JPH0640398B2 - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPH0640398B2
JPH0640398B2 JP60107952A JP10795285A JPH0640398B2 JP H0640398 B2 JPH0640398 B2 JP H0640398B2 JP 60107952 A JP60107952 A JP 60107952A JP 10795285 A JP10795285 A JP 10795285A JP H0640398 B2 JPH0640398 B2 JP H0640398B2
Authority
JP
Japan
Prior art keywords
light
order diffracted
incident
disk
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60107952A
Other languages
Japanese (ja)
Other versions
JPS61265745A (en
Inventor
聡 杉浦
勝春 佐藤
賢二郎 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP60107952A priority Critical patent/JPH0640398B2/en
Publication of JPS61265745A publication Critical patent/JPS61265745A/en
Publication of JPH0640398B2 publication Critical patent/JPH0640398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学式ビデオディスク、ディジタルオーディオ
ディスク等に情報を記録再生する光学式ピックアップ装
置に関する。
The present invention relates to an optical pickup device for recording / reproducing information on / from an optical video disc, a digital audio disc or the like.

〔発明の概要〕[Outline of Invention]

本発明は、光源と、該光源から発せられ、ディスクに入
射される入射光をディスク上に収束する対物レンズと、
ディスクにて反射された反射光の少なくとも一部を受光
する受光素子と、入射光と反射光の光路中に配置され、
その溝の深さが光源が発する光の波長の略1/2に設定
され、入射される光を所定の回折角度で±1次回折光に
回折する回折手段とを有する光学式ピックアップ装置に
おいて、回折手段により、+1次回折光又は−1次回折
光のうちの少なくとも一方が略無収差の光となるように
し、略無収差の1次回折光を対物レンズを介してディス
クに照射し、回折手段により回折された反射光の一方の
1次回折光を受光素子にて受光し、光源として発振スペ
クトラムのピークを2つ以上有する半導体レーザを用
い、回折手段を、その回折方向がディスクに形成された
トラックと平行又は垂直となるように配置するように
し、もって隣接トラックからのクロストークを少なくす
るか又は良好な時間軸方向のS/Nが得られるようにし
たものである。
The present invention includes a light source, an objective lens that converges incident light emitted from the light source and incident on a disc onto the disc,
A light receiving element for receiving at least a part of the reflected light reflected by the disk, and arranged in the optical path of the incident light and the reflected light,
The depth of the groove is set to about ½ of the wavelength of the light emitted from the light source, and an optical pickup device having a diffracting means for diffracting the incident light into ± first-order diffracted light at a predetermined diffraction angle is used. At least one of the + 1st-order diffracted light and the -1st-order diffracted light becomes a substantially aberration-free light by means of the means, and the substantially-aberration first-order diffracted light is applied to the disk through the objective lens and diffracted by the diffraction means. One of the first-order diffracted light components of the reflected light is received by the light-receiving element, and a semiconductor laser having two or more peaks of the oscillation spectrum is used as a light source, and the diffracting means is arranged in a direction parallel to the track formed on the disk. They are arranged so as to be vertical so that crosstalk from adjacent tracks is reduced or a good S / N in the time axis direction is obtained.

〔従来の技術〕[Conventional technology]

ディスクに光学的に情報を記録再生する場合、レーザ光
等の記録再生用光をディスク上に入射し、その反射光を
受光するために、入射光と反射光とを分離する必要があ
る。斯かる分離手段としてハーフミラーや、1/4波長
板と偏光プリズムとの組合せ等が提案されているが、こ
れらを用いると、装置が大型化する欠点があった。これ
を解決するものとして例えば特開昭56−57013号
公報、特開昭59−119548号公報等に開示されて
いるように、回折格子を分離手段として用いることが考
えられる。
In the case of optically recording / reproducing information on / from a disc, it is necessary to separate incident light and reflected light from each other so that recording / reproducing light such as laser light is incident on the disc and the reflected light is received. As such a separating means, a half mirror, a combination of a quarter wavelength plate and a polarizing prism, etc. have been proposed, but when these are used, there is a drawback that the device becomes large. As a means for solving this, it is conceivable to use a diffraction grating as a separating means, as disclosed in, for example, JP-A-56-57013 and JP-A-59-119548.

