JPS59107431A - Pickup for optical digital disk - Google Patents

Pickup for optical digital disk

Info

Publication number
JPS59107431A
JPS59107431A JP57216688A JP21668882A JPS59107431A JP S59107431 A JPS59107431 A JP S59107431A JP 57216688 A JP57216688 A JP 57216688A JP 21668882 A JP21668882 A JP 21668882A JP S59107431 A JPS59107431 A JP S59107431A
Authority
JP
Japan
Prior art keywords
light
disk
surface acoustic
acoustic wave
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57216688A
Other languages
Japanese (ja)
Other versions
JPH0445895B2 (en
Inventor
Naohisa Inoue
直久 井上
Kazuhiko Mori
和彦 森
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP57216688A priority Critical patent/JPS59107431A/en
Publication of JPS59107431A publication Critical patent/JPS59107431A/en
Publication of JPH0445895B2 publication Critical patent/JPH0445895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08552Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using electro-optical elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • G11B7/124Integrated head arrangements, e.g. with source and detectors mounted on the same substrate the integrated head arrangements including waveguides
    • G11B7/1245Integrated head arrangements, e.g. with source and detectors mounted on the same substrate the integrated head arrangements including waveguides the waveguides including means for electro-optical or acousto-optical deflection

Abstract

PURPOSE:To prevent the variation of oscillation characteristics of a laser diode which is due to the oblique input of the laser light to a disk and at the same time to omit the assembling control to attain a compact structure of the titled pickup, by integrating an emitting part of the laser light and a detecting part of the reflected light on a substrate. CONSTITUTION:The light beams emitted from a laser diode 24 to a waveguide path 23 are turned into parallel beams by a collimator lens 25 and receives a proper angle change with the surface acoustic wave sent from a comb-shaped electrode ultrasonic wave oscillator IDT26 produced on the path 23. Then the parallel beams are made incident to a prescribed track of a disk 5 with inclination of a proper angle from the side edge face of the path 23 by exercising control in combination over the applied voltage between electrodes 28 set at both ends of a grating lens 27 and the applied voltage between electrodes 30 set at both ends of the path 23. Then the irradiating position and the focal position are controlled. The reflected light beams sent from the disk 5 are made incident to a photodetecting part 32 formed at the side edge face of the same substrate 21. Thus a focus error signal is obtained.

Description

【発明の詳細な説明】 ・K発明の分野) この発明は、ビデオディスクあるいはディジタルオーデ
ィオディスク等として実用化されている光学式ディジタ
ルディスク用のピックアップに係り、特に、各斐素を一
体的に集積化するよpにしICものに関する。
[Detailed Description of the Invention] ・Field of the Invention) This invention relates to a pickup for an optical digital disc that is put into practical use as a video disc or a digital audio disc, and particularly relates to a pickup for an optical digital disc that is put into practical use as a video disc or a digital audio disc. It is related to IC products that are becoming more and more popular.

(従来技術とその問題点) 最近実用化されるようになつl〔光学式ビデ図ディスク
システムや光学式ディジタルオーディオディスクシステ
ムにあっては、基本的に、第1図に示すような個別の光
学部品を用いた4VJ造のピックアップが用いられてい
る。
(Prior art and its problems) In optical video disc systems and optical digital audio disc systems, which have recently come into practical use, basically individual optical discs as shown in Figure 1 are used. A pickup made using 4VJ parts is used.

レーザダイオード1から出射したレーザ光(波長は約8
00nm)は偏向プリズムスプリッタ2を直進し、1/
4波長板4を通過し、対物レンズ3によりディスク5面
に焦点を絞って照射される。
Laser light emitted from laser diode 1 (wavelength is approximately 8
00nm) goes straight through the deflection prism splitter 2 and 1/
The light passes through a four-wavelength plate 4 and is focused and irradiated onto the surface of the disk 5 by the objective lens 3.

ディスク5上のピットの有無によって上記レーザ光の反
射光強度が変化づるが、その反射光は対物レンズ3によ
り集光され、先の光学系を逆方向に進行し、1/4波長
板4を再度通過して偏向プリズムスプリッタ2にへ躬す
−る。このときの反則光はレーザダイオード1の出射光
に対して偏波面が90度回転しているので、反射光は偏
向プリズムスプリッタ2によって進路が変えられ、受光
索子6によつ°Cディスク5上のピットのイ”i’ 7
!11による反射光強度の変化が検出される。
The reflected light intensity of the laser beam changes depending on the presence or absence of pits on the disk 5, and the reflected light is focused by the objective lens 3, travels through the optical system in the opposite direction, and passes through the quarter-wave plate 4. It passes through again and stumbles onto the deflection prism splitter 2. Since the polarization plane of the reflected light at this time has been rotated by 90 degrees with respect to the light emitted from the laser diode 1, the path of the reflected light is changed by the deflection prism splitter 2, and the reflected light is transmitted to the light receiving cable 6 by the °C disk 5. I"i' 7 in the upper pit
! 11 is detected.

