JPS59107940A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS59107940A
JPS59107940A JP57214387A JP21438782A JPS59107940A JP S59107940 A JPS59107940 A JP S59107940A JP 57214387 A JP57214387 A JP 57214387A JP 21438782 A JP21438782 A JP 21438782A JP S59107940 A JPS59107940 A JP S59107940A
Authority
JP
Japan
Prior art keywords
optical
loss
optical fiber
increase
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57214387A
Other languages
Japanese (ja)
Other versions
JPS6219377B2 (en
Inventor
Naoya Uchida
内田 直也
Sunao Uesugi
上杉 直
Tsuneo Kuwabara
恒夫 桑原
Yahei Oyamada
弥平 小山田
Yukinori Ishida
石田 乏則
Masamitsu Tokuda
正満 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57214387A priority Critical patent/JPS59107940A/en
Publication of JPS59107940A publication Critical patent/JPS59107940A/en
Publication of JPS6219377B2 publication Critical patent/JPS6219377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain an optical quartz fiber preventing an increase in the optical loss with the passage of time and having stabilized characteristics by restricting the amount of P used as a dopant to a specified range. CONSTITUTION:P is used as a dopant in an optical fiber by 0-0.5%. The optical fiber is practically used because it increases hardly the optical loss and undergoes little change with the passage of time even when used over a long term after cabling, construction or installation. The optical fiber contg. said restricted amount of P increases the loss only by <=about 0.1dB/km at 1.3mum wavelength in 20 years.

Description

【発明の詳細な説明】 本発明はケーブル化時または布設・架渉後、長期間にわ
たり経時的に光損失の増加がない安定な光ファイバに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stable optical fiber in which optical loss does not increase over a long period of time after being made into a cable or after being laid or strung.

石英系光フアイバテーブルを用いた光伝送システムは、
従来のシステムに比べて、特性が良く、しかも経済的で
あることから、公衆通信をはじめとして各種の通信に実
用化されつつある。光ファイバの最大の特徴の一つとし
てその低損失性があけられるが、第1図に典型例を示す
ように、1μm以上の長波長帯領域で1 clB / 
km以下の光損失となり、すでに0.8〜0.5 dg
 / kmという低損失な光ファイバが量産ペースで得
られるようになつでいる。光伝送システムとしては、こ
の低損失性を生かし”i(,1,8μmまたは1.−5
5μm付近の光源を用いるのが得策であり、現在実用的
なシステムが数多く構成されつつある。
Optical transmission systems using silica-based optical fiber tables are
Since it has better characteristics and is more economical than conventional systems, it is being put into practical use in various communications including public communications. One of the greatest features of optical fibers is their low loss, and as shown in a typical example in Figure 1, 1 clB /
The optical loss is less than km, and it is already 0.8 to 0.5 dg.
Optical fibers with a loss as low as / km are becoming available in mass production. As an optical transmission system, taking advantage of this low loss property, "i (, 1.8 μm or 1.-5 μm
It is advisable to use a light source of around 5 μm, and many practical systems are currently being constructed.

しかるな最近、光ファイバをケーブル化したりまたは布
設・架渉後、長期間にわたり使用しているときに、第2
図に示すように1.8μm以上の波長帯で光損失が増加
し、実用上大きな障害となり得ることが明らかとなった
。第2図において点線は光損失の初期値を示し、実線は
2年経過後の光損失特性を示す。
However, recently, when optical fibers have been converted into cables or used for long periods of time after being installed or strung, secondary
As shown in the figure, it has become clear that optical loss increases in the wavelength band of 1.8 μm or more, which can be a major obstacle in practical use. In FIG. 2, the dotted line indicates the initial value of optical loss, and the solid line indicates the optical loss characteristic after two years.

本発明は前記実用上の障害を解決するため、光する。The present invention aims to solve the above-mentioned practical obstacles.