第3図は回折格子を分離手段として用いた場合における
従来の光学式ピックアップ装置の模式的平面図である。
同図において1は所定の波長λの記録再生用光を発する
半導体レーザ、ガスレーザ等の光源である。2は入射さ
れる光を回折する位相型回折板(回折格子)である。位
相型回折板2が有する溝の深さ、間隔及び向きによって
回折光の分布状態が決定されるが、その深さは波長λの
略1/2に設定されており、略々1次回折光のみが導出
されるようになっている。3は対物レンズであり、ディ
スク4上に光を収束するように図示せぬフォーカスモー
タ等により駆動される。5はディスク4により反射され
た反射光を受光し、焦点誤差信号やディスク4に記録さ
れている情報の再生信号を出力する受光素子である。
FIG. 3 is a schematic plan view of a conventional optical pickup device when a diffraction grating is used as a separating means.
In the figure, 1 is a light source such as a semiconductor laser or a gas laser which emits a recording / reproducing light having a predetermined wavelength λ. Reference numeral 2 is a phase type diffraction plate (diffraction grating) that diffracts incident light. The distribution state of the diffracted light is determined by the depth, spacing, and orientation of the grooves of the phase type diffraction plate 2. The depth is set to about 1/2 of the wavelength λ, and only the first-order diffracted light is provided. Is to be derived. Reference numeral 3 denotes an objective lens, which is driven by a focus motor (not shown) or the like so as to converge the light on the disk 4. A light receiving element 5 receives the reflected light reflected by the disk 4 and outputs a focus error signal and a reproduction signal of information recorded on the disk 4.

光源1から発せられた光は位相型回折板2により回折さ
れる。その溝の深さが光の波長λの略々1/2に設定さ
れているため、このとき導出されるのは殆ど+1次回折
光と−1次回折光のみである。位相型回折板2は、例え
ば−1次回折光(又は+1次回折光)のみを殆ど無収差
で回折するように設定されており、この−1次回折光が
対物レンズ3に入射光として入射され、ディスク4上に
収束、照射される(+1次回折光は図示していない)。
ディスク4により反射され、対物レンズ3に入射した反
射光は、さらに位相型回折板2に入射され、そこで再び
+1次回折光と−1次回折光とに回折される。そしてそ
のうち殆ど無収差の+1次回折光(又は−1次回折光)
は光源1に戻され、非点収差を有する−1次回折光(又
は+1次回折光)が受光素子5に照射される。従って受
光素子5を4分割しておき、所謂非点収差法により焦点
誤差制御を行うことができるとともに、その和信号から
記録情報の再生信号を得ることができる。
The light emitted from the light source 1 is diffracted by the phase type diffraction plate 2. Since the depth of the groove is set to about 1/2 of the wavelength λ of light, almost only the + 1st order diffracted light and the −1st order diffracted light are derived at this time. The phase type diffraction plate 2 is set so as to diffract, for example, only the −1st order diffracted light (or the + 1st order diffracted light) with almost no aberration, and the −1st order diffracted light enters the objective lens 3 as incident light, 4 is converged and irradiated (the 1st-order diffracted light is not shown).
The reflected light reflected by the disk 4 and incident on the objective lens 3 is further incident on the phase type diffraction plate 2 and is again diffracted into + 1st-order diffracted light and −1st-order diffracted light. And among them, + 1st order diffracted light (or -1st order diffracted light) with almost no aberration
Is returned to the light source 1, and the −1st-order diffracted light (or the + 1st-order diffracted light) having astigmatism is applied to the light receiving element 5. Therefore, the light receiving element 5 is divided into four, focus error control can be performed by a so-called astigmatism method, and a reproduction signal of recorded information can be obtained from the sum signal.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところでマルチモードの半導体レーザは、第4図に示す
ように、1nmの長さの間に数本のピーク波長を有してい
る。このように発振スペクトラムのピークを2つ以上有
する半導体レーザを光源1として用い、位相型回折板2
に入射角度αで入射させると、第5図に示すように、近
似した比較的大きいレベルの1次回折光が複数本導出さ
れる。例えば入射角度αが約9度、位相型回折板2が1
mm当たり約200本の回折格子を有するものとすると、
波長が785nmの1次回折光Lと波長が784nmの1
次回折光L(又は波長が786nmの1次回折光L
がなす角度θは約0.007度となる。光源1と位相型
回折板2との距離(位相型回折板2と光軸との交点Pと
光源1との距離)を5mm、位相型回折板2と対物レンズ
3との距離を5mm、対物レンズ3の焦点距離を2mmと仮
定すると、波長が785nmの1次回折光はディスク4上
の点Qに、また波長が784nmの1次回折光は点Rに、
各々収束され、点Qと点Rとの距離は約0.256μm
となる。
By the way, the multimode semiconductor laser has several peak wavelengths within a length of 1 nm, as shown in FIG. As described above, the semiconductor laser having two or more peaks of the oscillation spectrum is used as the light source 1, and the phase type diffraction plate 2 is used.
As shown in FIG. 5, a plurality of similar first-order diffracted lights of relatively large level are derived when the light is incident on the light at an incident angle α. For example, the incident angle α is about 9 degrees, and the phase type diffraction plate 2 is 1
Assuming that there are about 200 diffraction gratings per mm,
1st-order diffracted light L 1 with a wavelength of 785 nm and 1 with a wavelength of 784 nm
Second-order diffracted light L 2 (or first-order diffracted light L 3 having a wavelength of 786 nm)
The angle θ formed by is about 0.007 degrees. The distance between the light source 1 and the phase type diffraction plate 2 (the distance between the intersection P of the phase type diffraction plate 2 and the optical axis and the light source 1) is 5 mm, the distance between the phase type diffraction plate 2 and the objective lens 3 is 5 mm, and the objective Assuming that the focal length of the lens 3 is 2 mm, the first-order diffracted light with a wavelength of 785 nm is at point Q on the disk 4, and the first-order diffracted light with a wavelength of 784 nm is at point R.
Each of them is converged, and the distance between points Q and R is about 0.256 μm
Becomes

