JPS59108277A - Organic electrolytic battery - Google Patents

Organic electrolytic battery

Info

Publication number
JPS59108277A
JPS59108277A JP21719582A JP21719582A JPS59108277A JP S59108277 A JPS59108277 A JP S59108277A JP 21719582 A JP21719582 A JP 21719582A JP 21719582 A JP21719582 A JP 21719582A JP S59108277 A JPS59108277 A JP S59108277A
Authority
JP
Japan
Prior art keywords
compound represented
general expression
amine compound
general formula
ethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21719582A
Other languages
Japanese (ja)
Inventor
Masayuki Hirota
正幸 広田
Kazumi Yoshimitsu
由光 一三
Kozo Kajita
梶田 耕三
Akio Shimizu
清水 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP21719582A priority Critical patent/JPS59108277A/en
Publication of JPS59108277A publication Critical patent/JPS59108277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte

Abstract

PURPOSE:To perform the deterioration of discharge capacity, generation of gas, and increase in internal resistance through impurities and obtain an electrolyte for an organic electrolytic battery by using the adduct consisting of lithium salt of phosphorus, antimony, arsenic, or boron and a specific amine compound as the solute. CONSTITUTION:The adduct consisting of a compound represented by a general expression ( I ) and an amine compound represented by a general expression (II) is formed in ethylene glycol ether, and the dissolution of a compound represented by the general expression ( I ) into ethylene glycol ether and such is performed under the heating conditions at 50 to 80 deg.C. When an amine compound represented by the general expression (II) is added to the heated solution by three times mol or more, the adduct consisting of the compound represented by the general expression ( I ) and the amine compound represented by the general expression (II) is deposited without being cooled. A concrete example of the compound represented by the general expression ( I ) is LiPF6, LiSbF6, LiAsF6, and LiBF4. In addition, for example, N,N,N',N'-tetramethylethylendiamine, N,N,N',N'-tetramethylebutanediamine, and such are recommended as the amine compound represented by the general expression (II). Besides, for example, propylenecarbonate, gamma-butyrolactone, tetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolan, and such are used as the electrolytic solvent.

Description

【発明の詳細な説明】 本発明は有機電解質電池に関する。[Detailed description of the invention] The present invention relates to organic electrolyte batteries.

最近、有機電解質電池用の電解質として一般式() %式%() (式中、Xはリン、アンチモン、砒素またはホウ素であ
り、n it Xがリン、アンチモンまたは砒素のとき
6で、Xがホウ素のとき4である)で示される化合物が
、有機溶媒への溶解性がよく、かつ高電導度で、しかも
過塩素酸系のものより安全性が高いことから非常に注目
を集めている。
Recently, as an electrolyte for organic electrolyte batteries, the general formula () % formula % () (where X is phosphorus, antimony, arsenic or boron; The compound represented by 4) for boron is attracting much attention because it has good solubility in organic solvents, high conductivity, and is safer than perchloric acid-based compounds.

しかしながら、一般に入手しうる市販品は、その製法1
でもよるが、かなりの不純物を含んでおり、その不純物
が電池内で活物質と反応して放電容量の低下やガス発生
、内部抵抗の増加などを引きおこす。
However, generally available commercially available products are manufactured using the following manufacturing method:
Depending on the battery, however, it contains a considerable amount of impurities, and these impurities react with the active material within the battery, causing a decrease in discharge capacity, gas generation, and an increase in internal resistance.

そのため、本発明者らは、一般式(I)で示される化合
物をエチレングリコールエーテルに溶解させ、Yj5 
過してエチレングリコールエーテルに不溶の不純物を除
いたのち、ろ液を冷却して、一般式(1)で示される化
合物をエチレングリコールエーテルの溶媒和物として析
出させ、得られた析出物を減圧下で加温して、溶媒和し
たエチレングリコールエーテルを除去することによって
精製できることを見出し、それについて既に特許出願を
した。
Therefore, the present inventors dissolved the compound represented by general formula (I) in ethylene glycol ether, and dissolved Yj5
After removing impurities insoluble in ethylene glycol ether, the filtrate is cooled to precipitate the compound represented by general formula (1) as a solvate of ethylene glycol ether, and the resulting precipitate is evaporated under reduced pressure. It was discovered that it could be purified by heating at a lower temperature to remove solvated ethylene glycol ether, and a patent application has already been filed for this.

