JPS5910912A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPS5910912A
JPS5910912A JP12030982A JP12030982A JPS5910912A JP S5910912 A JPS5910912 A JP S5910912A JP 12030982 A JP12030982 A JP 12030982A JP 12030982 A JP12030982 A JP 12030982A JP S5910912 A JPS5910912 A JP S5910912A
Authority
JP
Japan
Prior art keywords
optical system
focus detection
focus
imaging optical
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12030982A
Other languages
Japanese (ja)
Inventor
Kazuo Fujibayashi
和夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12030982A priority Critical patent/JPS5910912A/en
Priority to US06/505,073 priority patent/US4506970A/en
Publication of JPS5910912A publication Critical patent/JPS5910912A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses

Abstract

PURPOSE:To detect focus always with specified accuracy even if the size of the stop in the optical path of an image-forming optical sytem changes by providing an optical path splitting means just before the stop. CONSTITUTION:An optical path splitting means 2 having a half mirror is provided just before a stop 3 of an image-forming optical system. If a photodetector 8b is placed in the position corresponding to the intended image-forming plane F of the image-forming optical system, the position of a photodetector 8a corresponds to P1 and the position of a photodetector 8c to P2. The out of focus width of the image-forming optical system is detected with the photodetectors 8a, 8b, 8c, and the focusing of the image-forming optical system is judged from the comparison in the outputs of the photodetectors 8a, 8b, 8c. The case in which the outputs of the photodetectors 8a and 8c coincide and the output of the photodetector 8b is higher than the output of the photodetectors 8a and 8c is determined to be in focus and the other cases are determined as out of focus.

Description

【発明の詳細な説明】 本発明は結像光学系の焦点検出装置に関【2特に結像光
学系の予定結像面の共%点とその近傍の光軸方向の位置
の少なくとも2つの位置に配置さJ’L IC各々の受
光素子からの出力を比較すること(ICよって結像光学
系の合焦検出を行う焦点検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focus detection device for an imaging optical system [2] Particularly, the present invention relates to a focus detection device for an imaging optical system. Comparing the outputs from the light-receiving elements of the J'L ICs arranged in the J'L IC (this relates to a focus detection device that detects the focus of the imaging optical system using the IC).

従来、上記焦点検出装置において、受光素子に光束を導
くための光路分割手段を結像光学系の光路中であって絞
りの後方に配置していたために焦点検出精度が結像光学
系の絞りの大きさに依存していた。
Conventionally, in the above focus detection device, the optical path splitting means for guiding the light beam to the light receiving element was placed in the optical path of the imaging optical system and behind the aperture, so the focus detection accuracy was lower than that of the aperture of the imaging optical system. It depended on size.

特に絞りの大きさが変化すると焦点検出精度が変化して
しまうという欠点があった。
In particular, there was a drawback in that focus detection accuracy changed when the size of the aperture changed.

本発明は結像光学系の絞りの大きさが変化しても常に一
定の精度で焦点検出を行うことのできる焦点検出装置の
提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a focus detection device that can always perform focus detection with constant accuracy even if the size of the aperture of an imaging optical system changes.

本発明の目的を達成する為の焦点検出装置の構成の特徴
は結像光学系の光路中の絞りの直前に光路分割手段を設
は光路分割手段により分割された光束の方向に結像光学
系と異なる焦点検出用光学系金膜け、焦点検出用光学系
の光軸上であって結像光学系の予定結像面とその先軸上
の位置の少なくとも2つの位置と共読な位置に各々受光
素子を配置し、前記各々の受光素子からの出力を用い−
C合焦検出金行うことである。
The feature of the structure of the focus detection device for achieving the object of the present invention is that an optical path splitting means is provided in the optical path of the imaging optical system just before the aperture, and the imaging optical system is directed in the direction of the light beam split by the optical path splitting means. The gold coating of the focus detection optical system, which is different from the focus detection optical system, is located on the optical axis of the focus detection optical system and at a position that is co-readable with at least two positions of the expected imaging plane of the imaging optical system and a position on the front axis thereof. A light-receiving element is arranged respectively, and the output from each of the light-receiving elements is used.
C. Focus detection is performed.

次に図に従つ−C本発明の詳細な説明する。A detailed explanation of the present invention will now be given according to the figures.

