JPS6119958B2 - - Google Patents

Info

Publication number
JPS6119958B2
JPS6119958B2 JP12640180A JP12640180A JPS6119958B2 JP S6119958 B2 JPS6119958 B2 JP S6119958B2 JP 12640180 A JP12640180 A JP 12640180A JP 12640180 A JP12640180 A JP 12640180A JP S6119958 B2 JPS6119958 B2 JP S6119958B2
Authority
JP
Japan
Prior art keywords
waste liquid
activated carbon
radioactive
ruthenium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12640180A
Other languages
Japanese (ja)
Other versions
JPS5750698A (en
Inventor
Haruto Nakamura
Yasushi Kawakami
Ryozo Motoki
Shoji Motoishi
Kazuhide Myazaki
Atsukazu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP12640180A priority Critical patent/JPS5750698A/en
Publication of JPS5750698A publication Critical patent/JPS5750698A/en
Publication of JPS6119958B2 publication Critical patent/JPS6119958B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は放射性廃液の処理の方法に関する。よ
り詳細に述べると本発明は特に使用済核燃料再処
理工場から発生する放射性ルテニウムを含む中低
レベル放射性廃液の処理に関する。 廃液中に含まれる放射性ルテニウム106Ruは処
理工程中共存する硝酸によつて多種類のニトロシ
ル化合物を形成し一つの方法によつてはある種の
ニトロシル化合物のみが除去され、他のニトロシ
ル化合物が残るため除去効率を高めることができ
ず、廃棄物処理上甚だ厄介な核種である。多種類
の化学形の混合物として存在しても比較的高い除
去効率で処理できる放射性廃液の処理方法として
は蒸発濃縮法があるが、中低レベル廃液はその量
が著しく大量であるため、蒸発濃縮処理による方
法では経済的処理は困難で、イオン交換法又は凝
集沈殿法等も採用されている。 本発明の目的は従来の凝集沈殿法又はイオン交
換法の代りに金属粉末と活性炭とを混合したもの
を吸着体とするカラム法により、多種類の化学形
をもつ放射性ルテニウムを効率よく除去すること
にある。 本発明は放射性ルテニウム106Ruを含む廃液を
金属粉末と活性炭を混合充てんしたカラムを通過
させることから成る。本発明を実施するに当つて
106Ruが最も吸着され易い状態にするためPH3
前後に調整することによつて効率を高めることが
できる。 以下実施例を掲げて本発明の構成および効果を
具体的に説明する。尚本実施例その他で使用した
放射性ルテニウムを含む廃液は酸化ウランを原子
炉で照射し、硝酸に溶解後苛性ソーダで中和しウ
ランを水酸化ウランとしてHz過分離した液であ
る。従来使われている水酸化鉄共沈法等で除去し
うる化学形の放射性ルテニウムは僅かしか含まれ
ていない。 実施例 1 内径18mm長さ83mmのガラス製カラムに粒度100
メツシユの活性炭3gと亜鉛粉5gを混合したも
のを充填し、106Ruを含む廃液300c.c./時で通し
た。廃液の酸性度をそれぞれPH=2,3,4およ
び5に調整して通水し、通液(処理液)中の
106Ruの放射能濃度を通水前(原液)の値と比較
し除染係数を求めた。結果を次に示す。
The present invention relates to a method of treating radioactive waste liquid. More specifically, the present invention particularly relates to the treatment of medium and low level radioactive waste fluid containing radioactive ruthenium generated from spent nuclear fuel reprocessing plants. The radioactive ruthenium -106 Ru contained in the waste liquid forms many types of nitrosyl compounds with the coexisting nitric acid during the treatment process, and depending on one method, only some types of nitrosyl compounds are removed and other nitrosyl compounds remain. Therefore, removal efficiency cannot be improved, making it an extremely troublesome nuclide in terms of waste treatment. Evaporative concentration is a method for treating radioactive waste liquids that can be treated with relatively high removal efficiency even if they exist as a mixture of various chemical forms. Economical treatment is difficult with treatment methods, and ion exchange methods, coagulation precipitation methods, etc. are also used. The purpose of the present invention is to efficiently remove radioactive ruthenium, which has many different chemical forms, by using a column method using a mixture of metal powder and activated carbon as an adsorbent instead of the conventional coagulation-precipitation method or ion exchange method. It is in. The present invention consists of passing a waste liquid containing radioactive ruthenium 106 Ru through a column packed with a mixture of metal powder and activated carbon. In carrying out the present invention, the pH is set to 3 to make 106 Ru most easily adsorbed.
Efficiency can be increased by adjusting back and forth. The structure and effects of the present invention will be specifically explained below with reference to Examples. The waste liquid containing radioactive ruthenium used in this example and others is a liquid obtained by irradiating uranium oxide in a nuclear reactor, dissolving it in nitric acid, neutralizing it with caustic soda, and subjecting the uranium to uranium hydroxide by Hz over-separation. It contains only a small amount of chemically radioactive ruthenium that can be removed by the conventionally used iron hydroxide coprecipitation method. Example 1 Particle size 100 in a glass column with an inner diameter of 18 mm and a length of 83 mm.
It was filled with a mixture of 3 g of mesh activated carbon and 5 g of zinc powder, and a waste liquid containing 106 Ru was passed through at 300 c.c./hour. Adjust the acidity of the waste liquid to PH = 2, 3, 4, and 5, respectively, and pass water through it.
The decontamination coefficient was determined by comparing the radioactivity concentration of 106 Ru with the value before water flow (undiluted solution). The results are shown below.

