JPS59108980A - Forecast of striking by lightning - Google Patents

Forecast of striking by lightning

Info

Publication number
JPS59108980A
JPS59108980A JP22085382A JP22085382A JPS59108980A JP S59108980 A JPS59108980 A JP S59108980A JP 22085382 A JP22085382 A JP 22085382A JP 22085382 A JP22085382 A JP 22085382A JP S59108980 A JPS59108980 A JP S59108980A
Authority
JP
Japan
Prior art keywords
lightning
electric field
distance
thunder
lightning strike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22085382A
Other languages
Japanese (ja)
Inventor
Yoshishige Nagata
永田 良茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22085382A priority Critical patent/JPS59108980A/en
Publication of JPS59108980A publication Critical patent/JPS59108980A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/16Measuring atmospheric potential differences, e.g. due to electrical charges in clouds

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To realize an economical system structure with emission of an accurate warning against striking by lightning by judging data on changes in the intensity of an electric field and the distance from a thunder cloud at the observation point to obtain the position of the thunder cloud and the distribution of changes in the electric field level. CONSTITUTION:A thunderclap converter section 7 starts operation to send a clock pulse signal to a processor 10 for counting when a ground electric field, namely, the inversion in the polarity of a corona current is detected with a lightning converter section 4 as the strength of a thunder cloud increases and exceeds the critical ground electric field. Subsequently, when a thunder clap arrives and is inputted from a sound collection microphone 5, the transmission of clock pulse signal is stopped. In this case, the time (t) between striking by lightning and the arrival of the thunderclap is calculated from the number of pulse counted while the distance D from the thunder cloud, namely, the point of striking by lightning from an observation point is computed from the relationship of D=c.t (c is sound velocity). The results are outputted as a thunder cloud distance signal from the processor 10.

Description

【発明の詳細な説明】 発明の技術分野 本発明は雷電を予測することにより落雷予測を行う方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for predicting lightning strikes by predicting lightning strikes.

発明の背景技術 落雷予測システムとしては、従来より、■レーダ、■雷
放電カウンタ、又は■フィールドミル、等を用いて行う
ものがある。然しなから、■は最も確実な方法であるが
、システム的には複雑、高価で、測定操作には高度の技
術を要するため、一般に広く用いるには至っておらず、
また広域の雷予知には適するものの、局所的な落雷は予
知しにくい。■は雷放電に伴なう電界変化数のみをカウ
ントするので、遠方雷と近接型との識別がつけにくい。
BACKGROUND OF THE INVENTION Lightning strike prediction systems have conventionally been implemented using, for example, (1) radar, (2) lightning discharge counter, or (2) field mill. However, although method (3) is the most reliable method, it is systemically complex and expensive, and the measurement operation requires advanced technology, so it has not been widely used.
Although it is suitable for predicting lightning over a wide area, it is difficult to predict local lightning strikes. (2) only counts the number of electric field changes associated with lightning discharges, making it difficult to distinguish between distant lightning and close-in lightning.

また、雷放電以外の空中電波により護カウントすること
もある。而して、■は地上電界の強さから落雷を予測す
るもので、精度は高いが、周囲の物体による地上電界の
乱れを防ぐため、広い平らな設置場所を必要とする。ま
た、高価なため広く普及するには至っていない。
Also, protection may be counted using airborne radio waves other than lightning discharges. Method (2) predicts lightning strikes based on the strength of the ground electric field, and although it is highly accurate, it requires a wide, flat installation location to prevent the ground electric field from being disturbed by surrounding objects. In addition, it is expensive, so it has not become widely popular.

発明の目的 本発明は斯かる従来技術の欠点を解消することを目的と
してなされたもので、本発明では、一定の地上高さを有
する針電極を通るコロナ電流を測定することにより、こ
れと一定の関係にある地上電界を間接的に測定するとと
もに、放電、落雷により地上電界の極性が反転した時か
ら雷鳴の受信時までの遅延時間を測定することにより落
雷地点から観測地点までの距離を測定し、地上電界及び
距離の変化状況を判定することにより落雷の場所と時期
を予測できるような構成がとられている。
Purpose of the Invention The present invention has been made with the aim of eliminating the drawbacks of the prior art.In the present invention, by measuring the corona current passing through a needle electrode having a constant height above the ground, The distance from the lightning strike point to the observation point can be measured by indirectly measuring the ground electric field in the relationship between However, the structure is such that the location and timing of a lightning strike can be predicted by determining changes in the ground electric field and distance.

以下、添附図面に示された本発明の好ましい実施例に沿
って本発明の詳細な説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to preferred embodiments of the present invention shown in the accompanying drawings.