第1図は本発明の焦点検出装置の光学配置の概略図であ
る。第1図において1は結像光学系の前群、2は・・−
ノミラーを有する光路分割手段、3は結像光学系の絞り
、4は結像光学系の後群、5は予定結像面であるフィル
ム面、6は焦点検出用光学系、7は焦点検出用の光路分
割プリズムであり光束を3つの方向に分割している。そ
して3つの方向には3つの受光素子8a。
FIG. 1 is a schematic diagram of the optical arrangement of the focus detection device of the present invention. In Fig. 1, 1 is the front group of the imaging optical system, 2 is...-
3 is an aperture of the imaging optical system, 4 is a rear group of the imaging optical system, 5 is a film surface which is a planned imaging surface, 6 is an optical system for focus detection, and 7 is for focus detection. This is an optical path splitting prism that splits the light beam into three directions. And three light receiving elements 8a are provided in three directions.

8b、8cが配置さ?している。8b and 8c are placed? are doing.

本発明の実施例では3つの受光素子を配置した場合全油
したが必ずしも3つに限定さjするものではなく、2つ
又は4つ以上の場合も各々の目的によって使うことがで
きる。
In the embodiment of the present invention, when three light-receiving elements are arranged, all oil is used, but the number is not necessarily limited to three, and two or four or more can be used depending on the purpose.

第2図は本発明の焦点検出手段の原理の説明図であるO
 Lは結像レンズ、Fは予定結像面、Plは物体側のデ
フォーカス位置、P2は像側のデフォーカス位flk各
々示す。第1図において、受光索子8bの位置が結1象
光学系の予定結像面Fに相当する位置とした場合、受光
索子8aの位置はPl、受光素子8cの位置はP2に対
応する。
FIG. 2 is an explanatory diagram of the principle of the focus detection means of the present invention.
L indicates an imaging lens, F indicates a planned image forming surface, Pl indicates a defocus position on the object side, and P2 indicates a defocus position flk on the image side. In FIG. 1, when the position of the light receiving element 8b corresponds to the expected imaging plane F of the one-quadrant optical system, the position of the light receiving element 8a corresponds to Pl, and the position of the light receiving element 8c corresponds to P2. .

第1図の受光素子8a、8b、’8cで結像光学系のボ
ケ11ノを検知し、受光素子8a、8b、8cの出力比
較により、結像光学系の合焦を判断する。
The blur 11 of the imaging optical system is detected by the light receiving elements 8a, 8b, '8c in FIG. 1, and the focus of the imaging optical system is determined by comparing the outputs of the light receiving elements 8a, 8b, 8c.

受光索子8aと80の出力が一致し、かつ受光素子8b
の出力が受光素子8a及び8cの出力より高い場合が合
焦でありそれ以外は焦点外れとみなされるo Aは絞り
開放光束径、Bは絞り込み時の光束径全油す。
The outputs of the light-receiving elements 8a and 80 match, and the light-receiving element 8b
When the output is higher than the output of the light-receiving elements 8a and 8c, the image is in focus, and otherwise it is considered out of focus.

第3図はデフォーカス量に対する受光素子の出力変化を
示す説明図である。横軸は結像光学系のフォーカス部の
移動量△x′にとり、縦軸は各々の受光素子8a、8b
、8cからの出力値Sを示す。受光素子面が結像面に一
致すれば出力がピークイ直全示し、ずれるほど出力が下
がること?示す。焦点検出光学系が理想結像系とし、か
つ受光素子8aと8Lt間と受光素子8bと8c   
−間の光路長が同一とする。受光索子8bが予定   
゛結像面Fに一致l−た場合には、受光素子8aと80
で得られる出力は一致し、盪た8bが予定結像面Fに一
致しない場合には受光素子8aと8cの出力は一致しな
い。従って受光素子8aと8cの出力を比較することに
よって合焦が否かを判別できる。但し大きくデフォーカ
スした場合にも受光素子8aと80からの出力はほぼ同
等になり、見かけ上合焦したことになるが、受光素子8
bの出力は合焦時ビーク値を示し、デフォーカス時は低
くなるので、受光素子8aと8cの出力の一致した時合
焦か否かの判別は受光素子8bの出力の大小によって可
能となる。
FIG. 3 is an explanatory diagram showing changes in the output of the light receiving element with respect to the amount of defocus. The horizontal axis represents the amount of movement Δx' of the focus section of the imaging optical system, and the vertical axis represents the amount of movement of the focus section of the imaging optical system, and the vertical axis represents the amount of movement of the focus section of the imaging optical system.
, 8c. If the light-receiving element surface matches the image-forming surface, the output will be at its peak, and the output will decrease as it deviates? show. The focus detection optical system is an ideal imaging system, and between the light receiving elements 8a and 8Lt and between the light receiving elements 8b and 8c.
- The optical path length between the two is the same. Light receiving cable 8b is planned.
゛When aligned with the image plane F, the light receiving elements 8a and 80
The outputs obtained from the light-receiving elements 8a and 8c do not match if the output 8b does not match the expected imaging plane F. Therefore, by comparing the outputs of the light receiving elements 8a and 8c, it is possible to determine whether or not focus is achieved. However, even in the case of large defocus, the outputs from the light receiving elements 8a and 80 are almost the same, and it appears that the light is in focus, but the light receiving element 8
The output b indicates the peak value when in focus and becomes low when defocused, so when the outputs of the light receiving elements 8a and 8c match, it is possible to determine whether or not the focus is achieved by the magnitude of the output of the light receiving element 8b. .