しかし、このような従来のピックアップにあっては次の
よ)な問題がある。
However, conventional pickups like this have the following problems.

まず、半導体レーザは発振特性が外β1;からの入0・
j光によって変化させられることは周知の通りであるが
、この種ピックアップにおいて、レーザタイオード1の
発振特性が変化するということは再生特性の低下や音質
の低下をきたずことになる。
First, the oscillation characteristic of a semiconductor laser is that the input signal from β1 is 0.
It is well known that the oscillation characteristics of the laser diode 1 in this type of pickup are changed by the j-light, but in this type of pickup, a change in the oscillation characteristics of the laser diode 1 causes a deterioration in the reproduction characteristics and a deterioration in the sound quality.

そこで、従来のピックアップでは、上述したように、1
/4波長板4と偏向プリズムプリンタ2の作用により、
ディスク5からの反射光がレーザダイオード1に戻り入
射ツることを防止し、レーザダイオード1が安定した動
作をなずJζうにしている。しかし、これは1/4波長
板を通過した反射光の偏波面がレーザダイオード1の出
射光のそれに対して完全に直交している理想的な場合で
ある。
Therefore, in conventional pickups, as mentioned above, 1
Due to the action of the /4 wavelength plate 4 and the deflection prism printer 2,
This prevents the reflected light from the disk 5 from returning to the laser diode 1 and causing the laser diode 1 to operate stably. However, this is an ideal case in which the plane of polarization of the reflected light that has passed through the quarter-wave plate is completely orthogonal to that of the light emitted from the laser diode 1.

実際にはディスク5の透明基板材131 (ポリカーボ
ネートやアクリル等が使用されている)が被屈折性を持
っているなどが原因して、完全に直交さVることは回動
であり、レーザダイオード1への戻り入射は避番ノられ
ないのが実情である。
In reality, due to the fact that the transparent substrate material 131 of the disk 5 (polycarbonate, acrylic, etc. is used) has a tendency to refract, the completely orthogonal V is a rotation, and the laser diode The reality is that the return incidence to 1 cannot be avoided.

この問題を解決するために、例えばレーザ光を斜め入射
させることが考えられるが、これでは光学部品の点数が
増加し、高密度の光学部品の集積を行なわなGノればな
らないので、部品点数の増加によるロス1〜上昇ととも
に高度の部品集積技術が必要どなる。
In order to solve this problem, for example, it is possible to make the laser beam incident obliquely, but this increases the number of optical parts and requires high-density integration of optical parts. As the loss increases from 1 to 1 due to an increase in the number of components, advanced component integration technology becomes necessary.

また、個別のレンズ系やミラーを用いて光学系を構成し
ているので、組立調整が面倒であり、また小形化が困難
である。
Furthermore, since the optical system is constructed using individual lens systems and mirrors, assembly and adjustment are troublesome, and miniaturization is difficult.

(発明の目的) この発明は、ディスクへのレーザ光の斜め入射によって
レーザダイオードの発振特性が変化するのを防止り゛る
と同時に、レーデ光を発生りる発光。
(Object of the Invention) The present invention is a light emitting device that prevents the oscillation characteristics of a laser diode from changing due to oblique incidence of laser light on a disk, and at the same time generates radar light.

出射部分と反射光を検知する部分を1つの基板上に集積
化することにより、組立調整が不要で、かつ小形化を可
能にした光学式ディジタルディスク用ピックアップを提
供することにある。
An object of the present invention is to provide an optical digital disk pickup that does not require assembly and adjustment and can be miniaturized by integrating an emitting part and a part for detecting reflected light on one substrate.

(発明の構成と効果) 上記の目的を達成するために、この発明は、表面に光導
波路が形成された基板に、上記光導波路に光ビームを伝
搬させる発光部と、上記光導波路上に弾性表面波を伝搬
させて、その弾性表面波ににり上記光ビームを上記光導
波路の平面内で偏向させる弾性表面波発生部と、上記光
ビームを上記光導波路側端面から出射させるとともに、
その出射ビームの2次元フォーカシングおよび焦点位置
調整を行なう集積化レンズ部と、上記光ビームの出射位
置から適宜間隔をおいて配設され、上記光ビームの反射
光を受光りる複数の受光水子が組合わされた受光部と、
上記受光部出力を受【ノて信号処理をし、その制御信号
を弾性表面波発生部J3よびグレーディング部に供給す
ることにより、光ビームの偏向角の制御ならびに出射ビ
ームの2次元フォーカシングa3よび焦点位置の制御を
に行なう制御部とを一体的に集積化し、上記集積化レン
ズ部から出射した3光ビームをディスクに斜めに照則し
、ディスクからの斜めの反射光を上記受光部に入射させ
るようにしたことを特徴どする。
(Structure and Effects of the Invention) In order to achieve the above object, the present invention includes a substrate on which an optical waveguide is formed, a light emitting part that propagates a light beam to the optical waveguide, and an elastic member on the optical waveguide. a surface acoustic wave generator that propagates a surface wave and deflects the light beam within the plane of the optical waveguide according to the surface acoustic wave;
an integrated lens section that performs two-dimensional focusing and focal position adjustment of the emitted beam; and a plurality of light receiving water droplets that are arranged at appropriate intervals from the emitted position of the light beam and that receive reflected light of the light beam. a light-receiving section that is combined with
By receiving the output of the light receiving section, processing the signal, and supplying the control signal to the surface acoustic wave generating section J3 and the grading section, the deflection angle of the light beam is controlled, and the two-dimensional focusing a3 and the focal point of the output beam are controlled. A control section that controls the position is integrally integrated, the three light beams emitted from the integrated lens section are aimed obliquely at the disk, and the diagonal reflected light from the disk is made to enter the light receiving section. Characterize what you did.