石英系光ファイバのドーパントとしては、屈折率を上げ
るものとして、Ge、P1逆に下げるものとしてB、F
がよく使われており、At 、 Ti等についても検討
が行われている。これらのドーパントのうち、Pを使用
すると屈折率が上がる割合、は小さいが、ガラスの融点
が大幅に低下し、プリフォームの製造が容易になること
から、従来好んで使用されてきた。特にGeとPを一緒
にドープすることが一般的であった。
Dopants for silica-based optical fibers include Ge to increase the refractive index, and B and F to decrease the refractive index.
is often used, and At, Ti, etc. are also being studied. Among these dopants, the use of P increases the refractive index at a small rate, but since it significantly lowers the melting point of the glass and facilitates the production of preforms, it has traditionally been used favorably. In particular, it was common to dope Ge and P together.

しかるに本発明者らの研究によれば、第2図に示した長
波長帯の光損失槽は、初期値も2年経過後も共に、Pが
寄与した化学結合の変化によって生じることが明らかに
なり、Pのドープ量を減少させれば、光損失槽が急激に
減少することがわかった。経時的な光損失増加量を的確
に予想する方法として高温昇温試験が有用であるが、第
8図はその一例としてファイバ心線を200℃で40分
間保持した後、そのままの状態で光損失の波長特性(第
8図における実線で示した特性)を測定し、昇温前の特
性(第8図における点線で示した特性゛)と比較した結
果を示す。このような昇温試験をPのドープ量が異なる
光ファイバについて行い、200°C、1,55μmに
おける損失増をドープ量に対してプロットした結果を第
4図に示す。
However, according to the research conducted by the present inventors, it is clear that the optical loss tank in the long wavelength band shown in Figure 2 is caused by changes in chemical bonds contributed by P, both at the initial value and after two years. It was found that if the amount of P doped is reduced, the optical loss tank is rapidly reduced. High-temperature heating tests are useful as a method to accurately predict the increase in optical loss over time. Figure 8 shows, as an example, the optical loss after holding a fiber core at 200°C for 40 minutes. The wavelength characteristics (characteristics shown by the solid line in FIG. 8) were measured and the results were compared with the characteristics before temperature rise (characteristics shown by the dotted line in FIG. 8). Such a temperature increase test was conducted on optical fibers with different P doping amounts, and the loss increase at 200° C. and 1.55 μm was plotted against the doping amount, and the results are shown in FIG.

一方、現場に布設した光ケーブルの経時特性とP濃度の
関係および常温から200°Cの間のいくつかの温度で
の光損失槽とP濃度の関係を調べた結果、 (LJ P 6度を少なくすれば、現場に布設した光ケ
ーブルの損失の経時変化も少なくなる (2)温度を低くすれば、損失増が生じる時間が長くな
る ことを見出した。
On the other hand, as a result of investigating the relationship between the aging characteristics of optical cables installed in the field and the P concentration, and the relationship between the optical loss tank and the P concentration at several temperatures between room temperature and 200°C, we found that (LJ P 6 degrees (2) It was discovered that lowering the temperature lengthens the time it takes for loss to increase.

現場に布設した元ケーブルにおいては、20年間に0.
1 dB / km (波長1.3μ、)以下の損失増
しか生じないことが要求されるが、それをもとに高温昇
温試験での光損失槽の許容値を計算すると、1.5μm
で10 dB / km以下の損失増である必要がある
。従って第4図よりP濃度は0.5モル%以下にする必
要があることがわかる。
The original cable installed at the site had 0.
It is required that the loss increase is no more than 1 dB/km (wavelength: 1.3 μm), but based on this, the allowable value of the optical loss tank in the high-temperature heating test is calculated to be 1.5 μm.
The loss increase must be less than 10 dB/km. Therefore, it can be seen from FIG. 4 that the P concentration needs to be 0.5 mol % or less.

