JPS59109022A - Optical wave guide circuit - Google Patents

Optical wave guide circuit

Info

Publication number
JPS59109022A
JPS59109022A JP21890282A JP21890282A JPS59109022A JP S59109022 A JPS59109022 A JP S59109022A JP 21890282 A JP21890282 A JP 21890282A JP 21890282 A JP21890282 A JP 21890282A JP S59109022 A JPS59109022 A JP S59109022A
Authority
JP
Japan
Prior art keywords
light
refractive index
substrate
fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21890282A
Other languages
Japanese (ja)
Other versions
JPH0450561B2 (en
Inventor
Tetsuya Yamazaki
哲也 山崎
Eiji Okuda
奥田 栄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP21890282A priority Critical patent/JPS59109022A/en
Priority to US06/558,507 priority patent/US4693544A/en
Priority to CA000443172A priority patent/CA1248385A/en
Priority to DE19833345038 priority patent/DE3345038A1/en
Priority to FR8320016A priority patent/FR2537733B1/en
Priority to GB08333351A priority patent/GB2135075B/en
Publication of JPS59109022A publication Critical patent/JPS59109022A/en
Publication of JPH0450561B2 publication Critical patent/JPH0450561B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29368Light guide comprising the filter, e.g. filter deposited on a fibre end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/2937In line lens-filtering-lens devices, i.e. elements arranged along a line and mountable in a cylindrical package for compactness, e.g. 3- port device with GRIN lenses sandwiching a single filter operating at normal incidence in a tubular package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical waveguide circuit simple in structure, small in light loss and suitable for a multiplexer and demultiplexer by providing a V- shaped or W-shaped light waveguide passage having larger refractive index than a base plate in the transparent base plate and exposing both ends and bent parts on the opposed side of the base plate. CONSTITUTION:An optical waveguide passage 12 consisting of W-shaped domain having a refractive index larger than the base plate is provided in the transparent base plate 11 made of glass, plastics etc. The optical waveguide passage 12 has a circular sectional form, and has maximum refractive index at the center. Refractive index decreases toward periphery gradually to refractive index of the base plate 11. Optical fiber 13A is directly connected to both ends and 13B-13E are connected through interference filters 17B-17E at bent parts 12A-12E. When composite light lambda1+lambda2+lambda3+lambda4 is sent to the fiber 13A, monochromatic light of wavelength lambda1-lambda4 is emitted from fibers 13B-13C respectively. Conversely, it is possible to send the light and composit. Thus, an optical waveguide circuit for a multiplexer and demultiplexer simple in structure and small in light loss can be obtained.

Description

【発明の詳細な説明】 本発明は先導波路に関し、特に分波・合波器あるいは分
岐・合流器を構成する素子として好適な光導波路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a leading waveguide, and more particularly to an optical waveguide suitable as an element constituting a demultiplexer/multiplexer or a branch/combiner.

光通信システムにおいて光の分波器及び合波器は重要な
デバイスである。
Optical demultiplexers and multiplexers are important devices in optical communication systems.

従来、3〜1種の異なる波長の混合光をそれぞれ単一波
長光に分離する分波器は干渉フィルターを利用し、g〜
/Q波と多重化の程度の大きい分波器としては回折格子
を利用したものが用いられている。これは干渉フィルタ
ーを利用したものは多重化が増すにつれ分波器の構造が
複雑になるためであった。
Conventionally, a demultiplexer that separates mixed light of 3 to 1 different wavelengths into single wavelength light uses an interference filter, and
As a demultiplexer capable of multiplexing the /Q wave to a large degree, a demultiplexer using a diffraction grating is used. This is because when using interference filters, the structure of the demultiplexer becomes more complex as multiplexing increases.

例えば干渉フィルターを利用した分波器としてオ/図に
示すように、中心軸での屈折率が最大で外周面に向けて
バラポリツクに屈折率が減少する屈折率分布をもつ//
クビノチ長の屈折率勾配型レンズの一対/・/を間に干
渉フィルター膜を介して中心軸を合せて接合し、このよ
うな単一分波素子の複数31,3Bを互いに軸心をずら
せて接合し、各素子、?A、、?Bの干渉)゛イルター
、2A、2’f3としてそれぞれ特定波長λ1.λ2に
対して反射性を有し他の波長光は透過する性質のフィル
ターを使用することにより、7つの光伝送ファイバーl
lAを通して送られる波長λ1.λ2.λ3の混合光を
各分波素子3A、3Bに接続された光伝送ファイバー/
IB。
For example, as shown in the figure, a demultiplexer using an interference filter has a refractive index distribution in which the refractive index is maximum at the central axis and decreases unevenly toward the outer circumferential surface.
A pair of wedge-length gradient refractive index lenses /// are joined with their central axes aligned through an interference filter film, and a plurality of such single demultiplexing elements 31, 3B are arranged with their axes shifted from each other. Join each element, ? A...? B interference) Filters 2A and 2'f3 each have a specific wavelength λ1. By using a filter that reflects λ2 and transmits light of other wavelengths, seven optical transmission fibers can be constructed.
The wavelength λ1. transmitted through lA. λ2. The mixed light of λ3 is transmitted through optical transmission fibers connected to each demultiplexing element 3A, 3B.
IB.

1.+Dからそれぞれ単一波長λ1.λ2.λ3の光を
取り出す分波器が知られている。
1. +D to a single wavelength λ1. λ2. A branching filter that extracts light of λ3 is known.