また第4図は、焦点検出光学系の光束径A。Moreover, FIG. 4 shows the beam diameter A of the focus detection optical system.

Hに対応する受光素子の出力変化を示す図で必る。横軸
と縦軸は第3図と同様である。光束Aに対する受光素子
8a、8cからの出力は谷々A+ 、Atとなり又、光
束Bに対する受光素子8a。
This is a diagram showing changes in the output of the light receiving element corresponding to H. The horizontal and vertical axes are the same as in FIG. The outputs from the light receiving elements 8a and 8c for the luminous flux A are A+ and At at the valleys, and the output from the light receiving element 8a for the luminous flux B.

+3 8cからの出力グ谷々B+ 、B2となる。焦点検出の
精度は結像光学系のフォーカス部のある一点での受光索
子8a 、8b 、8cからの出力値の絶対値の差に依
存する。1結像光学系の明るい部分からの光束、すなわ
ちM2図のAの光束音用いたとき、ある一点x1での受
光素子8 a ’、 8 cからの出力値はArとAr
となる。又、光束B音用いたときは同様にBr、B7 
 となる。焦点検出は受光素子8a、8cからの出力値
の差を用いて行う為に(AI’  A2’ )の方が(
Bl’  B2’ >に比べて大きいことは明らかであ
る。この為に焦点検出は光束Ak用いて行った方が焦点
検出精度が良い。
The output from +38c becomes B+, B2. The accuracy of focus detection depends on the difference in the absolute values of the output values from the light receiving probes 8a, 8b, and 8c at a certain point in the focus section of the imaging optical system. 1 When using the light flux from the bright part of the imaging optical system, that is, the light flux sound of A in the M2 diagram, the output values from the light receiving elements 8 a' and 8 c at a certain point x1 are Ar and Ar.
becomes. Also, when using the luminous flux B sound, Br, B7
becomes. Since focus detection is performed using the difference between the output values from the light receiving elements 8a and 8c, (AI'A2') is better than (AI'A2').
It is clear that this is larger than Bl'B2'>. For this reason, focus detection accuracy is better when focus detection is performed using the light beam Ak.

すなわち第4図A+及びA2のようにデフォーカスに対
し出力tま敏感に変わるが、絞りを絞った場合には第4
図BI及びB、のように変化率が惑くなる。従って焦点
検出光学系が結像光学系と同一の場合には結像光学系の
絞りに連動して測距精度が変化するので、本発明のよう
に絞りの直前に光路分割手段を配置して絞りを通らない
光束を用いて焦点検出を行なえば常に結像光学系の絞り
開放での検出精度が得られる。
In other words, as shown in Fig. 4 A+ and A2, the output t changes sensitively to defocus, but when the aperture is closed, the 4th
The rate of change becomes confusing as shown in Figures BI and B. Therefore, when the focus detection optical system is the same as the imaging optical system, the distance measurement accuracy changes in conjunction with the aperture of the imaging optical system. If focus detection is performed using a light beam that does not pass through the aperture, detection accuracy can always be obtained when the aperture of the imaging optical system is wide open.

又本発明において結像光学系の後群の焦点距離を/n焦
点検出用光学系の焦点距離を/’M無限遠距離から至近
距離までのフィルム面でのピピント移#IJJ菫を△l
(、これに対応する受光素子面上のピント移動量を/\
Mと゛するとという関係が成立するので、焦点距^I1
./M金交換しンズ若しくはズームレンス系と−ノーる
ことにより柚々変化させることにより受光素−1−8a
In addition, in the present invention, the focal length of the rear group of the imaging optical system is /n The focal length of the focus detection optical system is /'M Pifocus shift on the film plane from infinity to close range #IJJ violet △l
(, the corresponding amount of focus movement on the light receiving element surface is /\
Since the following relationship holds true with M, the focal length ^I1
.. /M gold exchange lens or zoom lens system by changing the light receiving element-1-8a
.