以上説明したように、本発明の光ファイバを用いれば、
現場環境に布設された実用的な光ケーブルの光損失槽を
小さくすることができる。
As explained above, if the optical fiber of the present invention is used,
The optical loss tank of a practical optical cable installed in a field environment can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光ファイバの典型的な波長特性の例を、示す図
、 第2図は光フアイバ損失の典型的な経時劣化の例を示す
図、 第8図は光ファイバの高温昇温試験における光損失の増
加例を示す図、 第4図は光ファイバのドープ剤Pの濃度と昇温試験にお
ける光損失槽の例を示す図である。 特許出願人  日本電信電話公社 第19図 第2図 波長(μm) 第8図 第4図 P//を度(モル%) 白根162番地日本電信電話公社 茨城電気通信研究所内
Figure 1 shows an example of the typical wavelength characteristics of an optical fiber. Figure 2 shows an example of typical aging deterioration of optical fiber loss. Figure 8 shows an example of optical fiber loss in a high-temperature heating test. FIG. 4 is a diagram showing an example of increase in optical loss. FIG. 4 is a diagram showing an example of the concentration of dopant P in an optical fiber and an optical loss tank in a temperature increase test. Patent applicant: Nippon Telegraph and Telephone Public Corporation Figure 19 Figure 2 Wavelength (μm) Figure 8 Figure 4

Claims (1)

【特許請求の範囲】[Claims] LPをドープ剤として含む石英系光ファイバにおいて、
そのPのドープ蓋をはFf、0から0.6モル%の間に
選んだことを特徴とする光ファイバ。
In a silica-based optical fiber containing LP as a dopant,
An optical fiber characterized in that the P doped cap is Ff, selected between 0 and 0.6 mol%.
JP57214387A 1982-12-07 1982-12-07 Optical fiber Granted JPS59107940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214387A JPS59107940A (en) 1982-12-07 1982-12-07 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214387A JPS59107940A (en) 1982-12-07 1982-12-07 Optical fiber

Publications (2)

Publication Number Publication Date
JPS59107940A true JPS59107940A (en) 1984-06-22
JPS6219377B2 JPS6219377B2 (en) 1987-04-28

Family

ID=16654942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214387A Granted JPS59107940A (en) 1982-12-07 1982-12-07 Optical fiber

Country Status (1)

Country Link
JP (1) JPS59107940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092173A1 (en) * 2000-05-31 2001-12-06 Schneider Laser Technologies Ag Sio2-based fibre optical waveguide for transmitting a high light power density and corresponding production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092173A1 (en) * 2000-05-31 2001-12-06 Schneider Laser Technologies Ag Sio2-based fibre optical waveguide for transmitting a high light power density and corresponding production method

Also Published As

Publication number Publication date
JPS6219377B2 (en) 1987-04-28

Similar Documents

Publication Publication Date Title
Ainslie et al. Interplay of design parameters and fabrication conditions on the performance of monomode fibers made by MCVD
DE69728955T2 (en) Athermalized codoped optical waveguide device
EP0294037B1 (en) Optical fibre attenuators
US4380588A (en) Glass for infrared ray-transmitting optical fibers and optical fibers formed from said glass
Uesugi et al. Optical loss increase of phosphor‐doped silica fiber at high temperature in the long wavelength region
Davey et al. The fabrication of low loss high NA silica fibres for Raman amplification
US6856739B2 (en) Optical fiber for resisting hydrogen-induced loss
Tasker et al. Low-loss optical waveguides with pure fused SiO 2 cores
JPS59107940A (en) Optical fiber
Vandewoestine et al. Developments in optical waveguide fabrication by the outside vapor deposition process
DE112022000100T5 (en) G.654.E optical fibre for land use and method for manufacturing the same
US20030010064A1 (en) Method of producing optical fiber
Nelson et al. The fabrication and performance of long lengths of silica core fiber
JPH01147412A (en) Single mode optical fiber
Nakahara et al. ESR study on loss increase of 500° C heat-treated Ge-doped optical fibres
JP2004177630A (en) Fiber for attenuation of optical signal
Itoh et al. Loss increases due to chemical reactions of hydrogen in silica glass optical fibers
JP4062404B2 (en) Optical fiber manufacturing method
JP3315786B2 (en) Optical amplifier type optical fiber
Kuwazuru et al. Estimation of long-term transmission loss increase in silica-based optical fibers under hydrogen atmosphere
JP2006512266A (en) Low splice loss optical fiber and method of manufacturing the optical fiber
JPS6140842A (en) Optical fiber
JPS6228101B2 (en)
JPS61132531A (en) Production of optical fiber
JPH06345494A (en) Carbon-coated optical fiber