【表】 実施例 2 106Ruを含む廃液の酸性度をPH=3に調整し、
実施例1で使用したものと同じカラムで亜鉛の代
りに100メツシユの銅粉および鉄粉について実施
し除染係数を求めた。本実験の場合通水量は500
c.c.とした。
[Table] Example 2 The acidity of the waste liquid containing 106 Ru was adjusted to PH = 3,
Using the same column as used in Example 1, 100 meshes of copper powder and iron powder were used instead of zinc to determine the decontamination coefficient. In this experiment, the water flow rate was 500
I made it cc.

【表】 比較例 1 106Ruを含む廃液の酸性度をPH=3に調整し、
充填物として、活性炭および亜鉛粉をそれぞれ単
独で使用した場合の除染係数を求めた。本実験の
場合通水量は200c.c.とした。
[Table] Comparative example 1 The acidity of waste liquid containing 106 Ru was adjusted to PH = 3,
The decontamination coefficient was determined when activated carbon and zinc powder were used alone as fillers. In this experiment, the water flow rate was 200 c.c.

【表】 比較例 2 放射性廃液中の106Ru除去法として代表的なも
ののいくつかについて比較実験を行つた。
[Table] Comparative Example 2 Comparative experiments were conducted on some typical methods for removing 106 Ru from radioactive waste liquid.

【表】 シーブ法
実施例および比較例の結果から明らかなように
活性炭に亜鉛粉末を混合したものを吸着体とする
カラムを用いて効果的に106Ruを除去することが
できる。また106Ruを含む溶液のPHを3以下とす
ることによりさらに高い除染係数で106Ruを除去
できた。銅粉、鉄粉あるいはそれらの混合粉を使
用した場合も同様の傾向が認められた。 活性炭または亜鉛粉を単独で用いた実験では低
い除染係数しか得られないことから廃液に含まれ
106Ru化合物が亜鉛粉と活性炭との組合せによ
り陰イオンとして存在しているルテニウムを陽イ
オン化することにより、活性炭に吸着されやすい
状態となるためと考えられる。従来行われている
106Ru除去法のいくつかについて比較実験を行つ
たが、106Ruの除染係数はいづれも1.0以下と低
い。本発明の方法と比較的類似する原理による除
去法として第一鉄イオンを含水チタン酸に吸着さ
せ、カラム上で106Ruを還元して含水チタン酸に
吸着されやすい化学形に変える方法があるが、本
発明による亜鉛粉末+活性炭の方が除染係数が高
く、第一鉄チタネート法のように還元剤である第
一鉄が溶離してなくなることがなく処理量を多く
することができる。
[Table] Sieve method As is clear from the results of Examples and Comparative Examples, 106 Ru can be effectively removed using a column whose adsorbent is a mixture of activated carbon and zinc powder. Furthermore, by setting the pH of the solution containing 106 Ru to 3 or less, 106 Ru could be removed with an even higher decontamination coefficient. A similar tendency was observed when copper powder, iron powder, or a mixed powder thereof was used. Since only a low decontamination coefficient was obtained in experiments using activated carbon or zinc powder alone, the 106 Ru compound contained in the waste liquid was used to cationize ruthenium, which is present as an anion, by the combination of zinc powder and activated carbon. This is thought to be due to the fact that it becomes easily adsorbed by activated carbon. Traditionally done
Comparative experiments were conducted on several 106 Ru removal methods, but the decontamination coefficients for 106 Ru were all low at 1.0 or less. As a removal method based on a principle relatively similar to the method of the present invention, there is a method in which ferrous ions are adsorbed on hydrous titanic acid, and 106 Ru is reduced on a column to convert it into a chemical form that is easily adsorbed on hydrous titanic acid. The zinc powder + activated carbon according to the present invention has a higher decontamination coefficient, and unlike the ferrous titanate method, ferrous iron, which is a reducing agent, is not eluted and disappears, making it possible to increase the throughput.