この方式で3〜l波を分離する分波器を構成すると、レ
ンズ系を光軸をずらせて直列に接続する必要があるため
構造が複雑化して組み立てが難しくなるばかりでなく、
レンズに接続される入射光伝送ファイバ一端が点光源で
ないことおよびレンズの収差により光損失が比較的大き
いという問題があった。
When constructing a demultiplexer that separates the 3 to 1 waves using this method, it is necessary to connect the lens systems in series with their optical axes shifted, which not only complicates the structure and makes assembly difficult.
There is a problem in that one end of the incident light transmission fiber connected to the lens is not a point light source and the optical loss is relatively large due to the aberration of the lens.

またオ認図に示すように、透明基板乙の一対の平行平面
乙A、乙Bに三角形プリズム台Sを接合するとともにこ
れに//クピノチ長の屈折率分布型レンズ/および入射
光伝送ファイバーブAを接続し、このファイバー414
で伝送される光をレンズ/で平行光に変換して斜めに基
板6内に入射させ、基板の反対面6Bおよびこの面から
の反射位置にそれぞれ上記と同様にプリズム台Sおよび
屈折率分布型レンズ/を接合し、各プリズム台夕・・・
・・・と基板乙との界面にそれぞれ特定の単一波長λl
、λ2゜λ3.λ4 の光を透過して他の波長光を反射
する性質をもつ干渉フィルター−・・・・・・・・を介
在し、各フィルターコ・・・・・・・・を透過した波長
がλl、λ2.λ3゜λ4 の各光をレンズ/・・・・
・・に接続した光伝送ファイバー’i’B、4’O,l
ID、lIEで取り出す分波器が知られている。
In addition, as shown in the diagram, a triangular prism stand S is bonded to a pair of parallel planes A and B of the transparent substrate A, and a gradient index lens with a Kupinoch length and an incident light transmission fiber block are attached to the triangular prism stand S. A and connect this fiber 414
The light transmitted by the lens is converted into parallel light by a lens and is incident obliquely into the substrate 6, and a prism stand S and a refractive index distribution type are placed on the opposite surface 6B of the substrate and at the reflection position from this surface, respectively, in the same manner as above. Connect the lenses and attach each prism...
A specific single wavelength λl is applied to the interface between ... and the substrate A.
, λ2゜λ3. An interference filter having the property of transmitting light of λ4 and reflecting light of other wavelengths is interposed, and the wavelengths transmitted through each filter are λl, λ2. Each light of λ3゜λ4 is passed through a lens/...
Optical transmission fiber 'i'B, 4'O, l connected to...
A duplexer that extracts signals by ID and IIE is known.

上記構造の分波器も第7図のものと同様に分離すべき波
長の多重度が増すにつれ光伝送ファイバーからの出射光
が点光源でないこと及びレンズの収差により、光ビーム
が基板ガラス内を伝播するにつれビームが拡がってゆく
ため余分な光損失が増大するといった問題があった。
Similar to the one in Fig. 7, in the demultiplexer with the above structure, as the multiplicity of wavelengths to be separated increases, the light beam emitted from the optical transmission fiber is not a point light source and the aberration of the lens causes the light beam to pass through the substrate glass. As the beam spreads as it propagates, there is a problem in that extra optical loss increases.

また第3図のように混合光を伝送するファイバー7Aを
+j0面で切断してこの面に特定波長λ1.λ2゜・・
・・・・・・の光を反射する干渉フィルター−1! A
 + −2B・・・・を介在させ、これら干渉フィルタ
ー、2A、lJ’B・・・・川・で反射された各波長λ
1.λ2・・・・・・・・の光を伝送するファイ/<−
7B、7G・・・・・・・・を混合光伝送ファイバー7
Aの側面に接続した分波器が知られている。
Further, as shown in FIG. 3, the fiber 7A that transmits the mixed light is cut at the +j0 plane, and a specific wavelength λ1. λ2゜・・
Interference filter that reflects the light of...-1! A
+ -2B... are interposed, and each wavelength λ reflected by these interference filters, 2A, lJ'B...
1. A fiber that transmits light of λ2.../<-
7B, 7G...... Mixed optical transmission fiber 7
A duplexer connected to the side of A is known.

上記構造のものでは混合光伝送ファイバー7Aに対しそ
の軸線方向に接続した残りの波長光取り出しファイバ 
7Dに伝送されるときの挿入損失は比較的小さいものの
、側面に接続したファイバー7B、7G・・・・・への
反射入射時はビームが拡散するため、やはり挿入損失が
大きくなるという問題がある。
In the above structure, the remaining wavelength light extraction fiber is connected in the axial direction to the mixed optical transmission fiber 7A.
Although the insertion loss when transmitted to 7D is relatively small, the beam is diffused when reflected into the fibers 7B, 7G, etc. connected to the side, so there is still a problem that the insertion loss becomes large. .

本発明は」二記従来の問題点を解決し、構造が単純でし
かも光損失が少ない分波・合波器構成用素子として好適
な光導波回路を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems and to provide an optical waveguide circuit which is simple in structure and has low optical loss and is suitable as an element for configuring a demultiplexer/multiplexer.

上記]」的を達成する本発明の光導波回路は、透明基板
内に、平面視でほぼ単一のV字型または2つ以上の7字
を連結したジグザグ状に基板よりも屈折率が大な領域か
らなる連続した導光路を設け、この導光路の両端および
折曲部を基板の対向側面にそれぞれ露出させて構成され
る。
The optical waveguide circuit of the present invention, which achieves the above object, has a transparent substrate formed in a substantially single V-shape or a zigzag shape in which two or more 7-shapes are connected in plan view, and has a refractive index higher than that of the substrate. A continuous light guide path is provided, and both ends and bent portions of the light guide path are exposed on opposing sides of the substrate.

