JPS59109897A - Method of removing crud in reactor primary coolant - Google Patents

Method of removing crud in reactor primary coolant

Info

Publication number
JPS59109897A
JPS59109897A JP57221038A JP22103882A JPS59109897A JP S59109897 A JPS59109897 A JP S59109897A JP 57221038 A JP57221038 A JP 57221038A JP 22103882 A JP22103882 A JP 22103882A JP S59109897 A JPS59109897 A JP S59109897A
Authority
JP
Japan
Prior art keywords
crud
cooling water
adsorbent
primary coolant
reactor primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57221038A
Other languages
Japanese (ja)
Other versions
JPH0151952B2 (en
Inventor
田村 孝章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGYO KAIHATSU KENKYUSHO KK
KOUGIYOU KAIHATSU KENKYUSHO KK
Original Assignee
KOGYO KAIHATSU KENKYUSHO KK
KOUGIYOU KAIHATSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGYO KAIHATSU KENKYUSHO KK, KOUGIYOU KAIHATSU KENKYUSHO KK filed Critical KOGYO KAIHATSU KENKYUSHO KK
Priority to JP57221038A priority Critical patent/JPS59109897A/en
Publication of JPS59109897A publication Critical patent/JPS59109897A/en
Publication of JPH0151952B2 publication Critical patent/JPH0151952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、原子炉の1次冷却水中に含1nているクラ
ッドを除去する方法(二関する。なお「クラッド」とは
、原子炉の1ぴ冷却水に配管などから溶は込んだFeが
酸化して生じ穴α−Fe203を主体とする酸化鉄、酸
化コバルトtlどの泥状又はコロイド状粒子を指す。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for removing crud contained in the primary cooling water of a nuclear reactor. Refers to muddy or colloidal particles such as iron oxide, cobalt oxide TL, etc., which are formed by the oxidation of Fe injected into the melt and mainly have holes α-Fe203.

原子炉の1仄冷却水中には、循環の過程でα−F e 
205  を主体とするクラッドが蓄積し、原子炉の足
期検食中の人体被爆線量を増大させるyxどの積々の不
@台を招く原因とIJるので、クラッドな除去する手段
を設けることが必要である。このクラッドの除去法は、
クラッド自体はイオンでは74いりnども、一般(:イ
オン交換樹脂に接触爆ぜると吸着さnることを利用して
豹わ1ているが、(の吸着効率は充分でなく、またコス
トが高いので経済的にも負担が太きい。
In the cooling water of a nuclear reactor, α-F e is generated during the circulation process.
It is believed that the accumulation of crud mainly composed of 205 and 205 will increase the exposure dose to humans during the early inspection of the reactor, leading to a number of failures. Therefore, it is necessary to provide a means to remove the crud. is necessary. This crud removal method is
The cladding itself requires 74 ions, but it is generally adsorbed by ion-exchange resin when exposed to it, but the adsorption efficiency is not sufficient and the cost is high. It is also a heavy financial burden.

この発明は、一般(二使用さnているイオン交換樹脂と
比較して吸着効率が高く、ソして著るしく安価tl吸着
剤を使用して、原子炉の1仄冷却水中のクラッドを容易
かつ経済的に除去することができる方法な提供すること
を目的としている。
This invention facilitates the removal of crud in the cooling water of nuclear reactors by using a tl adsorbent that has higher adsorption efficiency and is significantly cheaper than the commonly used ion exchange resins. The objective is to provide a method that can be removed economically.

この発明方法で使用さnる吸着剤は、玉ねぎまたはピー
ナツの褐色をなした薄い皮を細かく粉砕した粉末からな
る。従来、この粉末は。
The adsorbent used in the method of this invention consists of a finely ground powder of the thin brown skins of onions or peanuts. Traditionally, this powder.

で表わさnるコスモイジンなどの配糖体を含ηし、全体
として陽イオン交換体の作用があり、F 、 rCu 
’ftどの1金属をよくイオン交換により捕獲すること
が知らnている。今回、こjらの天然産植物取分の一移
を、吸着剤として充填した吸着塔に、原子炉の1次冷却
水を流すことにより、(の中に含1nているクラッドを
効味的に吸着除去するのにη効であることが、本発明渚
によってはじめて見出爆f′lた。
Contains glycosides such as cosmoidin represented by n, and acts as a cation exchanger as a whole,
It is known that some metals are often captured by ion exchange. This time, by flowing the primary cooling water of the nuclear reactor through an adsorption tower filled with a portion of these naturally occurring plant fractions as an adsorbent, we have effectively removed the crud contained in (1n). It was discovered for the first time by Nagisa, the inventor of the present invention, that f'l is effective in adsorption and removal of f'l.

