県発生部邦、タイミング制御部17を目標電流Ioの
場合の制御と同様に動作ざtて直流電源2、ヒータ電源
6を制御することにより、効率的で液体ヘリウム(L 
He )の消費が少ない経済的な超電導装置を提供する
ことができる。
Also, when changing the magnetic field generated by the superconducting coil 1, the setting value of the current setting device 15 is changed from, for example, Io to 14,
By controlling the DC power supply 2 and the heater power supply 6 by operating the timing control unit 17 in the same manner as the control in the case of the target current Io, efficient liquid helium (L
It is possible to provide an economical superconducting device that consumes less He 2 ).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示ず構成図、第2図(A)
 、 (B)および(C)は本発明の基準発生器16の
詳細な制御フローチャート、第2図(D) 、 (t)
および(F)は本発明のタイミング制御部17の詳細な
制御フローチャート、第3図および第4図は本発明の制
御動作を示すタイムチャート、第5図は他の実施例のタ
イムチャート、第6図は従来装置の構成図、第7図は従
来装置の1til制御動作を示づタイムチャートである
。 1・・・超電導コイル   2・・・直流電源3・・・
永久電流スイッチ 4・・・超電導線5・・・ヒータ 
     6・・・ヒータ電源7・・・直流遮断器  
  8・・・保護抵抗9・・・極低温容器    10
・・・シVント抵抗11・・・増幅器      12
・・・加減算器13A、 B・・・掃引勾配設定器 15・・・電流設定器    16・・・基準発生器1
7・・・タイミング制御部 18.19・・・スイッチ
。 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図 第2図(A) 第2図1.) 第   2   図 (ρ) Ttt  7′/2Tt3    T14  7/s 
 Ttt  Tt7TtB特F、7 T2/   T2y万J Tya T2s      
 T2t   It T、e  Try  7’+?+
特開 時期 第5図 第6図 A1ギF7.7 第7図
FIG. 1 is a configuration diagram that does not show one embodiment of the present invention, and FIG. 2 (A)
, (B) and (C) are detailed control flowcharts of the reference generator 16 of the present invention; FIGS. 2(D) and (t)
3 and 4 are time charts showing the control operation of the present invention. FIG. 5 is a time chart of another embodiment. The figure is a block diagram of the conventional device, and FIG. 7 is a time chart showing the 1 til control operation of the conventional device. 1...Superconducting coil 2...DC power supply 3...
Persistent current switch 4...Superconducting wire 5...Heater
6... Heater power supply 7... DC breaker
8...Protective resistance 9...Cryogenic container 10
...Signal resistor 11...Amplifier 12
...Adder/subtractor 13A, B...Sweep gradient setter 15...Current setter 16...Reference generator 1
7...Timing control section 18.19...Switch. Agent Patent Attorney Noriyuki Chika Yudo Hirofumi Mitsumata Figure 1 Figure 2 (A) Figure 2 1. ) Figure 2 (ρ) Ttt 7'/2Tt3 T14 7/s
Ttt Tt7TtBSpecial F, 7 T2/ T2y million J Tya T2s
T2t It T, e Try 7'+? +
Unpublished period Fig. 5 Fig. 6 A1 Gi F7.7 Fig. 7

Claims (9)