本発明の回路を分波・合波器として用いるときは基板の
一面に露出している導光路の一端に入射光伝送ファイバ
ーの端部を直接接続し、また導光路の他端および折曲部
において基板面に所定のni−波長光を透過する干渉フ
ィルターを設けここに取り出した各波長光を伝送する光
伝送ファイバーの端部を接続する。
When the circuit of the present invention is used as a demultiplexer/multiplexer, the end of the incident light transmission fiber is directly connected to one end of the light guide exposed on one surface of the substrate, and the other end of the light guide and the bent part are An interference filter that transmits light of a predetermined ni-wavelength is provided on the substrate surface, and the ends of optical transmission fibers that transmit the extracted light of each wavelength are connected thereto.

上記干渉フィルターは基板面に設けるかわりに]−記者
フアイバーの基板面に接合する’Atf面側に設けても
よい。
Instead of providing the interference filter on the substrate surface, it may be provided on the 'Atf surface side of the reporter fiber that is bonded to the substrate surface.

また本発明において基板内に埋め込んた形で設りる導光
路は、導光路の全横断面内で一様な屈折率の分布を有し
ていてもよいし、あるいは後述実施例に示すように中心
での屈折率が最大で外周に向けてバラポリツクに減少す
るような屈折率勾配をもっていてもよい。前者の一様な
屈折率分布の場合は光は導光路内をこの導光路とこれを
囲む基板のバルブ部分との界面で全反射を繰り返しつつ
進行し、一方後者の如くバラポリツクな屈折率分布をも
つ導光路内では光はサインカーブを描いテ進行する。
Further, in the present invention, the light guide path embedded in the substrate may have a uniform refractive index distribution within the entire cross section of the light guide path, or as shown in the embodiments described below. It may have a refractive index gradient such that the refractive index is maximum at the center and gradually decreases toward the outer periphery. In the case of the former, which has a uniform refractive index distribution, the light travels through the light guide while undergoing repeated total reflection at the interface between the light guide and the bulb part of the substrate that surrounds it; Within the light guide path, light travels in a sine curve.

本発明の光導波回路を用いた分波・合波器は干渉フィル
ターを表面要部に設けた基板の面に光伝送ファイバーを
直接接続するだけでよく、従来のもののようにファイバ
ーからの出射光を平行光に変換するレンズが不用なので
構造を非常にm純化でき、また接合界面の数も従来品に
比べて非常に少ないので接合界面での光損失を小さく抑
えることができる。
The demultiplexer/multiplexer using the optical waveguide circuit of the present invention only needs to directly connect the optical transmission fiber to the surface of the substrate on which the interference filter is provided on the main part of the surface. Since there is no need for a lens to convert light into parallel light, the structure can be made extremely simple, and the number of bonding interfaces is also much smaller than in conventional products, so optical loss at the bonding interfaces can be kept small.

さらに、ファイバーからの拡散出射光を基板内に設けた
光伝送ファイバーと同様の光伝送機能をもつ導光路によ
って分波光取り出しファイバ一端まで伝送するようにし
ているので、前述の接合界面の少ないことと相俟って全
体の光損失が従来に比べて大きく低減し、高鼾度、高精
度の九分波・合波器を構成することができる。
Furthermore, since the diffused output light from the fiber is transmitted to one end of the demultiplexed light extraction fiber through a light guide path that has the same optical transmission function as the optical transmission fiber provided in the substrate, it is possible to reduce the number of bonding interfaces mentioned above. Together, the overall optical loss is greatly reduced compared to the conventional method, and a high-noise, high-precision nine-wavelength multiplexer can be constructed.

本発明の先導波回路は、分波・合波器以外に波長ではな
く光量で伝送光を分割する光分岐・合流器。
The leading wave circuit of the present invention is an optical branching/combining device that splits transmitted light based on light intensity rather than wavelength, in addition to the splitting/multiplexing device.

光スイツチ素子、磁気センヤー等種々の光デバイス構成
素子として用いることができる。
It can be used as a component of various optical devices such as an optical switch element and a magnetic sensor.

以F本発明を図面に示した実施例について詳細に説明す
る。
Hereinafter, embodiments of the present invention shown in the drawings will be described in detail.

第1図は本発明に係る導波回路を用いた分波器の平面図
を示し、第5図はオダ図におけるv−■線に沿う断面図
を示す。
FIG. 1 shows a plan view of a duplexer using a waveguide circuit according to the present invention, and FIG. 5 shows a sectional view taken along the line v-■ in the Oda diagram.

図において70は本発明に係る光導波回路であり、ガラ
ス、プラスチック等からなる平行六面体の透明基板ll
内に基板面に平行に且つ平面視でW字状に基板よりも屈
折率が犬な領域からなる連続した導光路7.2を設けで
ある。
In the figure, 70 is an optical waveguide circuit according to the present invention, which is a parallelepiped transparent substrate made of glass, plastic, etc.
A continuous light guide path 7.2 is provided inside the substrate parallel to the substrate surface and in a W-shape when viewed from above, which is made up of a region having a refractive index lower than that of the substrate.