この発明によればディスクに対する入射光とディスクか
らの反射光の経路を全く異ならμ、しが積比された光学
系装置で実現でき、反射光の光源側への戻りが全くなく
なり、従来のような戻り入射によるレーザダイオードの
発振特性変化に基づく信頼性の低下等を防止することが
できる。
According to this invention, the paths of the incident light to the disk and the paths of the reflected light from the disk can be realized using an optical system device in which the product ratio of μ and H is completely different, and the return of the reflected light to the light source side is completely eliminated, unlike the conventional method. It is possible to prevent a decrease in reliability due to a change in the oscillation characteristics of the laser diode due to the return incidence.

また、光ビーム出射位置と反則光受光位置は基板の同一
側面に形成されるので、当該ピックアップとディスク間
の間隔を狭くでき、装置全体の小形化が可能になるとい
う優れた効果を右する。
In addition, since the light beam output position and the reflected light reception position are formed on the same side of the substrate, the distance between the pickup and the disk can be narrowed, resulting in an excellent effect that the entire device can be made smaller.

(実施例の説明) 第2図はこの発明の実施例に係るピックアップの概略構
成を示している。このピックアップはシリコン長板21
を用いて構成されてJ3す、発光部側のシリコン基板2
1十にはLiNb0a基板22が載囮されている。この
LiNbO3基板22上には薄膜光導波路23がチタン
(Ti )の熱拡散によって作成されている。レーザダ
イオード24は導波路23の端面に接合されており、レ
ーザダイオード24から生じたレーザビームは導波路2
3を伝搬する。
(Description of Embodiment) FIG. 2 shows a schematic configuration of a pickup according to an embodiment of the present invention. This pickup is silicon long plate 21
The silicon substrate 2 on the light emitting part side is configured using J3.
A LiNb0a substrate 22 is mounted on the substrate 10. A thin film optical waveguide 23 is formed on this LiNbO3 substrate 22 by thermal diffusion of titanium (Ti). The laser diode 24 is connected to the end face of the waveguide 23, and the laser beam generated from the laser diode 24 is connected to the waveguide 23.
Propagate 3.

レーザダイオード24から導波路23に出射した光ビー
ムはまずコリメートレンズ25により平行化される。平
行化されたビームは導波路23)上に作成されIこID
T(櫛形m極超合波光振子)26から後述のJ、うに発
生ずる弾性表面波(SAW>と交わり、この弾性表面波
の波面に対してブラッグ角θ0で入射する。レーデ光の
波長をλ1弾性表面波の波長をへ〇、尋波路の屈折率を
口とりるど、 sin  θ0 =λ/211 Δ。
The light beam emitted from the laser diode 24 to the waveguide 23 is first collimated by the collimating lens 25. The collimated beam is created on the waveguide 23)
It intersects with a surface acoustic wave (SAW) generated from T (comb-shaped m-pole supercombining optical pendulum) 26, which will be described later, and is incident on the wavefront of this surface acoustic wave at a Bragg angle θ0.The wavelength of the Rede light is λ1. Taking the wavelength of the surface acoustic wave as 〇 and the refractive index of the wave path, sin θ0 = λ/211 Δ.