第1図は本発明の落雷予測方法に使用される落雷予測シ
ステムの概略図を示している。図中、/は針電極、λは
同軸ケーブル、3は接地線、グは同軸り゛−ブルコを介
して針電極/に接続された電変換部である。一方、左は
集音マイク、6はアプローチケーブル、7は雷鳴変換部
である。電変換部り及び雷鳴変換部7は処理装置10に
接続されている。尚、電変換部グについては、電気学会
論文誌、昭和夕乙年a月、巻ユ号、第3.3−’10頁
の「針端コロナ電流を利用する雷警報器の開発」と題す
る中村光−等の論文中に説明されている。
FIG. 1 shows a schematic diagram of a lightning prediction system used in the lightning prediction method of the present invention. In the figure, / is a needle electrode, λ is a coaxial cable, 3 is a grounding wire, and G is an electric converter connected to the needle electrode / via a coaxial cable. On the other hand, on the left is a sound collecting microphone, 6 is an approach cable, and 7 is a thunder conversion section. The electric converter and the thunder converter 7 are connected to a processing device 10 . Regarding the electrical conversion section, please refer to the Journal of the Institute of Electrical Engineers of Japan, April 2007, Volume 3, page 3.3-'10, entitled ``Development of lightning alarm using needle tip corona current.'' This is explained in a paper by Hikaru Nakamura et al.

まず、電変換部りは針電極/からのコロナ電流を絶えず
監視・測定しており、雷雲の形成とともにコロナ電流も
徐々に増加して行く。コロナ電流■と、地上電界Eとの
関係は、カルツ(Charmer)の式:I=a(E−
b)E(但し、a、bは定数)として知られており、地
上電界Eが臨界値を越えると落雷が発生するので、コロ
ナ電流を測定すれば落雷の予測がつくことになる。従っ
て電変換部グからの出力信号は処理装置10を経て雷雲
レベル信号として出力される。これは、記針計等におい
てグラフに表6゛されるのが普通である。
First, the electric converter constantly monitors and measures the corona current from the needle electrode, and as thunderclouds form, the corona current gradually increases. The relationship between the corona current ■ and the ground electric field E is expressed by the Charmer equation: I=a(E-
b) E (where a and b are constants); lightning strikes occur when the ground electric field E exceeds a critical value; therefore, lightning strikes can be predicted by measuring the corona current. Therefore, the output signal from the electric converter passes through the processing device 10 and is output as a thundercloud level signal. This is usually shown in a graph on a numeral or the like.

雷鳴変換部7は、雷雲の勢いが高まって臨界地上電界を
越え、電変換部りにおいて地上電界、すなわちコロナ電
流の極性反転が検知されたとき、雷鳴変換部7の動作を
開始させてクロックパルス信号を処理装置IOに送り、
計数を行なう。その後、雷鳴が到来して集音マイクjか
ら雷鳴が入力されたときクロックパルス信号の送信を停
止する。
The thunder converter 7 starts the operation of the thunder converter 7 and generates a clock pulse when the force of the thundercloud increases and exceeds the critical ground electric field, and the electric converter detects a polarity reversal of the ground electric field, that is, the corona current. Send the signal to the processing device IO,
Perform counting. After that, when a thunderclap arrives and the thunderclap is input from the sound collecting microphone j, the transmission of the clock pulse signal is stopped.

この場合、計数さねたパルス数により落雷から落鳴到達
までの時間tが処理装置/θによって計算されるととも
に、雷雲、すなわち落雷地点から観測地点までの距離り
が、D=c−t(cは音速)の関係から演pさね求めら
れる。これは処理装置/θより雷雲距離信号として出力
される。
In this case, the processing device/θ calculates the time t from the lightning strike to the arrival of the sound based on the number of counted pulses, and the distance from the thundercloud, that is, the lightning strike point to the observation point, is calculated as D=c−t( c is the speed of sound). This is output as a thundercloud distance signal from the processing device/θ.

このようにして第1図のシステムにおいては、雷雲レベ
ル信号及び雷雲距離信号の変化を判定することKより、
前者から落雷の時期が判り、後者から落雷の場所が判る
ーそして、雷雲がだんだん近づいて来て、一定距離範囲
内に入って来たとき警報を発すハばよい。但し、一定距
離範囲内に入っても、雷雲レベル信号より放電、落雷が
当分発生しない場合には、一定の設定レベルに到するま
で警報の発生を遅らせても構わない。
In this way, in the system of FIG. 1, by determining the changes in the thundercloud level signal and the thundercloud distance signal,
The former tells you when lightning will strike, and the latter tells you where it's going to strike.Then, you can also issue a warning when thunderclouds are getting closer and closer and within a certain distance. However, even if the thundercloud level signal indicates that no discharge or lightning will occur for some time even if the thundercloud level signal is within a certain distance range, the generation of the warning may be delayed until a certain set level is reached.