この導光路/2は断面がほぼ円形であり、−例として断
面内で中心における屈折率noが最大で中心から周辺に
向けて次第に屈折率が減少して中心から充分に離れた位
置では基板//の屈折率n」と同一となるような屈折率
勾配が付けられている。
The cross section of this light guide path /2 is approximately circular, and for example, the refractive index no at the center of the cross section is maximum, and the refractive index gradually decreases from the center to the periphery, and at a position sufficiently far from the center, the refractive index no. A refractive index gradient is provided that is the same as the refractive index n'' of /.

そして導光路/2の一端/、2Aは基板//の一対の平
行な側面//A、//Bのうち一方の側面//Aに露出
しており以後導光路/2の途中の折曲部/、2B 、 
/、2C、/、2Dおよび他端/2Eはそれぞれ基板の
一対の平行側面//B、//Aに交互に露出している。
One end of the light guide path /2, 2A is exposed on one side surface //A of the pair of parallel sides of the substrate //A, //B, and after that, the light guide path /2 is bent in the middle. Part/, 2B,
/, 2C, /, 2D and the other end /2E are alternately exposed to a pair of parallel sides //B, //A of the substrate, respectively.

マタ導光路/、2の各折曲部/jB 、 /、20 、
 /、2D 、 72Eにおける基板側面法線に対する
導光路の傾斜角θは全て同一角度に揃えである。
Each bending part of the light guide path /,2 /jB, /,20,
/, 2D, and 72E, the inclination angle θ of the light guide with respect to the normal to the side surface of the substrate is all set to the same angle.

そして上記構造の埋め込み型平板導波路10の側面で導
光路端7.2Aに、この導光路/2の径とほぼ等しい径
のコア部/jとこれを囲む低屈折率のクラッド/乙から
なる入射用の光ファイバー/3Aをコア部/Sと導光路
7.2の軸線が一致するようにその端面を斜断して接着
剤等により接合する。
Then, at the light guide end 7.2A on the side surface of the embedded planar waveguide 10 having the above structure, a core part /j having a diameter approximately equal to the diameter of this light guide /2 and a low refractive index cladding /B surrounding this core part /j are formed. The end face of the input optical fiber /3A is cut obliquely so that the axes of the core part /S and the light guide path 7.2 coincide with each other, and the optical fiber /3A is joined with an adhesive or the like.

また導光路!2(D各折曲部/、2B 、 /、2G 
l /、2 D 、 /、2Eにおいても−F記端部/
2Aと同一の径で基板側面に露出させ、オ/の折曲部7
.2Bの基板面には特定の波長λ1の光を透過し他の波
長光は反射する性質をもつ干渉フィルター膜/773を
基板への蒸着等により設り、このフィルター膜/7Bを
介して先端を斜断したファイバー/、?Aと同様構造の
には波長λ2の光を透過し他の波長光は反射する性質を
もつ干渉フィルター膜/7Qを設けてこのフィルター膜
/7cを介して先端を斜断した光伝JJr曲smには波
長λ3の光を透過する干渉フィルター膜/7D を介し
て光伝送ファイバー/3Dを導光路12他端/、2Eに
は波長λ4の光を透過する干渉フィルター膜/7Eを介
して光伝送ファイバー/3Eを接続する。
Another light guide! 2 (D each bending part/, 2B, /, 2G
l/, 2D, /, 2E also -F end/
With the same diameter as 2A, expose it on the side of the board, and bend the bent part 7 of the
.. On the substrate surface of 2B, an interference filter film/773 that has the property of transmitting light of a specific wavelength λ1 and reflecting light of other wavelengths is provided by vapor deposition on the substrate, and the tip is filtered through this filter film/7B. Obliquely cut fiber/? The same structure as A is provided with an interference filter film /7Q that transmits light with wavelength λ2 and reflects light of other wavelengths, and the tip is obliquely cut through this filter film /7c. 2E is an interference filter film that transmits light with a wavelength of λ3 / 7D, and the other end of the light guide path 12 / 3D is an optical transmission fiber that transmits light with a wavelength of λ3 / 7E. Connect fiber/3E.

上記した装置においてファイバー73Aに波1λ1゜λ
2.λ3.λ4 の各単一波長光を混合した光を送ると
このファイバー/3Aと対向するファイバー/3Bから
は波長λ1の光が取り出され、ファイバー/3c。
In the above device, a wave of 1λ1°λ is transmitted to the fiber 73A.
2. λ3. When a light mixture of each single wavelength light of λ4 is sent, light of wavelength λ1 is extracted from the fiber /3B opposite to this fiber /3A, and the light of wavelength λ1 is extracted from the fiber /3c.

/3D、/3Eからはそれぞれ波長λ2.λ3.λ4の
1li−波長光を取り出すこ七ができる。
/3D and /3E each have a wavelength λ2. λ3. It is possible to extract 1li-wavelength light of λ4.

上記とは逆に7フイバー/3Bx/3Gr/3D、/3
Eを通してそれぞれ波長λl、λ2.λ3.λ4 の光
を送り込むことによりファイバー/3Aがらλ]十λ2
十λ3+λ4の混合光を取り出すことができる。上記の
分波・合波器はマルチモードファイバーおよびシングル
モードコア・イバーのいずれにも適用することができる
のは言うまでもない。
Contrary to the above, 7 fiber/3Bx/3Gr/3D, /3
E through wavelengths λl, λ2 . λ3. By sending the light of λ4, the fiber /3A becomes λ] + λ2
Mixed light of 10 λ3+λ4 can be extracted. It goes without saying that the above-mentioned demultiplexer/multiplexer can be applied to both multimode fibers and single mode core fibers.

第6図に本発明の他の実施例を示す。FIG. 6 shows another embodiment of the invention.