の条件がは足されるならば、適宜な振幅の弾性表面波の
波面によってレーザ光は完全に反射され、レーザ光の進
行方向が20alet=)変化づ“る。
If the following conditions are met, the laser beam will be completely reflected by the wavefront of the surface acoustic wave with an appropriate amplitude, and the traveling direction of the laser beam will change by 20 alet=).

vR3図に示しているように、弾性表面波SAWの波面
の存在Jる領域はI D T 26の電極の交差幅りで
制限されているため、付随づる屈折率変化の周期構造も
同じLの範囲に限られる。従って、この幅の限定された
弾性表面波は無限に広がった弾性表面波と異なり1h向
にのみ伝搬りる波で表わすことができず、伝搬方向の異
なる11に数の平面波の重ね合せで表わされる。I D
 T 2 (3に印加りる周波数をfoよりflに減少
すると、発生ずる弾性表面波の周期△1は△0より大き
くなり、角度θ0で入射するレーザビーム40は周期Δ
1に対してブラッグ条イ!1を満足していない。しかし
ながら、先に見たように幅の限定された弾性表面波は種
々の伝搬方向を持つ弾性表1Ilj波を含むので、特定
の方向の波に対してブラック回折条件s i nθ1=
λ/21)Δ1 が満足されるので、レーザど−ム40はブラッグ回折さ
れ、進行方向が2θ1だGノ変化づる。次にI D l
’ 26に印加りる^周波信号の周波数を[0より大き
いflにすると゛、この場合もブラック回折条件 s i r+  θ2−λ/20△2 を満足する方向の波が存在し、レーザビーム40は進行
方向から2θ2だけずれた方向に回折される。このJ:
うにしてブラッグ回折による光偏向によりレーザビーム
の照射位置の制御が可能である。
As shown in Figure vR3, the area where the surface acoustic wave SAW wavefront exists is limited by the intersection width of the electrodes of IDT 26, so the periodic structure of the accompanying refractive index change also follows the same L. limited to a range. Therefore, unlike a surface acoustic wave that spreads infinitely, this surface acoustic wave with a limited width cannot be expressed as a wave that propagates only in the 1h direction, but can be expressed as a superposition of 11 plane waves with different propagation directions. It will be done. ID
When the frequency applied to T 2 (3 is decreased from fo to fl, the period △1 of the generated surface acoustic wave becomes larger than △0, and the laser beam 40 incident at an angle θ0 has a period Δ
Bragg for 1! 1 is not satisfied. However, as we saw earlier, surface acoustic waves with a limited width include elastic Table 1Ilj waves with various propagation directions, so for waves in a specific direction, the Black diffraction condition s i nθ1=
Since λ/21) Δ1 is satisfied, the laser beam 40 undergoes Bragg diffraction, and the traveling direction changes by 2θ1. Next I D l
' If the frequency of the frequency signal applied to is diffracted in a direction shifted by 2θ2 from the traveling direction. This J:
In this way, the irradiation position of the laser beam can be controlled by optical deflection due to Bragg diffraction.

これは後述のようにディスク5のトラック方向に対して
直向する方向へビームを振るルリ御に利用される。
This is used to control the beam in a direction perpendicular to the track direction of the disk 5, as will be described later.

=1リメートレンズ25で平行化され、弾性表面波によ
って適宜に進行方向の変えられた光ビームは、次に導波
路23土に作成されたグレーディングレンズ27によっ
て集光される。このグレーテングレンズ27は両側に段
(プた電極28.28間に電圧を印加づることにより、
グレーティングレンズ27の屈折率を変化させ、もって
導波光の位相定数を変化させ”るものである。このグレ
ーティングレンズ27により光ビームの集光位置は導波
路23の面方向において前後に変えられる。このとき、
導波光の位相定数の変化量は電+4i 28 。
=1 The light beam, which has been collimated by the remetering lens 25 and whose traveling direction has been appropriately changed by the surface acoustic wave, is then focused by the grading lens 27 formed in the waveguide 23. This grating lens 27 is constructed by applying a voltage between stepped electrodes 28 and 28 on both sides.
The refractive index of the grating lens 27 is changed, thereby changing the phase constant of the guided light.The grating lens 27 allows the focusing position of the light beam to be changed back and forth in the plane direction of the waveguide 23. When,
The amount of change in the phase constant of the guided light is +4i 28 .

28間の印加電圧に比例するから、光ビームの集光位置
制御は印加電圧に比例してなされる。
Since the voltage is proportional to the voltage applied between 28 and 28, the focusing position of the light beam is controlled in proportion to the applied voltage.

グレーティングレンズ27を経た光ビームは、次に、導
波路23の側端側に作成された導波売出04用の導波路
形レンズ29に入射し、このレンズ29により導波路2
3の側端面から出射する。
The light beam that has passed through the grating lens 27 is then incident on a waveguide shaped lens 29 for the waveguide 04 created on the side end side of the waveguide 23, and this lens 29 allows the waveguide 2
The light is emitted from the side end surface of 3.

路23の表面から適宜深さ略半球状に形成した高屈折率
領域からなり、両側に作成した電極30゜30間に印加
する電圧により、屈折率が変化する。
It consists of a high refractive index region formed in a substantially hemispherical shape at an appropriate depth from the surface of the channel 23, and the refractive index is changed by a voltage applied between electrodes 30.degree. 30 formed on both sides.