第2図は、3つの落雷観測装置10θ、2θθ、及び3
θOKより、すなわち3地点観測の落雷予測システムを
示した概略図を示している。この場合、処理装置/θは
中央局に配置され、各観測装置に設けた伝送装置roと
、それぞれ通信回線/θl。
Figure 2 shows three lightning observation devices 10θ, 2θθ, and 3
A schematic diagram showing a lightning strike prediction system based on θOK, that is, three-point observation is shown. In this case, the processing device /θ is placed in the central station, and the transmission device ro provided in each observation device and the communication line /θl are connected to each other.

コθ/、30/を介して接続されている。この3地点観
測の場合には、各観測装置の守備範囲の重なった地域に
おいて雷雲の存在並びにその移動方向を発見することが
でき的確な落雷予測(雷雲分布情報の入手)が行なえる
θ/, 30/ are connected to each other. In the case of this three-point observation, the presence of thunderclouds and their movement direction can be discovered in areas where the coverage areas of each observation device overlap, and accurate lightning strike prediction (obtaining information on thundercloud distribution) can be performed.

発明の効果 本発明によれば、観測地点からの、雷雲による電界強度
の変化(コロナ放電電流の変化)、距離の変化データに
より、雷雲の位置、電界レベルの変化分布を知ることが
でき的確な落雷警報を発することができるとともに、経
済的なシステム構成を実現することができる。
Effects of the Invention According to the present invention, the position of thunderclouds and the distribution of changes in electric field level can be accurately determined by data on changes in electric field intensity due to thunderclouds (changes in corona discharge current) and changes in distance from observation points. It is possible to issue a lightning warning and realize an economical system configuration.

また、風向、風速、気温、雨量等の気象データと組み合
わせて用いることにより、より正確で且つ総合的な落雷
予測を行なうことができる。
Further, by using it in combination with weather data such as wind direction, wind speed, temperature, and rainfall, more accurate and comprehensive lightning strike predictions can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る落雷予測方法に使用される落雷予
測システムの概略図、及び第一図は3観測装置を用いた
3地点方式の落雷予測システムを示す概略図、である。 l・・針電極、グ・・電食換部、7・・雷鳴変換部、1
0・・処理装置。 尚、図中、同一符号は同−又は相当部分を示す、代理人
  葛  野  信  − 旭1図
FIG. 1 is a schematic diagram of a lightning prediction system used in the lightning prediction method according to the present invention, and FIG. 1 is a schematic diagram showing a three-point method lightning prediction system using three observation devices. L: Needle electrode, G: Electrolytic conversion unit, 7: Thunder conversion unit, 1
0... Processing device. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)一定の地上高さを有する針電極を流ねるコロナ放
電電流を連続して測定することにより地上電界を連続し
て測定する第1段階;雷放電時又は落雷時忙前記地上電
界の極性が反転した時から雷鳴到達時までの時間を測定
して落雷地点から観測地点までの距離を連続して測定す
る第一段階;及び、前記地上電界の変化及び前記距離の
変化から、雷雲の変化を観測して落雷の時期と場所を予
測するとともに、落雷の発生が観測地点から一定距離範
囲内に予測されるとき警報を発する第3段階:を備えた
ことを特徴とする落雷予測方法。
(1) The first stage of continuously measuring the ground electric field by continuously measuring the corona discharge current flowing through a needle electrode having a certain height above the ground; polarity of the ground electric field during lightning discharge or lightning strike; The first step is to continuously measure the distance from the lightning strike point to the observation point by measuring the time from when it reverses to when the thunder arrives; and, from the change in the ground electric field and the change in the distance, change in the thundercloud. A lightning strike prediction method characterized by comprising: a third step of predicting the timing and location of a lightning strike by observing it, and issuing a warning when a lightning strike is predicted to occur within a certain distance from the observation point.
(2)前記第3段階は、落雷の発生が一定時間以内に予
測されるとき警報を発する特許請求の範囲第(1)項記
載の方法。
(2) The method according to claim (1), wherein in the third step, a warning is issued when a lightning strike is predicted to occur within a certain period of time.
(3)前記観測地点が複数である特許請求の範囲第(1
)項又は第(コ)項に記載の方法。
(3) Claim No. 1 in which the number of observation points is plural
) or the method described in paragraph (e).
JP22085382A 1982-12-14 1982-12-14 Forecast of striking by lightning Pending JPS59108980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22085382A JPS59108980A (en) 1982-12-14 1982-12-14 Forecast of striking by lightning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22085382A JPS59108980A (en) 1982-12-14 1982-12-14 Forecast of striking by lightning

