JPS5910921B2 - Hydrogen production method - Google Patents

Hydrogen production method

Info

Publication number
JPS5910921B2
JPS5910921B2 JP17023880A JP17023880A JPS5910921B2 JP S5910921 B2 JPS5910921 B2 JP S5910921B2 JP 17023880 A JP17023880 A JP 17023880A JP 17023880 A JP17023880 A JP 17023880A JP S5910921 B2 JPS5910921 B2 JP S5910921B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
catalyst
water vapor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17023880A
Other languages
Japanese (ja)
Other versions
JPS5795803A (en
Inventor
雅夫 大田
泰良 加藤
邦彦 小西
敦子 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP17023880A priority Critical patent/JPS5910921B2/en
Publication of JPS5795803A publication Critical patent/JPS5795803A/en
Publication of JPS5910921B2 publication Critical patent/JPS5910921B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は水素の製造方法に係り、特に一酸化炭素または
炭化水素を用いて水素を製造する方法6こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrogen, and more particularly to a method for producing hydrogen using carbon monoxide or hydrocarbons.

水素は化学工業の重要な原料の一つであり、需要が大き
い上に、近年、重質油の水添脱硫や石炭の液化あるいは
石炭のガス化といった水素を多量に消費するプロセスの
開発によって、安価で高純度の水素の需要が大幅に増大
している。
Hydrogen is one of the important raw materials for the chemical industry, and there is a large demand for it, and in recent years, with the development of processes that consume large amounts of hydrogen, such as hydrodesulfurization of heavy oil, liquefaction of coal, and gasification of coal, The demand for cheap, high-purity hydrogen is increasing significantly.

水素の合成は、水を原料とする方法と炭化水素を原料と
する方法とに対リされるが、近年では主に後者が主流に
なっている。
Hydrogen synthesis is divided into methods using water as a raw material and methods using hydrocarbons as a raw material, but in recent years the latter has become the mainstream.

この方法は、例えば石油のクランキングから生じる炭化
水素の混合物と水蒸気とをニッケル触媒等の共存下で8
00℃前後の条件で反応させるものである。
In this method, a mixture of hydrocarbons resulting from, for example, petroleum cranking and steam are heated in the presence of a nickel catalyst, etc.
The reaction is carried out under conditions of around 00°C.

この方法においては、式(Illこ例示されるように反
応が進行し、副生ずる一酸化炭素から、400℃前後に
おいて式レ)の反応により水素が発生する。
In this method, the reaction proceeds as shown in the formula (II), and hydrogen is generated from the by-produced carbon monoxide by the reaction of the formula (I) at around 400°C.

しかしながら、このプロセスにおいては、800℃とい
う高温の反応条件を必要とし、このため装置材料には耐
熱鋼のような高級材刺が必要となり、また、水素の精製
のため、反応終了後のガスから未反応成分、水蒸気、炭
酸ガス等の分離操作が必要となり、プロセスは複雑なも
のとなる。
However, this process requires high-temperature reaction conditions of 800°C, which requires high-grade materials such as heat-resistant steel for the equipment material, and to purify hydrogen, Separation operations for unreacted components, water vapor, carbon dioxide, etc. are required, making the process complicated.

また、次式(3)に例示する芳香族炭化水素生成反応に
おいても多量の水素が副生ずるが、水素はあくまで副生
物であり、水素の増量だけを目的とするものではない。
Furthermore, a large amount of hydrogen is produced as a by-product in the aromatic hydrocarbon production reaction illustrated in the following formula (3), but hydrogen is merely a by-product and is not intended only to increase the amount of hydrogen.

一方、水を原料とする方法においては、古《は電気分解
や水蒸気一鉄反応による方法等が採用されてきたが、こ
れらは多量のエネルギを必要とするため、現在では殆ん
ど実施されていない。
On the other hand, methods using water as a raw material include electrolysis and steam-iron reactions, but these require a large amount of energy and are rarely used today. do not have.

このような事情から少ないエネルギにより、高効率で簡
単な水素の製造方法の開発が望まれていた。
Under these circumstances, it has been desired to develop a highly efficient and simple method for producing hydrogen using less energy.