電極30.30は導波路23に平行な溝31.31を穿
設し、その対向壁にアルミニウムを蒸着して形成されて
いる。第4図(a )  (b )は電極30.30間
に印加する電圧によって平面内でなされる焦点制御を示
ず。点Bは電圧を印加しない場合の焦点であり、印加電
圧を制御してレンズ29の屈折率が増加すると焦点は点
Aに移動し、まIζ屈折率が減少り−ると焦点は点Cに
移動りる。このレンズ29と上記グレーティングレンズ
27とにより2次元のフA−カッシングが可能である。
The electrode 30.30 is formed by drilling a groove 31.31 parallel to the waveguide 23 and depositing aluminum on the opposite wall thereof. FIGS. 4(a) and 4(b) do not show the focus control performed in a plane by the voltage applied between the electrodes 30, 30. Point B is the focal point when no voltage is applied, and when the applied voltage is controlled and the refractive index of the lens 29 increases, the focal point moves to point A, and when the refractive index Iζ decreases, the focal point moves to point C. Move. Two-dimensional focus A-cashing is possible with this lens 29 and the grating lens 27.

従って、IDT26からの弾性表面波SAWにより適宜
角度変更され、グレーティングレンズ27により適宜位
置に集光された光ビームは、レンズ29により導波路2
3の側端面から適宜角度変更してディスク5の所定のト
ラックに向【プて出用される。このビームの照的位置と
焦点位置の制御は、IDT26に印加する周波数、電極
28,28間に印加づる電圧、電極30.30間に印加
り−る電圧の組合せにJこりなされる。
Therefore, the light beam whose angle is appropriately changed by the surface acoustic wave SAW from the IDT 26 and focused at an appropriate position by the grating lens 27 is transferred to the waveguide 2 by the lens 29.
The disc 5 is ejected from the side end surface of the disc 5 by changing the angle appropriately and facing a predetermined track of the disc 5. Control of the beam irradiation position and focal position is determined by the combination of the frequency applied to the IDT 26, the voltage applied between the electrodes 28, and the voltage applied between the electrodes 30 and 30.

次に、ディスク5からの反射光ビームはlrJ −g%
板21の側端面に設けられた受光部32に入用覆る。
Next, the reflected light beam from the disk 5 is lrJ −g%
The light receiving section 32 provided on the side end surface of the plate 21 is covered.

受光部32は、第5図に示Jように6分割されたホトダ
イオードA1.△2,81.B2.C1゜C2からなる
。詳述づると、ディスク5の半径方向にはΔ1,131
.c1のグループとA2.B2゜C2のグループに2分
割されており、ディスク5のトラック方向にはA1.A
2の組とBl、+32の相とCI、C2の組とに3分割
されている。また、6つの小トダイA−ドのうち、ディ
スク5のトラック方向の中央に位置する2つのホトダイ
オードB1と82は他のものより小さくなっている。
The light receiving section 32 includes a photodiode A1. △2,81. B2. It consists of C1°C2. To be more specific, in the radial direction of the disk 5, there is Δ1,131.
.. Group c1 and A2. It is divided into two groups of B2°C2, and in the track direction of the disk 5 there are A1. A
It is divided into three groups: a set of phase 2, a set of phases Bl and +32, and a set of CI and C2. Furthermore, among the six small photodiodes A--the two photodiodes B1 and 82 located at the center of the disk 5 in the track direction are smaller than the others.

この6分割ホトダイオードの出力により、ディスク5面
に対する光ビームの焦点のずれを知るフォーカス誤差信
号とトラック方向にピッ1〜17の中心とビームの中心
がどれたりずれているかを知る1へラック誤差信号と、
ビームの強度を知るRF倍信号データ信号)が得られる
The output of this 6-segment photodiode produces a focus error signal that indicates the shift in focus of the light beam with respect to the disk 5 surface, and a rack error signal (1) that indicates the deviation of the beam center from the center of pitches 1 to 17 in the track direction. and,
An RF multiplied signal (data signal) is obtained that determines the intensity of the beam.

各ホトダイオードの出力レベルもそれぞれA1−C2と
表わすと、フォーカス誤差信号の出力V「は、 Vf = (B1+82> −(AI+A2−1−CI十G2) で与えられる。この出力Vfは第5図の差動増幅器DA
Iから得られる。
If the output level of each photodiode is also expressed as A1-C2, then the output V of the focus error signal is given by Vf = (B1+82>-(AI+A2-1-CI+G2)).This output Vf is expressed as shown in FIG. Differential amplifier DA
Obtained from I.

フォーカス誤差信号の出力特性は第6図のようになり、
合焦点位置においては出力がOになるにうにホトダイオ
ードB1とB2の大きさが他のものより小さくなってい
る。ビームの焦点がディスク5面より近くなると、ビー
ム径は受光部32上ぐ拡大するのe1ホトダイオードB
1ど82の出力は低下し、ホ]・ダイオードA1.A2
.CI。
The output characteristics of the focus error signal are as shown in Figure 6.
The sizes of photodiodes B1 and B2 are smaller than the others so that the output becomes O at the focused position. When the focus of the beam is closer to the disk 5 surface, the beam diameter expands above the light receiving section 32. e1 Photodiode B
The output of diode A1. A2
.. C.I.