【特許請求の範囲】[Claims] (1)極低温容器内に設けられ、超電導コイルとともに
電流ループを形成する永久電流スイッチ(この永久電流
スイッチは前記超電導コイルに並列接続される超電導線
およびその超電導線の近傍に配置されたヒータから構成
されている)と、前記極低温容器外に設けられ、前記電
流ループに電流を供給する超電導コイル用電源と、前記
ヒータに通電するヒータ電源とを備えることにより前記
電流ループに所定の大きさの電流を環流させて永久電流
ループを作り出す超電導装置において、超電導コイル電
流を変化させる第1の掃引勾配を持つ第1の電流基準、
超電導コイル電流は変化させずに超電導コイル用電源お
よび超電導線それぞれに流れる電流を変化させる第2の
掃引勾配を持つ第2の電流基準を有する掃引勾配設定手
段と、前記超電導コイルに流れる目標電流を定める目標
電流設定手段と、この2つの電流基準超電導装置の運転
モードを所定のタイミングで切換える制御手段を設けた
ことを特徴とする超電導装置。
(1) A persistent current switch that is installed in a cryogenic container and forms a current loop together with a superconducting coil (this persistent current switch is connected to a superconducting wire connected in parallel to the superconducting coil and a heater placed near the superconducting wire). a superconducting coil power supply that is provided outside the cryogenic container and supplies current to the current loop, and a heater power supply that supplies current to the heater, thereby giving the current loop a predetermined size. In a superconducting device that circulates a current to create a persistent current loop, a first current reference having a first sweep gradient that changes the superconducting coil current;
a sweep gradient setting means having a second current reference having a second sweep gradient that changes the current flowing through each of the superconducting coil power supply and the superconducting wire without changing the superconducting coil current; A superconducting device characterized in that it is provided with a target current setting means for determining a target current, and a control means for switching the operation mode of the two current-based superconducting devices at a predetermined timing.
(2)特許請求の範囲第1項の超電導装置において、前
記直流電源の立上げ又は立下げ時の所定時間と前記超電
導コイルの電流が所定の電流へ到達した所定の時間のみ
前記ヒータ電源をONする制御手段を設けたことを特徴
とする超電導装置。
(2) In the superconducting device according to claim 1, the heater power source is turned on only for a predetermined time when the DC power source is turned on or off, and for a predetermined time when the current in the superconducting coil reaches a predetermined current. A superconducting device characterized in that it is provided with a control means for controlling.
(3)特許請求の範囲第1項において制御手段は前記第
1の電流基準、前記第2の電流基準および目標電流設定
値を入力して前記超電導コイル用電源に対する電流基準
を発生する基準発生部と、電源電流に応じた信号、運転
指令および運転モード切換指令を入力し運転モードを切
換えるタイミング制御部とから構成したことを特徴とす
る超電導装置。
(3) In claim 1, the control means is a reference generation unit that inputs the first current reference, the second current reference, and the target current setting value to generate a current reference for the superconducting coil power source. and a timing control section that inputs a signal corresponding to a power supply current, an operation command, and an operation mode switching command to switch the operation mode.
(4)極低温容器内に設けられ、超電導コイルとともに
電流ループを形成する永久電流スイッチ(この永久電流
スイッチは前記超電導コイルに並列接続される超電導線
およびその超電導線の近傍に配置されたヒータから構成
されている)と、前記極低温容器外に設けられ、前記電
流ループに電流を供給する超電導コイル用電源と、前記
ヒータに通電するヒータ電源とを備えることにより前記
電流ループに所定の大きさの電流を環流させて永久電流
ループを作り出す超電導装置において、前記超電導コイ
ルに流すコイル電流を立上げる時、予め超電導コイルを
超電導状態に維持すると共に、前記ヒータに通電して前
記超電導線を常電導状態にした後、前記超電導コイルに
クエンチ事故が発生しないような電流増加率でコイル電
流を最終目標値まで増加するように前記超電導コイル用
電源の出力電流を制御し、そのコイル電流の増加過程に
おいて前記超電導線が自己のジュール発熱により常電導
状態を維持できる期間前記ヒータをオフさせ、コイル電
流が最終目標値に到達する前後に再び前記ヒータを所定
の時定数τ=L/R(但しL:超電導コイルのインダク
タンス、R:超電導線の抵抗)より算出される所望の時
間だけオンさせ、前記超電導コイル用電源の出力電流I
_1とコイル電流とが等しくなつた後前記超電導線のク
エンチ事故を発生しないような電流減少率で電源電流を
零値まで減少させ、超電導コイル用電源の運転を停止さ
せるようにした超電導装置の制御方法。
(4) A persistent current switch that is installed in the cryogenic container and forms a current loop together with the superconducting coil (this persistent current switch is connected to a superconducting wire connected in parallel to the superconducting coil and a heater placed near the superconducting wire). a superconducting coil power supply that is provided outside the cryogenic container and supplies current to the current loop, and a heater power supply that supplies current to the heater, thereby giving the current loop a predetermined size. In a superconducting device that creates a persistent current loop by circulating a current, when starting up the coil current flowing through the superconducting coil, the superconducting coil is maintained in a superconducting state in advance, and the heater is energized to make the superconducting wire normally conductive. After the state is set, the output current of the superconducting coil power source is controlled so that the coil current is increased to the final target value at a current increase rate that does not cause a quench accident in the superconducting coil, and in the process of increasing the coil current. The heater is turned off for a period during which the superconducting wire can maintain a normal conducting state due to its own Joule heat generation, and the heater is turned off again before and after the coil current reaches the final target value at a predetermined time constant τ=L/R (where L: The output current I of the superconducting coil power supply is
Control of a superconducting device in which the power supply current is reduced to zero at a current reduction rate that does not cause a quench accident of the superconducting wire after _1 and the coil current become equal, and the operation of the power supply for the superconducting coil is stopped. Method.
(5)極低温容器内に設けられ、超電導コイルとともに
電流ループを形成する永久電流スイッチ(この永久電流
スイッチは前記超電導コイルに並列接続される超電導線
およびその超電導線の近傍に配置されたヒータから構成
されている)と、前記極低温容器外に設けられ、前記電
流ループに電流を供給する超電導コイル用電源と、前記
ヒータに通電するヒータ電源とを備えることにより前記
電流ループに所定の大きさの電流を環流させて永久電流
ループを作り出す超電導装置において、前記超電導コイ
ルにすでに流れているコイル電流を立上げる時、電源電
流をそのコイル電流の大きさに等しくし、その後、前記
ヒータに通電して前記超電導線を常電導状態にした後、
前記超電導コイルにクエンチ事故が発生しないような電
流増加率でコイル電流を最終目標値まで増加するように
前記超電導コイル用電源の出力電流を制御し、そのコイ
ル電流の増加過程において前記超電導線が自己のジュー