本発明の目的は、上記した従来技術の欠点をなくし、比
較的低温度に石いて、COまたは炭化水素と水蒸気とか
ら、高純度の水素を製造する方法を提供することにある
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a method for producing high-purity hydrogen from CO or hydrocarbons and steam at relatively low temperatures.

本発明者等は、300℃ないし500℃の温度域におい
て、種々の金属酸化物を触媒に用い、還元性ガスおよび
水蒸気との反応によって水素を合成する方法を検討した
ところ、モリブデン(Mo)、タングステン(4)、バ
ナジウム■入ウラン(U)、鉄(Fe)、二ツク/KN
i)等の遷移金属酸化物にロジウム(Rh)のような白
金族元素を添加した触媒が高い活性を示すことを見出し
、鋭意研究の結果、本発明に到達したものである。
The present inventors investigated a method of synthesizing hydrogen by reaction with reducing gas and water vapor using various metal oxides as catalysts in the temperature range of 300°C to 500°C, and found that molybdenum (Mo), Tungsten (4), uranium (U) with vanadium, iron (Fe), Futsuku/KN
It was discovered that a catalyst prepared by adding a platinum group element such as rhodium (Rh) to a transition metal oxide such as i) exhibits high activity, and as a result of intensive research, the present invention was arrived at.

すなわち、本発明は、Mo,W,V,U,FeおよびN
i等からなる遷移金属酸化物群から選ばれた1種以上の
酸化物にロジウム(Rh)で代表される白金族元素を添
加した物質(触媒作用が強いので、以下、触媒と称す)
をCOまたは炭化水素と反応させ、次いでこれを水蒸気
と接触させて水素を得るようにしたものである。
That is, the present invention provides Mo, W, V, U, Fe and N
A substance in which a platinum group element represented by rhodium (Rh) is added to one or more oxides selected from the transition metal oxide group consisting of i, etc. (hereinafter referred to as a catalyst as it has a strong catalytic effect)
is reacted with CO or a hydrocarbon, which is then contacted with water vapor to obtain hydrogen.

上記のよ5yこ例えばロジウムを添加した遷移金属酸化
物は、ロジウムの作用により、例えば300℃以上の温
度条件においてCOまたはヘキサンのような炭化水素に
よって容易に還元され、次いでこれを水蒸気と接触させ
ると速やかに反応して水素を発生し、自からは酸化され
る。
As mentioned above, for example, a transition metal oxide doped with rhodium is easily reduced by a hydrocarbon such as CO or hexane at a temperature of 300°C or higher due to the action of rhodium, and then it is brought into contact with water vapor. It quickly reacts with hydrogen to generate hydrogen, which is then oxidized.

本発明において、白金族元素を添加する遷移金属の酸化
物としては、Mo,W,V,U,Fe,Ni,の酸化部
があげられるが、これらと均等とみなされる他の遷移金
属の酸化物でもよい。
In the present invention, examples of transition metal oxides to which platinum group elements are added include oxidized moieties of Mo, W, V, U, Fe, and Ni; It can be a thing.

上記遷移金属酸化物に添加する白金族元素としては、ロ
ジウム(Rh)が最も奸才しいが、他の白金族元素、例
えば白金、パラジウム等でも高い活性が得られる。
Rhodium (Rh) is the most versatile platinum group element to be added to the transition metal oxide, but high activity can also be obtained with other platinum group elements such as platinum and palladium.

上記酸化物に対する白金族元素の添加量は典型的には0
.05ないし5重量%である。
The amount of platinum group element added to the above oxide is typically 0.
.. 05 to 5% by weight.

上記触媒の製造に用いる金属酸化物原料はどのようなも
のでも使用でき、また白金族元素の原料も硝酸塩、塩化
物、カルボニル、有機酸塩等、いずれであっても使用可
能である。
Any metal oxide raw material can be used for producing the above catalyst, and any platinum group element raw material such as nitrate, chloride, carbonyl, organic acid salt, etc. can be used.

上記触媒は、上記の金属酸化物と白金族元素を例えば硝
酸水溶液中で混合した後、蒸発乾固し、焼成した後、得
られた粉末を成形し、さらに所定の粒度に粉砕すること
によって得られる。
The above catalyst can be obtained by mixing the above metal oxide and platinum group element, for example, in an aqueous nitric acid solution, evaporating to dryness, calcining, molding the obtained powder, and further pulverizing it to a predetermined particle size. It will be done.