Publications (1)

Publication Number Publication Date
JPS59108980A true JPS59108980A (en) 1984-06-23

Family

ID=16757560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22085382A Pending JPS59108980A (en) 1982-12-14 1982-12-14 Forecast of striking by lightning

Country Status (1)

Country Link
JP (1) JPS59108980A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298288A (en) * 1985-10-25 1987-05-07 Sumitomo Electric Ind Ltd Thunder approach detecting device
CN105067904A (en) * 2015-07-17 2015-11-18 云南电力试验研究院(集团)有限公司 Thunder early warning data evaluation method based on historic thunder positioning data and power grid trip-out data
CN108680798A (en) * 2018-04-02 2018-10-19 北京华云东方探测技术有限公司 Lightning monitoring and early warning method and system
WO2019115282A1 (en) * 2017-12-14 2019-06-20 Gamesa Innovation & Technology, S.L. Method for warning about lightning activity in wind farms
CN113533834A (en) * 2020-04-20 2021-10-22 中国石油化工股份有限公司 Lightning early warning system and method based on lightning positioning and electric field detection technology

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298288A (en) * 1985-10-25 1987-05-07 Sumitomo Electric Ind Ltd Thunder approach detecting device
JPH0364838B2 (en) * 1985-10-25 1991-10-08 Sumitomo Electric Industries
CN105067904A (en) * 2015-07-17 2015-11-18 云南电力试验研究院(集团)有限公司 Thunder early warning data evaluation method based on historic thunder positioning data and power grid trip-out data
WO2019115282A1 (en) * 2017-12-14 2019-06-20 Gamesa Innovation & Technology, S.L. Method for warning about lightning activity in wind farms
CN111448482A (en) * 2017-12-14 2020-07-24 西门子歌美飒可再生能源创新与技术有限公司 Method for warning about lightning activity in a wind farm
US11243238B2 (en) 2017-12-14 2022-02-08 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Method for warning about lightning activity in wind farms
CN108680798A (en) * 2018-04-02 2018-10-19 北京华云东方探测技术有限公司 Lightning monitoring and early warning method and system
CN108680798B (en) * 2018-04-02 2020-07-31 北京华云东方探测技术有限公司 Lightning monitoring and early warning method and system
CN113533834A (en) * 2020-04-20 2021-10-22 中国石油化工股份有限公司 Lightning early warning system and method based on lightning positioning and electric field detection technology

Similar Documents

Publication Publication Date Title
US10656198B2 (en) Electric power system monitoring using high-frequency signals
EP0186402B1 (en) Storm warning method and apparatus
CN106019287B (en) A kind of power transmission line lightning shielding monitoring and pre-alarming method based on miniradar
CN105868872B (en) A kind of power distribution network Lightning Disaster failure prediction method
EP2921887B1 (en) Lightning-strike electric charge estimation system and method
CN108847578B (en) Microwave lightning protection method and system for ancient buildings
Uman et al. An Unusual Lightning Flash at Kennedy Space Center: Cooperative research led to a comprehensive picture of the physics and meteorology of an unusual lightning flash.
US20100023267A1 (en) Method and system for determining cloud-to-ground lightning information
US5296842A (en) Thunder alarm
JPS59108980A (en) Forecast of striking by lightning
Salimi et al. Investigation of short base line lightning detection system by using time of arrival method
CN113466633A (en) Distributed fault monitoring integrated method and device for power transmission line
Ibrahim et al. Time-to-thunder method of lightning distance determination
KR100674745B1 (en) Sag monitoring apparatus for overhead transmission line
KR0130198B1 (en) Multi-functional lightning alarm device
JP2017181039A (en) Estimation method, estimation device, and estimation program for lightening strike current characteristics value
CN211038930U (en) Wind power plant thunder and lightning positioning system and wind power plant
Minullin et al. Specifics of detecting ice coatings on electric power lines using radar probing
Opachat et al. Smart lightning warning system based on electric field sensor
US20240209840A1 (en) Detecting lightning strikes on a wind turbine with improved reliability
JP2005056279A (en) Lightning warning device and program
Zhou et al. Evaluation and revision of long-range single-site lightning location accuracy considering the time delay of ground wave
JPH0627876B2 (en) Multi-function lightning alarm
CN110927725B (en) Lightning early warning and monitoring method based on meteorological radar
CN108845526B (en) Ancient building lightning protection method and system with combined effect of carbon dioxide and laser