本例は透明基板//内の導光路/、2の形状を平面視で
単一の7字型とした以外は前述例と同様構造の一対の先
導波回路IOA、10Bを連砺して分波・合波器を構成
した例を示す。
In this example, a pair of leading wave circuits IOA and 10B having the same structure as the previous example are connected and separated, except that the shape of the light guide path /, 2 in the transparent substrate // is a single 7-shape in plan view. An example of a wave/combiner configuration is shown below.

すなわちオ/の導波回路IOAの導光路/2の両を 端に光軸を合せて先端極斜断した光ファイバー73A、
/3Bをそれぞれ接続する。
In other words, the optical fiber 73A is cut obliquely at the tip with the optical axis aligned at both ends of the optical guide path /2 of the optical waveguide circuit IOA.
/3B respectively.

また、この導波回路10Aの導光路折曲部7.2Bの露
出面には、λ1の波長の光を反射して他の波長光は透過
する性質をもつ干渉フィル々−膜/ざAを介在して他の
光導波回路10Bの導光路/、2の一端を接続する。
Further, on the exposed surface of the light guide bending portion 7.2B of the waveguide circuit 10A, there is provided an interference film/film A having a property of reflecting light of wavelength λ1 and transmitting light of other wavelengths. One end of the light guide path /, 2 of another optical waveguide circuit 10B is connected therebetween.

また上記オフの導波回路10Bの導光路折曲部/、2B
には波長λ2の光を反射して他の波長光は透過する性質
をもつ干渉フィルター膜/ざBを介して光ファイバー/
3Cを接続し、導光路/2の他端に与 は干渉フィルター膜を介在せずに光ファイバー/3Dを
光軸を導光路と一致させて接続する。
In addition, the light guide bending portion/, 2B of the above-mentioned off waveguide circuit 10B
is connected to an optical fiber through an interference filter film that reflects light of wavelength λ2 and transmits light of other wavelengths.
3C is connected to the other end of the light guide path/2, and an optical fiber/3D is connected to the other end of the light guide path/2 without intervening an interference filter film, with its optical axis aligned with the light guide path.

上記装置においてファイバー/JAを通してλ1゜λ2
.λ3の単波長光を混合した混合光をオIの導波回路1
0A内に送り込むと、波長λ1の光は牙/ノフィルター
膜/gAで反射されファイバー/3Bを通して取り出さ
れる。またフィルター膜/gAを透過したλ2とλ3の
混合光は第2の導波回路10Bの導光路/、2内を伝送
されてオフのイニ渉フィルター膜/gBに至り、ここで
λ2の波長光は反射されて導光路7.2の他端に接続さ
れたファイバー/3Dを通して取り出される。
In the above device, λ1゜λ2 is passed through the fiber/JA.
.. Waveguide circuit 1 of OI transmits the mixed light obtained by mixing the single wavelength light of λ3.
When introduced into 0A, light of wavelength λ1 is reflected by fang/nofilter membrane/gA and extracted through fiber/3B. In addition, the mixed light of λ2 and λ3 that has passed through the filter film /gA is transmitted through the light guide path /2 of the second waveguide circuit 10B and reaches the OFF initial filter film /gB, where the light with the wavelength of λ2 is transmitted. is reflected and extracted through a fiber/3D connected to the other end of the light guide 7.2.

またフィルター膜/gBを透過したλ3の波長光はファ
イバー/30を通して取り出される。
Further, the wavelength light of λ3 transmitted through the filter film /gB is extracted through the fiber /30.

このようにして波長λl、λ2λ3の混合光を各単波長
光に分離することができる。
In this way, the mixed light of wavelengths λ1, λ2λ3 can be separated into each single wavelength light.

また上記と逆にファイバー/3B、/3D、/3Gを通
してそれぞれλ1.λ2.λ3 の波長光を送り込むこ
とによりファイバー/3Aを通じてλ]、λ2.λδ尤 の混合用を取り出すことができる。
Also, contrary to the above, λ1. λ2. λ], λ2 . A mixture of λδ and λδ can be taken out.

オフ図に本発明の光導波回路を光スィッチに適用した例
を示ず; 光スィッチ2Qは本発明の光導波回路の一対、2/A。
The off-line diagram does not show an example in which the optical waveguide circuit of the present invention is applied to an optical switch; optical switch 2Q is a pair of optical waveguide circuits of the present invention, 2/A.

、27Bを対象に配置し、間に液晶、2.2を挾んで一
対に接合し、各導波回路、2/A、、、!/Bの導光路
/2゜/2の各両端に光ファイバー、23A、、23B
、230.23Dを接続した構造となっている。
, 27B are placed as objects, and the liquid crystal 2.2 is sandwiched between them and joined together as a pair, and each waveguide circuit, 2/A,...! Optical fibers, 23A, 23B at each end of the light guide path /2°/2 of /B
, 230.23D are connected.

光導波回路−/A 、 、2/Bはガラス、プラスチッ
ク等の透明基板中に基板よりも屈折率の犬な領域からな
る導光路/2を平面視で左右対称のV字型に形成し、そ
の−側面に折曲部/2Bを露出させ、且つ基板の対向側
面の両角部を導光路7.2の軸線に対して直角なコーナ
ー面211..2’lとし、これら両コーナー面、xl
/、iqにそれぞれ光ファイバー、23に、、23Bの
端部を光軸を導光路/2と合せて接合している。
The optical waveguide circuit /A, , 2/B has a light guide path /2 formed in a transparent substrate made of glass, plastic, etc., having a region having a refractive index lower than that of the substrate, and is formed in a symmetrical V-shape in plan view. A bent portion /2B is exposed on the side surface thereof, and both corner portions of the opposite side surface of the substrate are formed into a corner surface 211.2 that is perpendicular to the axis of the light guide path 7.2. .. 2'l, and both corner surfaces, xl
The ends of optical fibers 23 and 23B are connected to /, iq, respectively, with their optical axes aligned with light guide path /2.