次に本発明方法を図面によりさらに詳細に説明する。Next, the method of the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の基本となるプロセスのブロック図であ
る。
FIG. 1 is a block diagram of the process underlying the invention.

図において、ライン1から導かれたCOまたは炭化水素
を含む還元性ガス(原料ガス)は、還元反応器10にお
いて触媒と接触され、触媒を還元した後、ライン11か
ら排出される。
In the figure, a reducing gas (raw material gas) containing CO or hydrocarbons led from a line 1 is brought into contact with a catalyst in a reduction reactor 10 and is discharged from a line 11 after reducing the catalyst.

還元状態の触媒はライン12から水素発生反応器20に
導かれる。
The reduced catalyst is led from line 12 to hydrogen generation reactor 20 .

ライン2から水蒸気を供給し、上記還元状態の触媒に接
触させると水素が発生し、未反応水蒸気を含む水素ガス
はライン21を通って水分離器30へ導かれ、水を除去
した水素ガスはライン31から取出される。
When water vapor is supplied from line 2 and brought into contact with the catalyst in the reduced state, hydrogen is generated. Hydrogen gas containing unreacted water vapor is led to water separator 30 through line 21, and the hydrogen gas from which water has been removed is It is taken out from line 31.

分離した水はライン32から排出される。The separated water is discharged through line 32.

水素発生反応が終了し、酸化状態になった触媒は、ライ
ン22から還元反応器10に戻され、再び還元性ガスと
の反応に供せられる。
After the hydrogen generation reaction is completed, the catalyst in an oxidized state is returned to the reduction reactor 10 through the line 22 and is again subjected to a reaction with the reducing gas.

本発明は原刺ガスとしてCOまたは炭化水素のような還
元性ガスを用いるが、このような原料ガス中に酸素(0
2)や水蒸気(H20)が含まれると、反応の収率が低
下する。
In the present invention, a reducing gas such as CO or hydrocarbon is used as the raw material gas, but oxygen (0
2) or water vapor (H20), the reaction yield decreases.

従って、処理ガス中にこれら妨害成分が含まれる場合、
前処理工程においてそれらを除《のが好ましい。
Therefore, if the processing gas contains these interfering components,
It is preferable to remove them in the pretreatment step.

第2図は、このようなプロセスの実施例を示すものであ
る。
FIG. 2 shows an example of such a process.

第2図において、02およびH20を含むCOまたは炭
化水素の原料ガスは、ライン1を通して脱酸素反応器4
0へ導かれる。
In FIG. 2, CO or hydrocarbon feed gas containing 02 and H20 is passed through line 1 to deoxygenation reactor 4.
It leads to 0.

脱酸素剤としては、ピロガロール水溶液のような酸素吸
収剤を用いることができる。
As the oxygen absorber, an oxygen absorber such as an aqueous pyrogallol solution can be used.

脱酸素処理された原別ガスはライン41を通して水分除
去装置50へ導かれるが、水分の除去は冷却凝縮のよう
な方法を用いることができる。
The deoxygenated raw gas is led to the moisture removal device 50 through the line 41, and the moisture can be removed by a method such as cooling and condensation.

水分除去された原料ガスはライン51を通して還元反応
器10へ導かれ、以降のプロセスは第1図で述べたもの
と同様である。
The raw material gas from which moisture has been removed is led to the reduction reactor 10 through the line 51, and the subsequent process is the same as that described in FIG.

本発明においては、上記のように高活性の触媒を用いる
ので、プロセスの反応温度は300℃以上、通常は30
0〜500℃でよい。
In the present invention, since a highly active catalyst is used as described above, the reaction temperature of the process is 300°C or higher, usually 30°C.
The temperature may be 0 to 500°C.

以下、本発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 1 第1表に示すA−Kの触媒を次のように調製した。Example 1 Catalysts AK shown in Table 1 were prepared as follows.

すなわち、各触媒に示した酸化物50?を白金族元素1
1/tを含む硝酸水溶液5007dと混合し、水分およ
び酸を蒸発乾固させる。
That is, 50? of the oxides shown on each catalyst? platinum group element 1
It is mixed with a nitric acid aqueous solution 5007d containing 1/t, and water and acid are evaporated to dryness.