C2の出力は増加りる。よってフォーノノス誤差イア1
号V[はマイナスになる。逆に焦点がディスク5よりも
遠くなれば、受光部32上にJ3I)るビーム径は減少
し、小1〜ダイオードB1.B2の出力が大きくなるの
で、フォーカス誤差信号V[はプラスになる。この)A
−カス誤差信号V「が第2図に承り制御回路33で求め
られ、その誤差に基づいて上述した電極28および電極
30に印加づる制御電圧が調整され、ディスク5面に正
しくビームの焦点が合うように制御される。これがいわ
ゆるフォーカスザーボである。
The output of C2 increases. Therefore, fornonos error ia 1
No. V[ becomes negative. Conversely, if the focal point becomes farther than the disk 5, the beam diameter J3I) on the light receiving section 32 decreases, and the diameter of the beam J3I) on the light receiving section 32 decreases. Since the output of B2 increases, the focus error signal V[ becomes positive. this)A
- A scrap error signal V" is determined by the control circuit 33 according to FIG. This is the so-called focus servo.

また、1〜ラック誤差信号Vtは次式のように表わされ
る。
Further, the 1 to rack error signal Vt is expressed as in the following equation.

Vt = (AI +81 十CI >−(A2 + 
82 十G 2 ) このトラック誤差信号vtは第5図の差動増幅器DA2
から得られる。受光部32上にB3りるビームの中心が
ホトダイオードA1.81.CIの゛グループとA’2
.B2.C2のクループの中央にあるならば信号出力v
tは0になるが、中央bl lろどちらかのグループ側
へずれると、そのグループの出力が増加し、他方のグル
ープの出力は減少覆る。
Vt = (AI +81 10 CI >-(A2 +
82 10G 2 ) This tracking error signal vt is applied to the differential amplifier DA2 in FIG.
obtained from. The center of the beam B3 on the light receiving section 32 is the photodiode A1.81. CI group and A'2
.. B2. If it is in the center of the croup of C2, the signal output v
t becomes 0, but if the center shifts to either group, the output of that group will increase, and the output of the other group will decrease.

例えば、ビーム中心がホトダイオードA1.B1゜C1
のグループの方向、つまり第5図のディスク半径方向の
上方にずれると、このグループの出力が増加し、「2」
グループの出力は低下づるので、トラック誤差信号Vt
はプラスのある随になる。
For example, the beam center is photodiode A1. B1゜C1
If it shifts upward in the direction of the group, that is, in the radial direction of the disk in Fig. 5, the output of this group increases and becomes "2".
Since the output of the group is decreasing, the tracking error signal Vt
becomes a zu with a plus.

これとは逆の方向にビーム中心がずれれば、トラック誤
差信号[はマイナスの値になり、それぞれ信号の大きさ
からずれた距離がわかる。このhラック誤差信号Vtも
制御回路33で求められ、その誤差信号に基づいてID
T26に印加する周波数が制御され、これによりいわゆ
るトラックリーボの制御がなされる。
If the beam center shifts in the opposite direction, the tracking error signal becomes a negative value, and the distance of the shift can be determined from the magnitude of each signal. This h-rack error signal Vt is also obtained by the control circuit 33, and based on the error signal, the ID
The frequency applied to T26 is controlled, thereby controlling so-called track revolution.

なお、ディスク5のビットで表わされたディジタルデー
タ信号は、反射光の強度変化として検出されるものであ
り、従って受光部32のづへての分割小トダイA−ドの
出力の合ai値をR,F(U号(データ信号)とする。
Note that the digital data signal represented by the bits of the disk 5 is detected as a change in the intensity of the reflected light, and therefore the total ai value of the output of the divided small diodes A to the light receiving section 32 is Let R, F (U number (data signal)).