玉ねぎおよびピーナツの皮は粉砕したで1で使用しても
よいが、保存あるいは使用中に腐敗したり、l仄冷却水
中に色素が溶出して着色する’flどの不都合が![7
配さnる場−8C=は、吸着に有用で11い取分を除去
するための精製処理を?うう、。
Onion and peanut skins can be crushed and used, but there are inconveniences such as rotting during storage or use, and pigments eluting into the cooling water and causing color! [7
Where −8C= is placed, a purification treatment is performed to remove the fraction useful for adsorption. UU,.

〔精製処理〕[Purification treatment]

玉ねぎ1fcはピーナツの皮を粉砕した粉末1部に対し
て、39%ホルムアルデヒド5部および2N硫酸20部
を加え、約50℃で2時間7JI)熱する。つぎ(=こ
の混合腋を濾過し、フィルタ上に残った固形物を蒸留水
で洗浄水のpHが4〜5になる1で洗浄したのち、約5
0℃のオーブン中で乾燥する。
To prepare 1 fc onion, add 5 parts of 39% formaldehyde and 20 parts of 2N sulfuric acid to 1 part of ground peanut skin powder, and heat at about 50°C for 2 hours (7JI). Next (= This mixed axillary is filtered, and the solid matter remaining on the filter is washed with distilled water at a pH of 4 to 5.
Dry in an oven at 0°C.

除去するためのものであって、この処理による0着能力
の亥化けほとんど71いことが硲認さnている。
It is recognized that this process causes almost no increase in the zero-placement ability.

この吸着剤によるクラッドの除去は、一般のイオン交換
樹脂の場合と同様に、適猫なカラム内に吸着剤を充填し
、このカラムを通してlび冷却ボを流すことによって容
易(二わうことができる。吸着条件にとくに制幽はtl
いが、pHが低いほど吸N率(p過率)は同上するので
、pH7以下の条件で杓うことが望ましい。
Removal of crud using this adsorbent is easy (as with general ion exchange resins) by filling an appropriate column with the adsorbent and flowing a cooling tank through the column. Yes, the adsorption conditions are particularly limited.
However, the lower the pH, the higher the N absorption rate (p excess rate), so it is desirable to ladle under conditions of pH 7 or lower.

実施例 内径10調、高さ40団の円筒状のカラ2(内容積3,
140 )の中に、前記の和製処理を施した玉ねぎの皮
の粉末0.5Fを収容し、蒸留水(二α−F 8203
  の粉末(粒径約0.l/1m)を分散させて作った
試別を流* 15 cc/配(線速度0.32σ/度、
空隙速度0.51η懺)で流し、カラムを通過したのち
の試別に含11ているα−Fe20.の濃度を測定して
f濾過率を求め、その結床を下記の第1衣C:示す。な
お、実施例に工nは、通水量を多くする程濾過率が向上
することがわかる。
Example: Cylindrical collar 2 (inner volume 3,
140) was filled with 0.5 F of onion skin powder subjected to the above-mentioned Japanese processing, and distilled water (2α-F 8203
A sample made by dispersing powder (particle size approximately 0.1/1 m) was streamed*15 cc/wiring (linear velocity 0.32σ/degree,
After passing through the column at a void velocity of 0.51η), α-Fe20. The concentration of f is measured to determine the filtration rate, and its concretion is shown in the following first coat C:. In addition, in the example, it can be seen that the filtration rate improves as the water flow rate increases.

第  1  表 (ロ)あらかじめp H3,2の水を流してカラム内を
完全にp I(3,2にしてから試別を流した。
Table 1 (b) Water with a pH of 3.2 was flowed in advance to completely bring the inside of the column to pH 3.2 (pH 3.2) before the assay was run.

比較例 上記の実施例で用いらまたものと同じカラム内に通常の
カチオン交換樹脂を層の高さが9 cm (実施例の2
,25倍)にtJるように充填し、実施例と同じ試別を
使って濾過笑験を省った・得ら′t″Iた組法を第2表
に示す。
COMPARATIVE EXAMPLE A conventional cation exchange resin was placed in the same column as that used in the above example with a bed height of 9 cm (Example 2).
, 25 times) and using the same test method as in the example but omitting the filtration test, Table 2 shows the method of assembly obtained.

なお先の笑施例では、玉ねぎの皮について示したが、ピ
ーナツの皮の場合にも同等の効味が得ら1ている。
In the previous example, onion skin was shown, but the same effect was obtained with peanut skin.

以」二のよう(ここの発明によ1は、従来から用いら力
でいるイオン交換樹脂による吸着と比較して、と< i
二p Hの高い条件でも良好な濾過竹性を示しているこ
とが明らかである。しかもこの発明で用いら)゛また吸
着剤は、通常は廃采さ1ている玉ねぎ’F7mはピーナ
ツの皮を原料としているので、経済的C二もきわめて勺
利である。
According to the present invention, 1 is compared with the adsorption by ion exchange resin, which is conventionally used, and < i
It is clear that good filtration properties are exhibited even under high pH conditions. Moreover, since the adsorbent used in this invention is made from peanut peels, which are usually waste boiled, it is also extremely economical.