ル発熱により常電導状態を維持できる期間前記ヒータを
オフさせ、コイル電流が最終目標値に到達する前後に再
び前記ヒータを所定の時定数τ=L/R(但しL:超電
導コイルのインダクタンス、R:超電導線の抵抗)より
算出される所望の時間だけオンさせ、前記超電導コイル
用電源の出力電流I_1とコイル電流とが等しくなった
後前記超電導線のクエンチ事故を発生しないような電流
減少率で電源電流を零値まで減少させ、超電導コイル用
電源の運転を停止させるようにした超電導装置の制御方
法。
(5) A persistent current switch that is installed in the cryogenic container and forms a current loop with the superconducting coil (this persistent current switch is connected to a superconducting wire connected in parallel to the superconducting coil and a heater placed near the superconducting wire). a superconducting coil power supply that is provided outside the cryogenic container and supplies current to the current loop, and a heater power supply that supplies current to the heater, thereby giving the current loop a predetermined size. In a superconducting device that creates a persistent current loop by circulating a current, when starting up the coil current already flowing in the superconducting coil, the power supply current is made equal to the magnitude of the coil current, and then the heater is energized. After bringing the superconducting wire into a normal conducting state,
The output current of the superconducting coil power supply is controlled so that the coil current increases to the final target value at a current increase rate that does not cause a quench accident in the superconducting coil, and in the process of increasing the coil current, the superconducting wire The heater is turned off for a period during which the normal conductivity state can be maintained due to Joule heat generation of R: a current reduction rate that does not cause a quench accident of the superconducting wire after the output current I_1 of the superconducting coil power source becomes equal to the coil current by turning on for a desired time calculated from (resistance of the superconducting wire) A control method for a superconducting device in which the power supply current is reduced to a zero value and the operation of the power supply for the superconducting coil is stopped.
(6)極低温容器内に設けられ、超電導コイルとともに
電流ループを形成する永久電流スイッチ(この永久電流
スイッチは前記超電導コイルに並列接続される超電導線
およびその超電導線の近傍に配置されたヒータから構成
されている)と、前記極低温容器外に設けられ、前記電
流ループに電流を供給する超電導コイル用電源と、前記
ヒータに通電するヒータ電源とを備えることにより前記
電流ループに所定の大きさの電流を貫流させて永久電流
ループを作り出す超電導装置において、前記超電導コイ
ルにすでに流れているコイル電流を立下げる時、電源電
流をそのコイル電流の大きさに等しくし、その後、前記
ヒータに通電して前記超電導線を常電導状態にした後、
前記超電導コイルにクエンチ事故が発生しないような電
流減少率でコイル電流を最終目標値まで減少するように
前記超電導コイル用電源の出力電流を制御し、そのコイ
ル電流の減少過程において前記超電導線が自己のジュー
ル発熱により常電導状態を維持できる期間前記ヒータを
オフさせ、コイル電流が最終目標値に到達する前後に再
び前記ヒータを所定の時定数τ=L/R(但しL:超電
導コイルのインダクタンス、R:超電導線の抵抗)より
算出される所望の時間だけオンさせ、前記超電導コイル
用電源の出力電流I_1とコイル電流とが等しくなった
後前記超電導線のクエンチ事故を発生しないような電流
減少率で電源電流を零値まで減少させ、超電導コイル用
電源の運転を停止させるようにした超電導装置の制御方
法。
(6) A persistent current switch that is installed in the cryogenic container and forms a current loop together with the superconducting coil (this persistent current switch is connected to a superconducting wire connected in parallel to the superconducting coil and a heater placed near the superconducting wire). a superconducting coil power supply that is provided outside the cryogenic container and supplies current to the current loop, and a heater power supply that supplies current to the heater, thereby giving the current loop a predetermined size. In a superconducting device that creates a persistent current loop by causing a current to flow through the superconducting coil, when stopping the coil current already flowing in the superconducting coil, the power supply current is made equal to the magnitude of the coil current, and then the heater is energized. After bringing the superconducting wire into a normal conducting state,
The output current of the superconducting coil power source is controlled so that the coil current is reduced to the final target value at a current reduction rate that does not cause a quench accident in the superconducting coil, and in the process of decreasing the coil current, the superconducting wire The heater is turned off for a period during which the normal conductivity state can be maintained due to Joule heat generation of R: a current reduction rate that does not cause a quench accident of the superconducting wire after the output current I_1 of the superconducting coil power source becomes equal to the coil current by turning on for a desired time calculated from (resistance of the superconducting wire) A control method for a superconducting device in which the power supply current is reduced to a zero value and the operation of the power supply for the superconducting coil is stopped.
(7)特許請求の範囲第2項および第4項において、ヒ
ータを再びオンする時期はコイル電流が最終目標値より
も予定値だけ小さい値になった時点であることを特徴と
する超電導装置の制御方法。
(7) Claims 2 and 4 of the superconducting device characterized in that the heater is turned on again when the coil current becomes a value smaller than the final target value by a predetermined value. Control method.
(8)特許請求の範囲第1項ないし第6項において、超
電導コイル電流は変化せずに電源電流のみ変化させる区
間は、超電導コイル電流I_3を変化させる区間と比較
して速い変化率で電流を制御することを特徴とする超電
導装置の制御方法。
(8) In claims 1 to 6, in the section where only the power supply current is changed without changing the superconducting coil current, the current is changed at a faster rate of change than the section where the superconducting coil current I_3 is changed. 1. A method for controlling a superconducting device.
(9)特許請求の範囲第3項において、コイル電流の最
終目標値はゼロ又はゼロ以外の値であることを特徴とす
る超電導装置の制御方法。
(9) A method for controlling a superconducting device according to claim 3, wherein the final target value of the coil current is zero or a value other than zero.
JP61169812A 1985-07-20 1986-07-21 Apparatus and method for controlling superconducting device Pending JPS62276806A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16084785 1985-07-20
JP60-160847 1985-07-20
JP61-31821 1986-02-18