8b、8e間の各々の光路長に差をイ・」りることかで
きる。
It is possible to make a difference in the optical path length between 8b and 8e.

これによつ−C最適なピント移動量を得られるというメ
リフトがある。これは受光素子に対するピント移動量が
小さすぎれば出力変化が小さすきて検出精度が落ち、−
まだピント移動量が大きすぎ゛ればボケの大きい状態か
広範囲に現われ、繭ビン〃−仮ビ/かの方向判別が困難
となる為である。
This has the merit of being able to obtain the optimum amount of focus movement. This is because if the amount of focus movement relative to the light receiving element is too small, the output change will be small and the detection accuracy will decrease.
This is because if the amount of focus movement is still too large, a large blur will appear over a wide range, making it difficult to determine the direction of the cocoon bin.

一’ (1) #:iレンズに1 なふ・、Fナンバーはh゛、 −D 径、lは焦点距離)の式で表現されるが、口径が変わら
ない焦点検出用結像光学系に対してfを仰idすと、F
ナンバーは暗くなり焦点深度全尿くする。しかし、焦点
深度は)゛ナンバーに従゛つてjに比例するのに対し、
ピント移動量はfの2来に比例するので、p゛力/バー
のキャンセル分ケ差引いても効果は大きい。
1' (1) #: 1 for i lens, F number is h゛, -D is diameter, l is focal length), but in an imaging optical system for focus detection where the aperture does not change. On the other hand, if we ask f, then F
The numbers become darker and the depth of focus becomes all urine. However, while the depth of focus is proportional to j according to the number,
Since the amount of focus movement is proportional to f2, the effect is large even if the cancellation of p force/bar is subtracted.

また結像光学系の絞りと関係なく、焦点検出光学系に絞
りを出し入れ工きるので大きくボケだ状態の場合には絞
りを挿入して焦点検出可能としで粗い焦点検出を行ない
、その後に絞り開放で精密な焦点検出を行なうことも可
能となる。
Also, regardless of the aperture of the imaging optical system, the aperture can be moved in and out of the focus detection optical system, so if there is a large blur, the aperture can be inserted to detect the focus, and the aperture can be roughly detected by opening the aperture. It also becomes possible to perform precise focus detection.

従って焦点検出光学系の焦点距l1iiIヲ結像光学系
の焦点距離よりも長くしておくことが好ましI/)。
Therefore, it is preferable that the focal length of the focus detection optical system is longer than the focal length of the imaging optical system.

以上のように本発明によれは結像光学系の絞りの大きさ
に左右されずに常に一定の精度で焦点検出が行なうこと
ができる。更に、結像光学系と異なる焦点検出用光学系
の焦点距*を任意に変えることにより最適な測距能力を
得ることができる。
As described above, according to the present invention, focus detection can always be performed with a constant accuracy regardless of the size of the aperture of the imaging optical system. Further, by arbitrarily changing the focal length * of the focus detection optical system different from the imaging optical system, the optimum distance measuring ability can be obtained.

次に本発明の数値実施例を示す。数値実施例においてR
iは物体側より順に第1番目のレンズ而の曲率半径、D
iは物体側より順に第1査目のレンズ厚及び空気間隔、
Niとνiは夫々物体側より順に第1番目のレンズのガ
ンスの屈折率とアンベ数である。
Next, numerical examples of the present invention will be shown. In numerical examples R
i is the radius of curvature of the first lens from the object side, D
i is the lens thickness and air gap at the first scan in order from the object side,
Ni and νi are the Gance refractive index and Ambe number of the first lens from the object side, respectively.

佳し焦ノi(k tlJ J41 光学系ニ係ル(Li
 + Di 、Ni +νiは光路分割手段より順次谷
々Iで+a+ + D+o+ +N+o鵞。
However, the optical system is
+Di, Ni +νi are sequentially divided into valleys I by the optical path splitting means +a+ +D+o+ +N+o.

νIO1より示しである。This is indicated by νIO1.