上記制御回路33は、シリコン基板7に集積形成されて
J3す、マイクロコンピュータ等を8み、上述し1= 
771−カスサーボやトラッキンク→ノーボ等の他、デ
ィスク5からデータを正しく読取るための各種の制御お
よび信号処理を行なう。
The control circuit 33 is integrated on the silicon substrate 7 and includes a microcomputer, etc., as described above.
771 - Performs various controls and signal processing for correctly reading data from the disk 5, in addition to cass servo, tracking → no-vo, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のディジタルディスク川ピックアンプの4
R造の概略図、第2図は本発明の一実施例に係るピック
アップの斜視図、第3図は同じく本発明のピックアップ
の要部の1つである弾性表面波による光ビームのブラッ
グ回折を説明りる図、第4図(a)、(b)は同じく本
発明の要部の1つである導波路形レンズによる平面方向
の光ビームの集光のようすを示す概略平面図Jシよび概
略側面断面図、第5図は本発明のピックアップにお【ノ
る受光部の構成を承り図、第6図は受光部32に対応し
たフォーカス誤差信号の出力特性を示寸図である。 5・・・・・・ディスク 21・・・シリコン基板 22・・・Li Nil 03基板 23・・・導波路 24・・・レーザダイオード 25・・・コリメー1へレンズ 26・・・IDT 27・・・グレーティングレンズ 28・・・電極 29・・・導波路形レンズ 30・・・電極 32・・・・・・受光部 33・・・制御回路 特許出願人 立石電機株式会社 代理人 弁理士 和 1)成 5(zl第1図 第2図 第3図 第4図
Figure 1 shows the four parts of a conventional digital disc pickup amplifier.
FIG. 2 is a schematic view of a pickup according to an embodiment of the present invention, and FIG. 3 is a diagram showing Bragg diffraction of a light beam due to surface acoustic waves, which is also one of the main parts of the pickup of the present invention. The explanatory diagrams, FIGS. 4(a) and 4(b), are schematic plan views showing how a light beam is condensed in a plane direction by a waveguide lens, which is also one of the main parts of the present invention. 5 is a schematic side sectional view, FIG. 5 is a diagram showing the configuration of the light receiving section in the pickup of the present invention, and FIG. 6 is a dimensional diagram showing the output characteristics of the focus error signal corresponding to the light receiving section 32. 5... Disk 21... Silicon substrate 22... Li Nil 03 substrate 23... Waveguide 24... Laser diode 25... Lens to collimator 1 26... IDT 27...・Grating lens 28... Electrode 29... Waveguide lens 30... Electrode 32... Light receiving section 33... Control circuit Patent applicant Kazu Tateishi Co., Ltd. Patent attorney 1) 5 (zlFigure 1Figure 2Figure 3Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)表面に光導波路が形成された基板に;上記光導波
路に光ビームを伝搬させる発光部と:上記先導波路上に
弾性表面波を伝搬させて、その弾性表面波により上記光
ビームを上記光導波路の平面内で偏向させる弾性表面波
発生部と;上記光ビームを上記光導波路側端面から出射
させるどどもに、その出射ビームの2次元ノA−力シン
グJ3よび焦点位置調整を行なう集積化レンズ部と: 上記光ビームの出射位置から適宜間ll+xをJ3いて
配設され、上記光ビームの反射光を受光Jるm数の受光
素子が組合わされた受光部と; 上記受光部出力を受けて信号処理をし、その制御信号を
弾性表面波発生部およびグレーテインク部に供給するこ
とにより、光ビームの偏向角の制御ならびに出射ビーム
の2次元フA−カシングおよび焦点位置の制御を行なう
制御部と:を一体的に集積化したことを特徴とする光学
式ディジタルディスク用ピックアップ。
(1) A substrate on which an optical waveguide is formed; a light emitting unit that propagates a light beam to the optical waveguide; and a light emitting unit that propagates a surface acoustic wave on the leading waveguide, and uses the surface acoustic wave to transmit the light beam to the optical waveguide. A surface acoustic wave generator for deflecting within the plane of the optical waveguide; and an integrated unit for emitting the optical beam from the end face on the side of the optical waveguide, and adjusting the two-dimensional force adjustment and focal position of the output beam. a light-receiving part, which is arranged at an appropriate distance 1+x from the emission position of the light beam, and is combined with m number of light-receiving elements that receive the reflected light of the light beam; By receiving and processing signals, and supplying the control signals to the surface acoustic wave generator and the grating ink unit, the deflection angle of the light beam and the two-dimensional focusing and focal position of the emitted beam are controlled. An optical digital disc pickup characterized by integrally integrating a control section and a controller.
JP57216688A 1982-12-10 1982-12-10 Pickup for optical digital disk Granted JPS59107431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216688A JPS59107431A (en) 1982-12-10 1982-12-10 Pickup for optical digital disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216688A JPS59107431A (en) 1982-12-10 1982-12-10 Pickup for optical digital disk

Publications (2)

Publication Number Publication Date
JPS59107431A true JPS59107431A (en) 1984-06-21
JPH0445895B2 JPH0445895B2 (en) 1992-07-28

Family

ID=16692358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216688A Granted JPS59107431A (en) 1982-12-10 1982-12-10 Pickup for optical digital disk

Country Status (1)