そして]二記と同し構造の他の先導波路2/Bの両コー
ナー面に光ファイバー23C,コ3Dを接続シ、これら
両導波回路2/A、2/Bを導光路/2の両折曲部同性
を突合せるように対向配置し、間に液晶2−の層を周囲
をソールして設けて接合一体化した構造としである。
Then] Optical fibers 23C and 3D are connected to both corner surfaces of the other leading waveguide 2/B having the same structure as in Section 2. It has a structure in which the curved parts are arranged facing each other so as to butt against each other, and a layer of liquid crystal 2- is provided between them with a sole around the periphery, and is joined and integrated.

また図には示していないが液晶22を挾む両回路2/に
、、2/Bの基板面には透明導電膜を形成してあっ゛C
外部から電圧の印加が制御できるようになっている。
Although not shown in the figure, a transparent conductive film is formed on the substrate surface of both circuits 2/ and 2/B that sandwich the liquid crystal 22.
The voltage application can be controlled externally.

上記装置において液晶2.2を透明状態にしてJ= i
jばファイバー、23Aを通して伝送されたγ6が7ア
イl<−,23Dに伝送され、またファイバー、23c
を通して伝送された光は対向位置にあるファイバー23
Bに伝送される。
In the above device, with the liquid crystal 2.2 in a transparent state, J = i
j, γ6 transmitted through fiber 23A is transmitted to 7-eye l<-, 23D, and fiber 23c
The light transmitted through the fiber 23 in the opposite position
It is transmitted to B.

また液晶2.2を不透明状態にしておljばファイバー
、23AIJ)らの光は導光路折曲部72Bで反射され
てファイバー、23Bに入り、一方フアイバー23G 
からの光は反射されて同一基板に接続されたファイバー
23Dに入射する。
Furthermore, when the liquid crystal 2.2 is made opaque, the light from the fiber 23AIJ) is reflected by the light guide bending part 72B and enters the fiber 23B, while the light from the fiber 23G
The light from is reflected and enters the fiber 23D connected to the same substrate.

上記のようにして光スイツチ機能を発揮する。The optical switch function is performed as described above.

次に本発明の光導波回路を製造する好適な方法例をオざ
図に示す。
Next, an example of a preferred method for manufacturing the optical waveguide circuit of the present invention is shown in a diagram.

オざ図においてガラス基板3/」−面を拡散イオンに対
し透過阻止効果のある物質からなるマスク3−2で被覆
し、マスク32の一部を導波路の平面パターンに合せて
例えば7字型にどり除き開口部33を設け、オ9図に示
すようにマスク面を電子分極率の大きいイオン例えばタ
リウムイオンを含む溶融塩37に接触させ、塩(!:基
板を加熱し、マスフ面を正極として電界を印加し塩中の
イオンをマスクのない部分に拡散さゼ、基板中の一部イ
オンを外に出し、基板中に高屈折率部3’lを形成する
。ここでマスク開口部33の幅を充分狭くすれば、例え
ば5μ以下とすると得られる高屈折率部31の断面は、
はぼ半円になる。次いでマスク32を取り除き、高屈折
率部3+!の上面のみに望ましくはこの高屈折率部3ゲ
の基板表面での幅に対し30〜100%の幅でマスク3
Sを設け、電子分極率の小さいイオン例えばナトリウム
イオンまたは(および)カリウムイオンを外む塩に接触
さセ、塩と基板を加熱し、マスク35面から反対側を向
く電界を印加し、塩中のイオンをマスクのないガラス部
分に拡散させるとほぼ断面が円形に近い高屈折率部3乙
が得られる。
In the diagram, the surface of the glass substrate 3 is covered with a mask 3-2 made of a substance that has a permeation blocking effect against diffused ions, and a part of the mask 32 is aligned with the planar pattern of the waveguide to form, for example, a figure 7 shape. An aperture 33 is provided, and the mask surface is brought into contact with a molten salt 37 containing ions with high electronic polarizability, such as thallium ions, as shown in FIG. By applying an electric field as shown in FIG. If the width of is made sufficiently narrow, for example, 5 μ or less, the cross section of the high refractive index portion 31 obtained is as follows.
It becomes a semicircle. Next, the mask 32 is removed, and the high refractive index portion 3+! A mask 3 is preferably applied only to the upper surface with a width of 30 to 100% of the width of the high refractive index portion 3 on the substrate surface.
S is placed in contact with the salt that excludes ions with low electronic polarizability, such as sodium ions and (and) potassium ions, the salt and the substrate are heated, and an electric field directed from the mask 35 surface to the opposite side is applied to the salt. When the ions are diffused into the glass portion without a mask, a high refractive index portion 3B having a nearly circular cross section is obtained.