数値実施例 1 結像光学系  f −1〜4.753  F+7パ
ーー1.8−2.0幽角2ω −42°〜92゜ a      1)     νd     NdR1
6,471D I−0,150シ1−25.4  N 
l−1,80518kL 2−2.689  D 2−
U、593  p 2−61.0  N 2−1.58
913)L  3−−8.183   1)  3−0
.011R4−2,098D 4−0.360  シ3
−61.0  N 3−1.58913ル 5”  7
.249         D5)t 6−25.88
7  D 6−0.068  p 4−48.5  N
 4−1.69700R7−0,863D  7−0.
2161L8−−1.191  D8−0.068  
シ5−53.2  N5−1.69350It 9−1
.012  D 9−0.300  ジロー25.4 
 N 6−1.80518R10”−13,014Dl
o all−2,949Dll−0,390シアー47.1
  N 7−1.623741L12”−1,374D
i2−0.068  JJ8−25.4  NM−L8
0518R13−−3,288D13 R14+ (至)  I) 14−0.563  ν9
−64.1  N 9−1.51633R15=   
c6    Di5−0.3971L16− 4.21
1   Di6−0.203  シ10−38.0  
N10−1.72342R17″′〜3.553   
D I7−0.061R18−−t671  D18−
0.103  シ1l−25.4  N11−1.80
5181L19−−2.615    D19−0.8
50EL20−4.574  D20−0.103  
シ12−23.9  N12−1.84666K 21
− 1.190   1)21−0.123ル22−1
.526 1) 22−0.357  シ13−49.
6  N13−1.77250IL 23+−2,27
2 b、f −1,625 絞り面画16面の前方0.21の位置 16〜23血の焦点距離−2167 2 焦点検出光字糸   f−3,003Fノー7・・
−−1:2.5RD      Vd       N
d101   1.991   0.463   48
.9    1.53172102−1.226   
0.135   25.4    1.8051810
3 −2.718 b、f、  −2,746 3結像光学系前群」焦点検出光学系の合成焦点距離
Numerical Example 1 Imaging optical system f -1 ~ 4.753 F + 7 par - 1.8 - 2.0 Hydraulic angle 2ω -42° ~ 92°a 1) νd NdR1
6,471D I-0,150shi 1-25.4 N
l-1,80518kL 2-2.689 D 2-
U, 593 p 2-61.0 N 2-1.58
913) L 3--8.183 1) 3-0
.. 011R4-2,098D 4-0.360 C3
-61.0 N 3-1.58913 5” 7
.. 249 D5)t 6-25.88
7 D 6-0.068 p 4-48.5 N
4-1.69700R7-0,863D 7-0.
2161L8--1.191 D8-0.068
5-53.2 N5-1.69350It 9-1
.. 012 D 9-0.300 Jiro 25.4
N 6-1.80518R10”-13,014Dl
o all-2,949 Dll-0,390 shear 47.1
N 7-1.623741L12”-1,374D
i2-0.068 JJ8-25.4 NM-L8
0518R13--3,288D13 R14+ (To) I) 14-0.563 ν9
-64.1 N 9-1.51633R15=
c6 Di5-0.3971L16- 4.21
1 Di6-0.203 Di10-38.0
N10-1.72342R17''~3.553
D I7-0.061R18--t671 D18-
0.103 Si1l-25.4 N11-1.80
5181L19--2.615 D19-0.8
50EL20-4.574 D20-0.103
C12-23.9 N12-1.84666K 21
- 1.190 1) 21-0.123 le 22-1
.. 526 1) 22-0.357 C13-49.
6 N13-1.77250IL 23+-2,27
2 b, f -1,625 Front 0.21 position 16-23 of 16 aperture planes Focal length of blood -2167 2 Focus detection optical string f-3,003F No. 7...
--1:2.5RD VdN
d101 1.991 0.463 48
.. 9 1.53172102-1.226
0.135 25.4 1.8051810
3 -2.718 b, f, -2,746 3 Imaging optical system front group' composite focal length of focus detection optical system