ところが、上記精製法ではろ液を冷却して一般式(■)
で示される化合物のエチレングリコールエーテルの溶媒
和物を析出させる関係上、ろ液の中に溶解している不純
物が一般式(I)で示される化合物とエチレングリコー
ルエーテルとの溶媒和物に伴なって析出してくる可能性
があるため、本発明者らはさらに研究を重ね、一般式C
I)で示される化合物をエチレングリコールエーテルに
溶解し、濾過してエチレングリコールエーテルに不溶の
不純物を除去したのち、p液に一般式叫 R、R2N−f CR2trN R3R4(II)(式
中、R5、R2、R3およびR4は炭素数1〜4のアル
キル基、mは2〜4の整数である)で示されるアミン化
合物を一般式(I)で示される化合物に対してモル比で
8倍以上添加するときは、冷却を要することなく熱いエ
チレングリコールエーテル溶液から一般式(1)で示さ
れる化合物と一般式@)で示されるアミン化合物との付
加物が析出することを見出した。そして、その一般式(
■)で示される化合物と一般式(I[)で示されるアミ
ン化合物との付加物を加温下で減圧して一般式(II)
で示されるアミン化合物のモル比を3倍未満、好ましく
は0.3〜1.5倍にするときは、該一般式(I)で示
される化合物と一般式毎)で示されるアミン化合物の付
加物が有機電解質電池における電解液の溶質としてそ[
■使用できるこ吉を見出し、本発明を完成するにいたっ
た。
However, in the above purification method, the filtrate is cooled and the general formula (■)
In order to precipitate the ethylene glycol ether solvate of the compound represented by formula (I), impurities dissolved in the filtrate may be accompanied by the solvate of the compound represented by formula (I) and ethylene glycol ether. Therefore, the inventors conducted further research and found that the general formula C
The compound represented by I) is dissolved in ethylene glycol ether and filtered to remove impurities insoluble in ethylene glycol ether. , R2, R3 and R4 are alkyl groups having 1 to 4 carbon atoms, and m is an integer of 2 to 4) at a molar ratio of 8 times or more to the compound represented by general formula (I). It has been found that when added, an adduct of the compound represented by the general formula (1) and the amine compound represented by the general formula @) is precipitated from a hot ethylene glycol ether solution without requiring cooling. And its general formula (
■) The adduct of the compound represented by formula (I) and the amine compound represented by general formula (I[) is prepared under reduced pressure under heating to form the general formula (II).
When the molar ratio of the amine compound represented by is less than 3 times, preferably 0.3 to 1.5 times, addition of the compound represented by the general formula (I) and the amine compound represented by the general formula (for each general formula) substances as solutes in the electrolyte in organic electrolyte batteries.
■We discovered Kokichi that can be used and completed the present invention.

上記のごとき方法により得られる一般式(I)で示され
る化合物と一般式(I[)で示されるアミン化合物との
モル比が1:3以上の付加物は熱いエチレングリコール
エーテル溶液中から析出しうるものであるカラ、エチレ
ングリコールエーテル中(て溶解している不純物を抱き
込むことが少なく、捷た該付加物を加温減圧して一般式
(■)で示されるアミン化合物のモル比を3倍未満にし
だものは、電池に応用した場合、付加したアミン化合物
により安定化し、純品の一般式(■)で示される化合物
よりむしろ安定であって熱による分解などを受けない。
An adduct with a molar ratio of 1:3 or more between the compound represented by the general formula (I) and the amine compound represented by the general formula (I[) obtained by the above method is precipitated from a hot ethylene glycol ether solution. The adduct is heated and depressurized to reduce the molar ratio of the amine compound represented by the general formula (■) to 3. When applied to batteries, those with less than 100% are stabilized by the added amine compound, and are more stable than the pure compound represented by the general formula (■), and are not subject to decomposition due to heat.

なお一般式(I)で示される化合物と一般式(I[)で
示されるアミン化合物とは、その代表的なものについて
例示すると、下記に示すよう々形で付加しているものと
考えられる。
In addition, the compound represented by the general formula (I) and the amine compound represented by the general formula (I[) are considered to be added in the form shown below, to exemplify typical examples thereof.