ここで高屈折率部3乙の断面がほぼ円形に近くなるのは
、マスク3Sの周辺から電子分極率の小さいイオンがマ
スク外だけでなくマスク下のガラス中にもイオン拡散し
てくるが、マスク35の中心面Fにはその割合が少なく
、マスク周辺ではその割合が大きくなることと、高屈折
率部3グを形成している電子分極率の大きいイオンの部
分はガラス中のイオンの移動度が他の部分に比し小さい
ため、マスク中央直下は電子分極率の大きいイオンの濃
度が高く、深さも深いためこの部分の電子分極率の大き
いイオンの移動度はマスク周辺に比し小さく周辺は大き
いためと考えられる。
Here, the cross section of the high refractive index portion 3B becomes almost circular because ions with low electronic polarizability diffuse from the periphery of the mask 3S not only outside the mask but also into the glass under the mask. The proportion is small at the central plane F of the mask 35, and the proportion increases at the periphery of the mask, and the portion of ions with high electronic polarization that forms the high refractive index portion 3G is due to the movement of ions in the glass. Since the concentration of ions with high electronic polarizability is lower than that of other parts, the concentration of ions with high electronic polarization is high directly under the center of the mask, and because the depth is deep, the mobility of ions with high electronic polarization in this area is lower than that around the mask periphery. This is thought to be because it is large.

この段階で得られた高屈折率部乙の屈折率分布は電界を
印加して製作しているため階段状に変化している。
The refractive index distribution of the high refractive index portion B obtained at this stage changes stepwise because it is manufactured by applying an electric field.

そこで基板ガラスが熱変形しない温度に基板゛を加熱し
、高屈折率部3乙を形成している電子分極率の高いイオ
ン七電子分極率の小さい即ち屈折率の増加の度合の小さ
い周囲のイオンと相互拡散さセることにより、光軸から
の距離に従って屈折率か次第に小さくなるような屈折率
分布が形成される。
Therefore, the substrate is heated to a temperature at which the substrate glass does not undergo thermal deformation, and 7 of the ions with high electronic polarization that form the high refractive index region 3 are surrounding ions with low electronic polarization, that is, the degree of increase in refractive index is small. By interdiffusion with the optical axis, a refractive index distribution is formed in which the refractive index gradually decreases with distance from the optical axis.

また、この過程で高屈折率部3乙の断面形状もさらに真
円に近いものが得られる。
In addition, in this process, the cross-sectional shape of the high refractive index portion 3B becomes even closer to a perfect circle.

なおオフ図において、3gは粘土層とKNO3をペース
ト状にしてつけた導電ペースト層、 39.’10は電
極板、グ/は溶融塩槽、qノは直流電源である。
In the off-line diagram, 3g is a conductive paste layer made of a clay layer and KNO3 in paste form. 39. '10 is an electrode plate, g/ is a molten salt bath, and q is a DC power supply.

以上は基板材料としてガラスを用いた場合について説明
したが合成樹脂基板を用いて本発明の先導波路を製作す
ることもできる。
Although the case where glass is used as the substrate material has been described above, the guiding waveguide of the present invention can also be manufactured using a synthetic resin substrate.

この場合はF記例においてガラス基板のかわりに一部重
合させた樹脂基板を用い、この基板中に拡散させるイオ
ンのかわりに基板樹脂よりも高屈折率の重合体を形成す
る単量体を用いる。
In this case, a partially polymerized resin substrate is used instead of the glass substrate in Example F, and a monomer that forms a polymer with a higher refractive index than the substrate resin is used instead of ions to be diffused into the substrate. .

また上記以外に光ファイバーの製作に使用されているC
VD 技術を利用して石英基板上に導光路を形成する方
法など種々の方法をとることができる、グ 図面のI″
iri jJtな説明 第7図ないし第3図は従来の分波・合波器を示す縦断面
図、オフ図は本発明の一実施例を示す断面乎面図、第5
図は第1図のV−■線に沿う横断面図、オ乙図は本発明
の他の実施例を示す断面平面図、オフ図は本′発明を光
スィッチに適用した例を示す断面平面図、オざ図(イ)
ないしく二)は本発明の先導波路の製造力性の例を段階
的に示す横断面図、第9図はオg図の工程でマスクNき
基板を溶融塩とイオン交換する方法を示す横断面図であ
る。
In addition to the above, C is used in the production of optical fibers.
Various methods can be used, such as forming a light guide on a quartz substrate using VD technology.
Figures 7 to 3 are longitudinal sectional views showing a conventional demultiplexer/combiner;
The figure is a cross-sectional view taken along the line V-■ in Figure 1, the O-figure is a cross-sectional plan view showing another embodiment of the present invention, and the Off-line view is a cross-sectional plane view showing an example in which the present invention is applied to an optical switch. Diagram, Oza diagram (a)
2) is a cross-sectional view showing step-by-step an example of the manufacturability of the leading waveguide of the present invention, and FIG. It is a front view.

10、IOA、10B、2/A、2/B・・・・・・・
中光導波回路//、3/・・・・・・・・基板  /、
2・・・・・・・・導光路/、2 B 、 /20. 
/2D 、 /、2F・・・・・1折曲部3 /3A、4B、/3G、/3D、/3E、23に、23
B、23G、23D・・・・・・・・光ファイバー /7A、/7B、/7 G 、/7D 、/7E、/ざ
A、/ざB ・す・・・曲・・干渉フィルター膜 第1図 第2図 第3図 第4因 第5因 +2   12   12  12 第8図
10, IOA, 10B, 2/A, 2/B...
Medium optical waveguide circuit//、3/・・・・・・・・・Substrate//
2...Light guide path/, 2 B, /20.
/2D, /, 2F...1 bending part 3 /3A, 4B, /3G, /3D, /3E, 23, 23
B, 23G, 23D...Optical fiber /7A, /7B, /7G, /7D, /7E, /zaA, /zaB ・S...Song...Interference filter membrane 1st Figure 2 Figure 3 Figure 4 Factor 5 +2 12 12 12 Figure 8