更に、通常のイオン交換樹脂よりもはるかに容積が少r
t (ててみ、しかも天然植物成分の一秤であるので、
放射性廃棄物として長期保存中(=耐R躬性細菌類によ
り腐敗させ更(二減容しつることが可能であるのみたら
ず、又沿中酸化燃焼処理(二りり分解してCO2とH2
Oにすることも容易である。
Furthermore, it has a much smaller volume than regular ion exchange resins.
(Tetemi, and since it is made of natural plant ingredients,
During long-term storage as radioactive waste (= decayed by R-resistant bacteria), it is not only possible to reduce the volume by 2 times, but also to undergo oxidative combustion treatment (decompose into CO2 and H2).
It is also easy to set it to O.

(1故に従〆用いら1てきた化学的C二安定t′i難分
解性の通常のイオン交換樹脂と異り、従来じみら217
’J 1./′1廃棄物の太減容化が可能にlJるとい
う太き六利点がある。
(Unlike ordinary ion exchange resins, which are difficult to decompose due to the chemical C bistable t'i, which has been used for 1 reason, conventional Jimira 217
'J1. /'1 There are six major advantages in that it is possible to significantly reduce the volume of waste.

539−539-

Claims (1)

【特許請求の範囲】[Claims] 玉ねぎまたはピーナツの皮を適当tJ粉粒度=粉砕した
粉末からなる吸着剤(=原子炉の1ぴ冷却水を接触させ
ることにより該1グ冷却水中に含−Fnているクラッド
を吸着除去することを時僧とする原子炉1次冷却水中の
クララード除去力法。
An adsorbent made of powder obtained by pulverizing onion or peanut skin to an appropriate tJ particle size (= an adsorbent that adsorbs and removes the -Fn-containing crud contained in the 1g cooling water by bringing it into contact with the 1g cooling water of a nuclear reactor. Clarard removal force method in primary cooling water of nuclear reactor.
JP57221038A 1982-12-15 1982-12-15 Method of removing crud in reactor primary coolant Granted JPS59109897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221038A JPS59109897A (en) 1982-12-15 1982-12-15 Method of removing crud in reactor primary coolant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221038A JPS59109897A (en) 1982-12-15 1982-12-15 Method of removing crud in reactor primary coolant

Publications (2)

Publication Number Publication Date
JPS59109897A true JPS59109897A (en) 1984-06-25
JPH0151952B2 JPH0151952B2 (en) 1989-11-07

Family

ID=16760507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221038A Granted JPS59109897A (en) 1982-12-15 1982-12-15 Method of removing crud in reactor primary coolant

Country Status (1)

Country Link
JP (1) JPS59109897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007684A1 (en) * 2006-07-14 2008-01-17 National University Corporation Hokkaido University Supercooling promoting agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007684A1 (en) * 2006-07-14 2008-01-17 National University Corporation Hokkaido University Supercooling promoting agent
AU2007273525B2 (en) * 2006-07-14 2010-09-16 National University Corporation Hokkaido University Supercooling promoting agent

Also Published As

Publication number Publication date
JPH0151952B2 (en) 1989-11-07

Similar Documents

Publication Publication Date Title
US5596611A (en) Medical isotope production reactor
US6214234B1 (en) Method for the removal of cesium from radioactive waste liquids
US11842823B2 (en) Nuclear reactor irradiation systems and methods
JPS6136198B2 (en)
JPH0736039B2 (en) Method for removing suspended impurities from condensate by mixed bed condensate desalination system
JPS59109897A (en) Method of removing crud in reactor primary coolant
US4282092A (en) Process for preparing inorganic particulate adsorbent and process for treating nuclear reactor core-circulating water
JPS60161598A (en) Method of treating radioactive waste liquor containing radioactive ruthenium
JPS6119958B2 (en)
JPH06130188A (en) Processing method for radioactive waste liquid
JP2679726B2 (en) Reactor cooling water cleaning agent and cleaning method
US3029200A (en) Removal of radioactive ions from waters
JPS5815016B2 (en) How to clean ion exchange resin
Campbell et al. Low-level liquid waste decontamination by ion exchange
JPS62176913A (en) Process for separation and recovery of cesium from treating liquid containing sodium salt
JPS59102196A (en) Method of denitrating water solution waste containing nitrate
JPS6295500A (en) Method of treating decanting water
US2894810A (en) Columbic oxide adsorption process for separating uranium and plutonium ions
JPS5876146A (en) Filtering and desalting system
JPS59183398A (en) Maintenance system of condensate desalt tower
JP2839585B2 (en) Method and apparatus for reducing neptunium
JPS6189594A (en) Method of purifying reactor water
Campbell et al. Process improvement studies for the Submerged Demineralizer System (SDS) at the Three Mile Island Nuclear Power Station, Unit 2
RU2172297C2 (en) Method of treatment of sewage
US2992249A (en) Ion exchange adsorption process for plutonium separation