本発明において用いる一般式(■)で示される化合物の
具体例HLiPF6、LiSbF6、LiAsF6、#
LiBp4であり、また一般式、・(■)で示されるア
ミン化合物としては、例えばN、 N、 N’、 N/
−テトラメチルエチレンジアミン、N、 N、 N’、
 N’−テトラエチルエチレンジアミン、N、N、Nz
NC−テトラメチルプロパンジアミン、N、N、NzN
−一テトラメチルフ゛タンジアミンなどが好ましく用い
られる。
Specific examples of compounds represented by the general formula (■) used in the present invention HLiPF6, LiSbF6, LiAsF6, #
LiBp4, and amine compounds represented by the general formula ・(■) include, for example, N, N, N', N/
-tetramethylethylenediamine, N, N, N',
N'-tetraethylethylenediamine, N, N, Nz
NC-tetramethylpropanediamine, N, N, NzN
-1-tetramethylbutanediamine and the like are preferably used.

前記のような一般式CI)で示される化合物と一般式(
II)で示されるアミン化合物との付加物はエチレンク
リコールエーテル中で形成されるが、その際のエチレン
グリコールエーテルとしては例えばエチレングリコール
ジメチルエーテル(すなわち、1.2−ジメトキシエタ
ン)、エチレングリコールジエチルエーテル、エチレン
グリコールジブチルエーテルなどが用いられる。−また
それらのエチレングリコールエーテルに代えてジエチル
エーテル、水などを用いることもできる。
A compound represented by the general formula CI) as described above and a compound represented by the general formula (CI)
The adduct with the amine compound represented by II) is formed in ethylene glycol ether, and examples of the ethylene glycol ether include ethylene glycol dimethyl ether (i.e., 1,2-dimethoxyethane), ethylene glycol diethyl ether. , ethylene glycol dibutyl ether, etc. are used. -Also, diethyl ether, water, etc. can be used instead of ethylene glycol ether.

−He式(I)で示される化合物のエチレングリコール
エーテルなどへの溶解は50〜80°Cに加熱下で行な
われ、その加熱溶液中に一般式毎)で示されるアミン化
合物を3倍モル以上加えると冷却することなく、一般式
(I)で示される化合物と一般式@)で示されるアミン
化合物との付加物が析出してくる。
-He The compound represented by the formula (I) is dissolved in ethylene glycol ether etc. under heating at 50 to 80°C, and the amine compound represented by the general formula) is dissolved in the heated solution by 3 times the mole or more. When added, an adduct of the compound represented by the general formula (I) and the amine compound represented by the general formula @) is precipitated without cooling.

そして、該付加物から一般式(]IIで示されるアミン
化合物を部分的に除去するには減圧下で加温するか、あ
るいは常温でチッ素またはアルゴンなどの不活性ガス気
流にさらすことによって行なわれる。
The amine compound represented by the general formula (II) can be partially removed from the adduct by heating under reduced pressure or by exposing it to a stream of an inert gas such as nitrogen or argon at room temperature. It will be done.

減圧乾燥の場合は温度?]−〇〜20℃に保ち、0.1
〜10πMHz程度に減圧することが好ましい。
In the case of vacuum drying, what about temperature? ]-0~20℃, 0.1
It is preferable to reduce the pressure to about 10πMHz.

電解液溶媒としては例えばプロピレンカーボネート、γ
−ブチロラクトン、テトラヒドロフラン、1.2−ジメ
トキシエタン、1,3−ジオキソランなどの単独捷たは
2種以上の混合溶媒が用いられ、これらの溶媒に前記一
般式(I)で示される化合物と一般式(II)で示され
るアミン化合物との付加物を通常1.0〜30モル/l
 (ただし、一般式(I)で示される化合物として)溶
解させることによって電解液が調製される。
Examples of electrolyte solvents include propylene carbonate, γ
- A single solvent or a mixed solvent of two or more of butyrolactone, tetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, etc. is used, and the compound represented by the general formula (I) and the general formula The adduct with the amine compound represented by (II) is usually 1.0 to 30 mol/l.
(However, as a compound represented by general formula (I)) An electrolytic solution is prepared by dissolving it.

本発明において負極活物質として用いる軽金属としては
例えばリチウム、リチウム合金、ナトリウム、マグネシ
ウム、アルミニウムなどがあげられ、正極活物質として
は例えば二硫化チタン、硫化鉄、酸化鋼、二酸化マンガ
ン、フン化炭素などが用いられる。
Examples of light metals used as negative electrode active materials in the present invention include lithium, lithium alloys, sodium, magnesium, aluminum, etc., and examples of positive electrode active materials include titanium disulfide, iron sulfide, steel oxide, manganese dioxide, carbon fluoride, etc. is used.