Claims (1)

【特許請求の範囲】 コ) 透明基板内に、平面視でほぼ単一の7字型または
2つ以」二の7字を連結したジグザグ状に基板よりも屈
折率が犬な領域からなる連続した導光路を設け、この導
光路の両端および折曲部を基板の対向側面にそれぞれ露
出させたことを特徴とする光導波回路。 2、特許請求の範囲オ/項において、導光路の端部およ
び折曲部における基板面にそれぞれ異なる波長を透過(
または反射)する性質をもつフィルター膜を設(プた光
導波回路。
[Scope of Claims] C) A continuous region consisting of a region having a refractive index lower than that of the substrate, in a transparent substrate, in a substantially single 7-shape or in a zigzag shape in which two or more 7-shapes are connected in plan view. 1. An optical waveguide circuit characterized in that a light guide path is provided, and both ends and bent portions of the light guide path are exposed on opposing sides of a substrate. 2. In the claims (e)/(e), different wavelengths are transmitted through the substrate surface at the ends and bent portions of the light guide (
An optical waveguide circuit equipped with a filter film that has reflective properties.
JP21890282A 1982-12-14 1982-12-14 Optical wave guide circuit Granted JPS59109022A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP21890282A JPS59109022A (en) 1982-12-14 1982-12-14 Optical wave guide circuit
US06/558,507 US4693544A (en) 1982-12-14 1983-12-06 Optical branching device with internal waveguide
CA000443172A CA1248385A (en) 1982-12-14 1983-12-13 Optical waveguide device
DE19833345038 DE3345038A1 (en) 1982-12-14 1983-12-13 OPTICAL WAVE GUIDE DEVICE
FR8320016A FR2537733B1 (en) 1982-12-14 1983-12-14 OPTICAL WAVEGUIDING DEVICE
GB08333351A GB2135075B (en) 1982-12-14 1983-12-14 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21890282A JPS59109022A (en) 1982-12-14 1982-12-14 Optical wave guide circuit

Publications (2)

Publication Number Publication Date
JPS59109022A true JPS59109022A (en) 1984-06-23
JPH0450561B2 JPH0450561B2 (en) 1992-08-14

Family

ID=16727098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21890282A Granted JPS59109022A (en) 1982-12-14 1982-12-14 Optical wave guide circuit

Country Status (1)

Country Link
JP (1) JPS59109022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151602A (en) * 1984-12-26 1986-07-10 Fujitsu Ltd Wavelength demultiplexer
JPH02221902A (en) * 1989-02-22 1990-09-04 Hitachi Cable Ltd Glass waveguide
JP2006515687A (en) * 2003-01-20 2006-06-01 ポラティス リミテッド Optical connector having total reflection contact surface
JP2008209520A (en) * 2007-02-23 2008-09-11 Kyocera Corp Optical filter module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290957A (en) * 1976-01-26 1977-07-30 Nippon Telegr & Teleph Corp <Ntt> Branching filter for optical fibers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290957A (en) * 1976-01-26 1977-07-30 Nippon Telegr & Teleph Corp <Ntt> Branching filter for optical fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151602A (en) * 1984-12-26 1986-07-10 Fujitsu Ltd Wavelength demultiplexer
JPH02221902A (en) * 1989-02-22 1990-09-04 Hitachi Cable Ltd Glass waveguide
JP2006515687A (en) * 2003-01-20 2006-06-01 ポラティス リミテッド Optical connector having total reflection contact surface
JP2008209520A (en) * 2007-02-23 2008-09-11 Kyocera Corp Optical filter module

Also Published As

Publication number Publication date
JPH0450561B2 (en) 1992-08-14

Similar Documents

Publication Publication Date Title
US4153330A (en) Single-mode wavelength division optical multiplexer
JP3490745B2 (en) Composite optical waveguide type optical device
JP2004170924A (en) Waveguide embedded optical circuit and optical element used therefor
JPS59109022A (en) Optical wave guide circuit
JPS59208509A (en) Optical multiplexer for single mode
GB2245080A (en) Intergrated optical circuit.
JP4118752B2 (en) 2-fiber collimator manufacturing method, 2-fiber collimator manufacturing apparatus, 2-fiber collimator, optical multiplexer / demultiplexer
JP3788397B2 (en) Optical waveguide device and communication device using optical waveguide device
WO2020105412A1 (en) Optical interconnect structure and method for manufacturing same
JPS626210A (en) Optical demultiplexer
JPH063555A (en) Optical branching device
JPH04140701A (en) Waveguide coupler and production thereof
JPS6333708A (en) Optical multiplexer/demultiplexer
JPS6330806A (en) Optical multiplexer/demultiplexer
JPS60113214A (en) Fiber type optical switch
JPH03291603A (en) Optical multiplexer/demultiplexer
JP2001124952A (en) Optical waveguide substrate
JP4916943B2 (en) Liquid crystal optical component, liquid crystal optical device, and method of manufacturing liquid crystal optical component
WO2008066074A1 (en) Optical device and optical transmitter/receiver
JPH11142666A (en) Optical multiplexer demultiplexer
CN117849951A (en) Cascade wave division multiplexing structure
JPS5933421A (en) Optical branching and coupling device
JP2008242418A (en) Optical fiber collimator, optical device, and optical transmitter-receiver using the same
JPS62229109A (en) Optical element
JPH01177001A (en) Fiber type optical multiplexer/demultiplexer