Country Link
JP (1) JPS59107431A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185641A (en) * 1984-10-01 1986-05-01 Mitsubishi Electric Corp Optical head device
JPS6192444A (en) * 1984-10-11 1986-05-10 Matsushita Electric Ind Co Ltd Optical pickup
JPS61269234A (en) * 1985-05-24 1986-11-28 Omron Tateisi Electronics Co Optical information processing device
JPS61282825A (en) * 1985-06-08 1986-12-13 Brother Ind Ltd Laser printer
US4718052A (en) * 1984-10-01 1988-01-05 Mitsubishi Denki Kabushiki Kaisha Head assembly for optical disc
US4737946A (en) * 1984-09-03 1988-04-12 Omron Tateisi Electronics Co. Device for processing optical data with improved optical allignment means
US4779259A (en) * 1985-04-25 1988-10-18 Mitsubishi Denki Kabushiki Kaisha Optical head assembly with efficient light source coupling surface and method of construction
US4802153A (en) * 1985-03-22 1989-01-31 Hitachi, Ltd. Optical information processor and method for accessing rotating record carrier utilizing acousto-optic light deflector including holding a focus error signal during track jumping
US4853919A (en) * 1983-09-22 1989-08-01 Canon Kabushiki Kaisha Information processing apparatus in which a deflected light and O-order light are respectively used for information recording/reproduction and tracking, and a method therefor
US4862440A (en) * 1986-09-09 1989-08-29 Hitachi, Ltd. Optical head with optical beam control using acoustic wave device
US4861128A (en) * 1987-02-04 1989-08-29 Hitachi, Ltd. Optical pickup using a waveguide
JPH01241027A (en) * 1988-03-23 1989-09-26 Hitachi Ltd Optical pickup
US5159586A (en) * 1985-05-24 1992-10-27 Omron Tateisi Electronics Co. Device for processing optical data

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853919A (en) * 1983-09-22 1989-08-01 Canon Kabushiki Kaisha Information processing apparatus in which a deflected light and O-order light are respectively used for information recording/reproduction and tracking, and a method therefor
US5128915A (en) * 1984-09-03 1992-07-07 Omron Tateisi Electronic Co. Optical pickup device
US4737946A (en) * 1984-09-03 1988-04-12 Omron Tateisi Electronics Co. Device for processing optical data with improved optical allignment means
JPS6185641A (en) * 1984-10-01 1986-05-01 Mitsubishi Electric Corp Optical head device
US4718052A (en) * 1984-10-01 1988-01-05 Mitsubishi Denki Kabushiki Kaisha Head assembly for optical disc
JPS6192444A (en) * 1984-10-11 1986-05-10 Matsushita Electric Ind Co Ltd Optical pickup
US4802153A (en) * 1985-03-22 1989-01-31 Hitachi, Ltd. Optical information processor and method for accessing rotating record carrier utilizing acousto-optic light deflector including holding a focus error signal during track jumping
US4779259A (en) * 1985-04-25 1988-10-18 Mitsubishi Denki Kabushiki Kaisha Optical head assembly with efficient light source coupling surface and method of construction
JPS61269234A (en) * 1985-05-24 1986-11-28 Omron Tateisi Electronics Co Optical information processing device
US5159586A (en) * 1985-05-24 1992-10-27 Omron Tateisi Electronics Co. Device for processing optical data
JPS61282825A (en) * 1985-06-08 1986-12-13 Brother Ind Ltd Laser printer
JP2629170B2 (en) * 1985-06-08 1997-07-09 ブラザー工業株式会社 Laser printer
US4862440A (en) * 1986-09-09 1989-08-29 Hitachi, Ltd. Optical head with optical beam control using acoustic wave device
US4861128A (en) * 1987-02-04 1989-08-29 Hitachi, Ltd. Optical pickup using a waveguide
JPH01241027A (en) * 1988-03-23 1989-09-26 Hitachi Ltd Optical pickup

Also Published As

Publication number Publication date
JPH0445895B2 (en) 1992-07-28

Similar Documents

Publication Publication Date Title
US4731772A (en) Optical head using hologram lens for both beam splitting and focus error detection functions
US4718052A (en) Head assembly for optical disc
US4747090A (en) Integral pickup for an optical digital disc using saw deflection and lenses
US6185176B1 (en) Optical pickup apparatus
JPS59107431A (en) Pickup for optical digital disk
US5608695A (en) Optical pick-up apparatus with tracking error detection by detection of amount of light in fan field
JPH0743843B2 (en) Optical reader
US5745304A (en) Integrated optical pickup system capable of reading optical disks of different thickness
US5648946A (en) Optical pick-up apparatus with holographic optical element to diffract both forward and return light beams
JP2527903B2 (en) Multi-channel data storage and multi-channel laser optics
US5894466A (en) Optical pickup device for accessing each of optical disks of different types
JPH0619838B2 (en) Optical playback device
JPH0337837A (en) Tilt detector for optical disk
JPS63247925A (en) Optical head
JPS63259844A (en) Optical head
JP2501097B2 (en) Optical head device
JPS62243133A (en) Optical pickup device
JPS61237246A (en) Optical pickup device
JPH0219537B2 (en)
KR0119729B1 (en) Optical pick-up apparatus
JPH03100927A (en) Optical pickup device
JPS62217425A (en) Optical head device
JPH0640398B2 (en) Optical pickup device
JPH05250694A (en) Optical head device
KR0134842B1 (en) Reproducing optical pick up