つぎ((8考例および実施例をあげて本発明を説明する
Next, the present invention will be explained with reference to 8 examples and examples.

参考例 市販のLiPF6 (純度98係)20(Hlを70°
Cに加熱したエチレングリコールジメチルエーテル1,
000m1K1時間かけて少量ずつ添加し、添加後さら
に70°C6て維持しながら1時間攪拌を続けた。
Reference example Commercially available LiPF6 (purity: 98) 20 (Hl at 70°
ethylene glycol dimethyl ether heated to C,
000mlK was added little by little over 1 hour, and after the addition, stirring was continued for 1 hour while maintaining the temperature at 70°C.

得られた溶液を70’C前後に保ちながらガラスフィル
ターで渥過し、ろ液K 4609のNI N、 N; 
N’ −7−トラメチルエチレンジアミン(以下、TM
E DAという)を徐々に加え白色の沈澱を生成させ、
ガラスフィルターにより炉別した。得られた沈澱物をガ
ラスフィルター上で熱エチレングリコールジメチルエー
テル300mftにより数回洗浄した。得られた沈澱の
量は600yであり、熱重呈分析により(TMEDA)
3L!PF6であることが確認された。
The obtained solution was filtered through a glass filter while maintaining the temperature at around 70'C, and the filtrate K 4609 NI N, N;
N'-7-tramethylethylenediamine (hereinafter referred to as TM
Gradually add EDA) to form a white precipitate,
It was separated by furnace using a glass filter. The resulting precipitate was washed several times with 300 mft of hot ethylene glycol dimethyl ether on a glass filter. The amount of precipitate obtained was 600y, which was determined by thermogravimetry analysis (TMEDA).
3L! It was confirmed to be PF6.

得られた(TMEDA) 3LIPF6をアルゴンガス
気流下后温で乾燥して(TMEDA) 1.3LiPF
6を得た。
The obtained (TMEDA) 3LIPF6 was dried at room temperature under an argon gas stream to obtain (TMEDA) 1.3LiPF.
I got 6.

上記のようにして得られた精製し1PF6およびエチレ
ングリコールジメチルエーテルの溶媒和物として精製さ
れたLIPF6ならびに相LiPF6のpHを調べた結
果を第1表に示す。
Table 1 shows the results of examining the pH of the purified 1PF6 obtained above, LIPF6 purified as a solvate of ethylene glycol dimethyl ether, and phase LiPF6.

第   1   表 第1表に示すようKTMEDAの付加により精製したL
iPF6はpHが高く、粗LiPF6中に含まれている
フッ化水素みどの酸性不純物か充分に中和されている。
Table 1 L purified by addition of KTMEDA as shown in Table 1
iPF6 has a high pH, and acidic impurities such as hydrogen fluoride contained in crude LiPF6 are sufficiently neutralized.

実施例 参考例により得た(TMEDA)3LiPF6を5°C
11關Hgに減圧してTMEDAのモル比を0.5モル
にした( TMEDA )(1,5L 1PF6を4−
メチル−1,3−ジオキソランと1,2−ジメトキシエ
タンとの答戦比が7=3の混合溶媒に1,5モル/l溶
解して′電解液を調製し、この電解液を用い、リチウム
を負極活物質、二硫化チタンを正極活物質とする電池A
を製造した。
(TMEDA)3LiPF6 obtained according to the reference example was heated at 5°C.
The pressure was reduced to 11% Hg and the molar ratio of TMEDA was set to 0.5 mol (TMEDA) (1,5L 1PF6 to 4-
Prepare an electrolytic solution by dissolving 1.5 mol/l of methyl-1,3-dioxolane and 1,2-dimethoxyethane in a mixed solvent with a ratio of 7=3. Battery A uses titanium disulfide as a negative electrode active material and titanium disulfide as a positive electrode active material.
was manufactured.

比較のため、エチレングリコールジメチルエーテルが溶
媒和した( D M E )3 L iP F6を前記
と同様の混合溶媒に1.5モル/l溶解して電解液を調
製し、該電解液を用いて上記と同様の電池Bを製造した
For comparison, an electrolytic solution was prepared by dissolving 1.5 mol/l of ethylene glycol dimethyl ether-solvated (DME)3LiP F6 in the same mixed solvent as above, and using this electrolytic solution, the above A battery B similar to the above was manufactured.