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す光学系の概略図である。 第2図は本発明の焦点検出手段の原理の説明図である。 第3図、第4図は焦点検出装置の各々の受光素子からの
出力値の変化を示す説明図である。 第5図は本発明の光学系の実施例を示す光学系の断面図
である。 図中1.4は各々結像光学系の前群と後群、2は光路分
割手段、3は絞り、5は予定結像面、6は焦点検出用光
学系、7は光路分割プリズム、8a、8b、8cは各々
受光素子である。 特許出願人  キャノン株式会社 代 理  人   丸  島  儀  −]“ ′ ”
;↓’、−,,!、 j
FIG. 1 is a schematic diagram of an optical system showing an embodiment of the present invention. FIG. 2 is an explanatory diagram of the principle of the focus detection means of the present invention. FIGS. 3 and 4 are explanatory diagrams showing changes in output values from each light receiving element of the focus detection device. FIG. 5 is a sectional view of an optical system showing an embodiment of the optical system of the present invention. In the figure, 1.4 are the front and rear groups of the imaging optical system, 2 is the optical path splitting means, 3 is the diaphragm, 5 is the planned imaging plane, 6 is the focus detection optical system, 7 is the optical path splitting prism, and 8a , 8b and 8c are light receiving elements, respectively. Patent applicant: Canon Co., Ltd. Agent: Gi Marushima -] “ ′ ”
;↓', -,,! , j

Claims (1)

【特許請求の範囲】 結像光学系の光路中の絞り直前に光路分割手段を設け、
前記光路分割手段により分割された光束の方向に前記結
像光学系と異なる焦点検出用光学系を設け、 前記焦点検出用光学系の光軸上であって、前記結像光学
系の予定結像面とその光軸上の位置の少なくとも2つの
位置と共範な位置に各々受光水子を配置し、前記各々の
受光素子からの出力を用いて合焦検出を行うことを特徴
とする焦点検出装RY0
[Claims] An optical path dividing means is provided in the optical path of the imaging optical system immediately before the aperture,
A focus detection optical system different from the imaging optical system is provided in the direction of the light beam split by the optical path splitting means, and a focus detection optical system different from the imaging optical system is provided on the optical axis of the focus detection optical system, and is located on the optical axis of the focus detection optical system, and is located on the optical axis of the imaging optical system. Focus detection characterized by arranging light-receiving water droplets at positions common to at least two positions on the surface and its optical axis, and performing focus detection using outputs from each of the light-receiving elements. MountingRY0
JP12030982A 1982-07-09 1982-07-09 Focus detector Pending JPS5910912A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12030982A JPS5910912A (en) 1982-07-09 1982-07-09 Focus detector
US06/505,073 US4506970A (en) 1982-07-09 1983-06-16 Focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12030982A JPS5910912A (en) 1982-07-09 1982-07-09 Focus detector

Publications (1)

Publication Number Publication Date
JPS5910912A true JPS5910912A (en) 1984-01-20

Family

ID=14783042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12030982A Pending JPS5910912A (en) 1982-07-09 1982-07-09 Focus detector

Country Status (1)

Country Link
JP (1) JPS5910912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236515A (en) * 1985-04-12 1986-10-21 Canon Inc Focusing device
JP2006139182A (en) * 2004-11-15 2006-06-01 V Technology Co Ltd Automatic focusing device and method
JP2007078833A (en) * 2005-09-12 2007-03-29 Canon Inc Zoom lens and imaging apparatus having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236515A (en) * 1985-04-12 1986-10-21 Canon Inc Focusing device
JP2006139182A (en) * 2004-11-15 2006-06-01 V Technology Co Ltd Automatic focusing device and method
JP2007078833A (en) * 2005-09-12 2007-03-29 Canon Inc Zoom lens and imaging apparatus having the same

Similar Documents

Publication Publication Date Title
JPS6041013A (en) Focus detector of camera
KR900018714A (en) Objective lens and scanning device
JPS58106511A (en) Focusing detecting optical system
US4707103A (en) Optical system of variable magnification
JPS5910912A (en) Focus detector
US5212375A (en) Camera focus detection system using holographic beam splitter
JP3334470B2 (en) Diffraction efficiency measurement method and diffraction efficiency measurement device
US4467188A (en) Device for splitting light from an objective lens
US5239335A (en) Auto focus apparatus having a plurality of light emitting elements
GB2105546A (en) Focus detection
JPS57197511A (en) Focusing device for binocular stereoscopic microscope
JPS59151116A (en) Automatic focusing device
JPH09197283A (en) Objective lens
JPH04165318A (en) Focusing position detecting device
JPH07301717A (en) Integrated optical device
JP3290705B2 (en) Confocal optics
JPS5859416A (en) Focusing detection
JPS63263412A (en) Noncontact displacement meter
JP2002048673A (en) Physical quantity measuring method of optical element or optical system
JPS6332174B2 (en)
JPH095510A (en) Optical element
JPH03278009A (en) Optical waveguide device and microdisplacement detector utilizing the same
JPS6132019A (en) Rear conversion lens
JPS58106517A (en) Optical splitter
JPH04240813A (en) Focus detector