Publications (1)

Publication Number Publication Date
JPS62276806A true JPS62276806A (en) 1987-12-01

Family

ID=15723686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61169812A Pending JPS62276806A (en) 1985-07-20 1986-07-21 Apparatus and method for controlling superconducting device

Country Status (1)

Country Link
JP (1) JPS62276806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100859A (en) * 2009-11-06 2011-05-19 Japan Superconductor Technology Inc Excitation power source for superconductive magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100859A (en) * 2009-11-06 2011-05-19 Japan Superconductor Technology Inc Excitation power source for superconductive magnet

Similar Documents

Publication Publication Date Title
US11320502B2 (en) Magnetic resonance imaging system capable of rapid field ramping
US8384504B2 (en) Superconducting quick switch
US8134434B2 (en) Superconducting quick switch
US10107879B2 (en) Low-loss persistent current switch with heat transfer arrangement
JP5150241B2 (en) Method and apparatus for actively controlling quench protection of a superconducting magnet
US9082535B2 (en) Method and apparatus for orderly run-down of superconducting magnets
US4807084A (en) Superconducting magnet apparatus with emergency run down unit
WO2014199793A1 (en) Magnetic resonance imaging device and method for operating same
GB2195054A (en) Superconducting magnet apparatus with emergency demagnetizing unit
US4994935A (en) Superconducting magnet apparatus with an emergency run-down system
JPS62276806A (en) Apparatus and method for controlling superconducting device
EP0211551B1 (en) A superconducting system and method for controlling the same
US9500730B2 (en) Reduced-gas-flow electrical leads for superconducting magnet system
US11428764B2 (en) Magnetic resonance imaging system and method for rapid shutdown and recharge of a superconducting magnet
JP2018086037A (en) Superconductive magnet apparatus and magnetic resonance imaging apparatus
JPS59111381A (en) Thermoswitch for superconductive magnet
JPH06237911A (en) Movable magnetic resonance imaging device
JPH039731B2 (en)
JPS63258007A (en) Excitation of superconducting coil
JPH03254105A (en) Superconductive magnetic field-generating device