上記のような電池AおよびBの初度内部抵抗ならびに6
0°Cで10日間貯蔵後の内部抵抗を測定した。その結
果を第2表に示す。
Initial internal resistance of batteries A and B as above and 6
The internal resistance was measured after storage at 0°C for 10 days. The results are shown in Table 2.

%2表 特許出願人 日立マクセル株式会社%2 table Patent applicant: Hitachi Maxell, Ltd.

Claims (1)

【特許請求の範囲】 1、 リチウムなどの軽金属よりなる負極と正極と有機
電解液を有する電池において、電解液の溶質に一般式(
I) LiXFn(■) (式中、Xはリン、アンチモン、砒素捷たはホウ素であ
り、nはXがリン、アンチモン捷たは砒素のとき6、X
がホウ素のとき4である)で示される化合物と、該一般
式(I)で示される化合物1モルに対して3モル未満の
一般式帆)R1R2N−+CH2チーN R2H,4(
II)(式中、R1、R2、R6およびR4は炭素数1
〜4のアルキル基、mは2〜4の整数である)で示され
るアミン化合物との付加物を用いたことを特徴とする有
機電解質電池。
[Claims] 1. In a battery having a negative electrode and a positive electrode made of a light metal such as lithium, and an organic electrolyte, the solute of the electrolyte has a general formula (
I) LiXFn (■) (wherein, X is phosphorus, antimony, arsenic, or boron; n is 6 when X is phosphorus, antimony, or arsenic;
is 4 when is boron) and less than 3 mol of the compound represented by the general formula (I) R1R2N-+CH2N R2H,4(
II) (wherein R1, R2, R6 and R4 have 1 carbon number
An organic electrolyte battery characterized in that an adduct with an amine compound represented by an alkyl group of -4 and m is an integer of 2 to 4 is used.
JP21719582A 1982-12-10 1982-12-10 Organic electrolytic battery Pending JPS59108277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21719582A JPS59108277A (en) 1982-12-10 1982-12-10 Organic electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21719582A JPS59108277A (en) 1982-12-10 1982-12-10 Organic electrolytic battery

Publications (1)

Publication Number Publication Date
JPS59108277A true JPS59108277A (en) 1984-06-22

Family

ID=16700342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21719582A Pending JPS59108277A (en) 1982-12-10 1982-12-10 Organic electrolytic battery

Country Status (1)

Country Link
JP (1) JPS59108277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085954A (en) * 1989-03-31 1992-02-04 Hitachi Maxell, Ltd. Organic electrolyte solution type cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085954A (en) * 1989-03-31 1992-02-04 Hitachi Maxell, Ltd. Organic electrolyte solution type cell
US5356736A (en) * 1989-03-31 1994-10-18 Hitachi Maxell, Ltd. Organic electrolyte solution type cell

Similar Documents

Publication Publication Date Title
KR101046107B1 (en) How to Purify Battery Active Materials
CN108368132B (en) Novel method for producing lithium bis (fluorosulfonyl) imide
US20080063945A1 (en) Polyfluorinated Boron Cluster Anions for Lithium Electrolytes
KR20030051436A (en) Conductive Polymeric Compositions For Lithium Batteries
JP2020528200A (en) Modified triazine functional compound
JP5862094B2 (en) Method for producing lithium hexafluorophosphate concentrate
JPS5981870A (en) Manufacture of solute for nonaqueous electrolyte
KR20020062832A (en) Borate salts for use in electrochemical cells
US6277525B1 (en) Method for producing electrolyte and method for producing secondary battery
JP3034202B2 (en) Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same
JPS5981869A (en) Manufacture of lithium battery
JPS61208758A (en) Organic electrolyte battery
JPS5953216B2 (en) Synthesis method of anhydrous lithium borofluoride
JP3555720B2 (en) Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same
JPS59108277A (en) Organic electrolytic battery
JPH11162508A (en) Manufacture of electrolyte and manufacture of secondary battery
KR20200114967A (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
JP3973329B2 (en) Method for producing lithium hexafluorophosphate
WO2011155267A1 (en) Method for producing electrolyte solution for lithium ion battery, and lithium ion battery using the electrolyte solution
JP2020527836A (en) Modified ionic liquid containing triazine
JPH11157830A (en) Production of lithium tetrafluoroborate
JP3750179B2 (en) Purification method of organic acid lithium salt
KR20200114966A (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
JPS59108276A (en) Organic electrolytic battery
JPH11147705A (en) Purification of lithium hexafluorophosphate