引き続き空気中で500℃で2時間焼成し、得られた粉
末を油圧プレスで直径10mrn、長さ5朋の大きさに
成形した後、10ないし20メッシュの大きさに粉砕し
、水素気流中で450℃、1時間の還元処理を施した。
Subsequently, it was calcined in air at 500°C for 2 hours, and the obtained powder was molded using a hydraulic press into a size of 10 mrn in diameter and 5 mm in length, and then ground into a size of 10 to 20 mesh, and then heated in a hydrogen stream. Reduction treatment was performed at 450°C for 1 hour.

これらの触媒をそれぞれ501用い、400℃において
CO20mmolと1秒間接触させ、炭酸ガス(CO2
)の生成量を測定した。
Using 501 of each of these catalysts, they were brought into contact with 20 mmol of CO at 400°C for 1 second, and carbon dioxide gas (CO2
) was measured.

次いで、触媒を100mmαの水蒸気と1秒間接触させ
、発生した水素(H2)の量を測定した。
Next, the catalyst was brought into contact with water vapor of 100 mmα for 1 second, and the amount of hydrogen (H2) generated was measured.

これらの実.験結果も併せて第1表に示した。These fruits. The test results are also shown in Table 1.

?施例 2 010%、H20IO%、残COから成る模擬ガスを合
成し、このガスと触媒Aとを実施例1と同様にして接触
させた。
? Example 2 A simulated gas consisting of 10% H2O, 10% H20, and residual CO was synthesized, and this gas and catalyst A were brought into contact in the same manner as in Example 1.

その結果、H2は発生しなかった。As a result, H2 was not generated.

実施例 3 バブラを備えたガラス製容器にピロガロール水溶液を入
れた酸素トラップと、氷水中にU字管を浸漬した水蒸気
トラップとを配列した系を設け、これに実施例2の合成
ガスを1t/minの割合で導いて処理した後、実施例
2と同様に触媒A−と接触させた。
Example 3 A system was provided in which an oxygen trap containing an aqueous pyrogallol solution in a glass container equipped with a bubbler and a steam trap having a U-shaped tube immersed in ice water were arranged, and 1 t/h of the synthesis gas of Example 2 was set up. After treatment at a rate of min., it was brought into contact with catalyst A- in the same manner as in Example 2.

その結果、I 6.2mmobDH2を発生させること
ができた。
As a result, I6.2mmobDH2 could be generated.

実施例 4 実施例1の反応温度400℃を300℃および500℃
にそれぞれ変え、触媒Aを用いて実施例1と同様の試験
をした。
Example 4 The reaction temperature of Example 1 was changed from 400°C to 300°C and 500°C.
The same test as in Example 1 was conducted using Catalyst A.

結果を第2表に示した。実施例 5 実施例1において、COの代りにプロパンを用い、触媒
Aについて同様の試験をした。
The results are shown in Table 2. Example 5 A similar test was conducted on Catalyst A in Example 1, using propane instead of CO.

その結果、2 3 m motのH2を発生させること
ができた。
As a result, 2 3 m mot of H2 could be generated.

この結果、プロパンで代表される炭化水素についても本
発明を適用できることが判った。
As a result, it was found that the present invention can also be applied to hydrocarbons typified by propane.

以上、本発明によれば、300〜500℃という低温領
域において、COまたは炭化水素と水蒸気から簡単な方
法で水素を効率よく製造することができる。
As described above, according to the present invention, hydrogen can be efficiently produced from CO or hydrocarbon and water vapor by a simple method in the low temperature range of 300 to 500°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施する基本プロセスのフローを示
すブロック図、第2図は、処置ガスの前処理、すなわち
酸素除去および水分除去工程を含む本発明のプロセスの
フローを示すブロック図である。 1−・・一・・還元ガス導入ライン、2−・・・・・水
蒸気導入ライン、10−・・一・・還元反応器、20−
・・・・・水素発生反応器、30−・・・・・水分離器
、31−・・−・・水素取出ライン。
FIG. 1 is a block diagram showing the basic process flow for implementing the present invention, and FIG. 2 is a block diagram showing the flow of the process of the present invention including pretreatment of treatment gas, that is, oxygen removal and moisture removal steps. be. 1-...1...Reducing gas introduction line, 2-...Steam introduction line, 10-...1...Reduction reactor, 20-...
...Hydrogen generation reactor, 30-...Water separator, 31-...Hydrogen extraction line.