Claims (1)

【特許請求の範囲】 1 亜鉛、銅、鉄およびそれらの混合物から選択
される金属粉末および活性炭を混合充填したカラ
ムに放射性ルテニウムを含む廃液を通過させるこ
とにより放射性ルテニウムを除去することを特徴
とする放射性廃液の処理の方法。 2 廃液がPH3程度に調整される特許請求の範囲
第1項記載の方法。
[Claims] 1. Radioactive ruthenium is removed by passing waste liquid containing radioactive ruthenium through a column packed with a mixture of activated carbon and metal powder selected from zinc, copper, iron, and mixtures thereof. Method of treatment of radioactive waste liquid. 2. The method according to claim 1, wherein the waste liquid is adjusted to a pH of about 3.
JP12640180A 1980-09-11 1980-09-11 Method of treating waste liquid containing radioactive ruthemium Granted JPS5750698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12640180A JPS5750698A (en) 1980-09-11 1980-09-11 Method of treating waste liquid containing radioactive ruthemium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12640180A JPS5750698A (en) 1980-09-11 1980-09-11 Method of treating waste liquid containing radioactive ruthemium

Publications (2)

Publication Number Publication Date
JPS5750698A JPS5750698A (en) 1982-03-25
JPS6119958B2 true JPS6119958B2 (en) 1986-05-20

Family

ID=14934236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12640180A Granted JPS5750698A (en) 1980-09-11 1980-09-11 Method of treating waste liquid containing radioactive ruthemium

Country Status (1)

Country Link
JP (1) JPS5750698A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195623A (en) * 1989-01-24 1990-08-02 Nippon Thermostat Kk Bimetallic disk

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182596A (en) * 1982-04-19 1983-10-25 日本原子力事業株式会社 Method of processing radioactive liquid waste
JPS6019035A (en) * 1983-07-13 1985-01-31 Mitsui Mining & Smelting Co Ltd Adsorbent of radioactive ruthenium waste solution
JPS60161598A (en) * 1983-12-15 1985-08-23 日本原子力研究所 Method of treating radioactive waste liquor containing radioactive ruthenium
JPS6145998A (en) * 1984-08-10 1986-03-06 日本原子力研究所 Method of removing radioactive ruthenium in radioactive waste liquor
JPH0810273B2 (en) * 1986-01-27 1996-01-31 株式会社日立製作所 Reprocessing of spent nuclear fuel
GB2255087B (en) * 1991-04-25 1995-06-21 Robert Winston Gillham System for cleaning contaminated water
GB2255088A (en) * 1991-04-25 1992-10-28 Robert Winston Gillham Removal of contaminants from water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195623A (en) * 1989-01-24 1990-08-02 Nippon Thermostat Kk Bimetallic disk

Also Published As

Publication number Publication date
JPS5750698A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
EP0118493B1 (en) Fixation of anionic materials with a complexing agent
US4046687A (en) Process for the adsorptive removal of arsenic, antimony and/or bismuth from an aqueous solution
US4045553A (en) Method of treating silver impregnated activated carbon
JPS6119958B2 (en)
JP2560253B2 (en) Method for producing and regenerating ion exchanger for cesium separation
JPS60161598A (en) Method of treating radioactive waste liquor containing radioactive ruthenium
EP0555996B1 (en) Methods and apparatus for treating aqueous indutrial effluent
JP3183354B2 (en) Method for adsorbing and separating heavy metals using tannin-based adsorbent and method for regenerating the adsorbent
JPS5815193B2 (en) How to treat boron-containing water
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
JPS642918B2 (en)
JPS60214299A (en) Method of removing radioactivity in radioactive waste liquor
US4331551A (en) Method of removing ruthenium contamination from radioactive effluents
JP3144160B2 (en) How to remove radioactive materials in water
Yakout Influence of solution chemistry on the selective adsorption of uranium and thorium onto activated carbon
KR20200092039A (en) Silver coating particle for removing radioactive iodine and method for removing radioactive iodine using the same
US3380916A (en) Ion exchange process
JP3145176B2 (en) Removal method of radioactive iodine in radioactive waste liquid
JP2784213B2 (en) Treatment of wastewater containing high concentration iron
US3459513A (en) Process of extraction of polonium
JP6517314B2 (en) Method and apparatus for treating radioactive liquid waste
WO2013121867A1 (en) Method for processing radioactive waste liquid and method for producing inorganic ion-exchange agent
JP2957054B2 (en) How to prevent or eliminate ion exchange resin clamping
JP2001235593A (en) Adsorption method for metallic element using insoluble tannin
US2894810A (en) Columbic oxide adsorption process for separating uranium and plutonium ions