Claims (1)

【特許請求の範囲】 1 一酸化炭素または炭化水素を含む還元性ガスを、モ
リブデン、タングステン、バナジウム、ウラン、鉄、お
よびニッケルからなる群から選ばれた少《とも一種の遷
移金属の酸化物に白金族元素を添加した物質と接触させ
る工程と、該還元性ガス接触処理後の物質と水蒸気とを
接触させて水素ガスを発生させる工程とを含むことを時
徴とする水素の製造方法。 2 特許請求の範囲第1項において、原料ガス中に含ま
れる酸素、水蒸気等の反応妨害成分を低減除去するため
の前処理工程を含むことを特徴とする水素の製造方法。 3 詩許請求の範囲第1項または第2項において、前記
工程を300℃ないし500℃の温度条件下で行うこと
を特徴とする水素の製造方法。
[Claims] 1. A reducing gas containing carbon monoxide or a hydrocarbon is converted into an oxide of at least one transition metal selected from the group consisting of molybdenum, tungsten, vanadium, uranium, iron, and nickel. A method for producing hydrogen comprising the steps of contacting the material with a substance to which a platinum group element has been added, and contacting the material after the reducing gas contact treatment with water vapor to generate hydrogen gas. 2. A method for producing hydrogen according to claim 1, which includes a pretreatment step for reducing and removing reaction-interfering components such as oxygen and water vapor contained in the raw material gas. 3. The method for producing hydrogen according to claim 1 or 2, characterized in that the step is carried out at a temperature of 300°C to 500°C.
JP17023880A 1980-12-04 1980-12-04 Hydrogen production method Expired JPS5910921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17023880A JPS5910921B2 (en) 1980-12-04 1980-12-04 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17023880A JPS5910921B2 (en) 1980-12-04 1980-12-04 Hydrogen production method

Publications (2)

Publication Number Publication Date
JPS5795803A JPS5795803A (en) 1982-06-14
JPS5910921B2 true JPS5910921B2 (en) 1984-03-12

Family

ID=15901221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17023880A Expired JPS5910921B2 (en) 1980-12-04 1980-12-04 Hydrogen production method

Country Status (1)

Country Link
JP (1) JPS5910921B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003231473A1 (en) * 2002-06-26 2004-01-19 Kiyoshi Otsuka Method for producing hydrogen and apparatus for supplying hydrogen
JP4112304B2 (en) * 2002-08-05 2008-07-02 ウチヤ・サーモスタット株式会社 Hydrogen generator

Also Published As

Publication number Publication date
JPS5795803A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US3515514A (en) Production of hydrogen containing gases
JP2847018B2 (en) Carbon dioxide reduction reaction catalyst
AU2013230403B2 (en) Method for preparing solid nitrosyl ruthenium nitrate by using waste catalyst containing ruthenium
TWI439316B (en) Process for the removal of hydrogen cyanide and formic acid from synthesis gas
CA2472607A1 (en) Catalyst enhancement
US3615217A (en) Low temperature copper-zinc shift reaction catalysts and methods for their preparation
JP2003500323A (en) Nitrous oxide purification method
NZ264308A (en) Steam-reforming of hydrocarbons using a copper-containing nickel catalyst
US20080241038A1 (en) Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same
Alderman et al. Syn-gas from waste: the reduction of CO 2 with H 2 S
US2747970A (en) Purification of commercial hydrogen
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
JPS6120481B2 (en)
JPS5910921B2 (en) Hydrogen production method
US1826974A (en) Process of producing hydrogen
JPS6335301B2 (en)
US1820417A (en) Method of effecting catalytic reactions
US2064867A (en) Process of producing hydrogen
US2111469A (en) Manufacture of formaldehyde
CN100503427C (en) Purification of a mixture of H*/CO by catalysis of the NO*
JP3190035B2 (en) Manufacturing method of oxide-based catalyst
EP2868376A1 (en) Catalyst composition for the synthesis of alcohols from synthesis gas and method of preparing the same
JP5498169B2 (en) Method for removing NO and N2O from a gas mixture
JPH0371174B2 (en)
Butler et al. Kinetics of reaction between nitrogen mono-oxide and carbon mono-oxide over palladium–alumina and ruthenium–alumina catalysts