すなわち光源1として発振スペクトラムのピークを2つ
以上有する半導体レーザを用いると、位相型回折板2の
回折方向に広がった収束光がディスク4上に照射される
ことになる。従ってディスク4上の隣接トラックからの
クロストークが増加したり、同一トラックの時間軸方向
のS/Nが悪化する欠点があった。
That is, when a semiconductor laser having two or more oscillation spectrum peaks is used as the light source 1, the converged light spread in the diffraction direction of the phase type diffraction plate 2 is irradiated onto the disk 4. Therefore, there are drawbacks that crosstalk from the adjacent tracks on the disk 4 increases and the S / N in the time axis direction of the same track deteriorates.

〔問題点を解決するための手段〕[Means for solving problems]

第1図及び第2図は本発明の光学式ピックアップ装置の
模式的斜視図を表わしている。本発明の構成は基本的に
は第3図における場合と同様である。但し本発明におい
ては光源1としてマルチモードの半導体レーザが用いら
れる。さらにまた位相型回折板2は、その回折格子11
の方向がディスク4のトラック12に対して特定の関係
(垂直(第1図)又は平行(第2図))になるように配
置されている。その他光源1から発せられたレーザ光が
位相型回折板2に入射され、そこで回折された1次回折
光のうち、殆ど無収差の回折光が対物レンズ3に入射さ
れ、ディスク4上に収束されるようになされているこ
と。またディスク4からの反射光が対物レンズ3、位相
型回折板2を介して受光素子5に照射されるようになさ
れていることは第3図における場合と同様である。
1 and 2 are schematic perspective views of the optical pickup device of the present invention. The structure of the present invention is basically the same as that shown in FIG. However, in the present invention, a multimode semiconductor laser is used as the light source 1. Furthermore, the phase type diffraction plate 2 has its diffraction grating 11
Is arranged so as to have a specific relationship (vertical (FIG. 1) or parallel (FIG. 2)) with respect to the track 12 of the disk 4. In addition, laser light emitted from the light source 1 is incident on the phase type diffraction plate 2, and of the first-order diffracted light diffracted therein, almost diffracted light is incident on the objective lens 3 and converged on the disc 4. That is how it is done. Further, the reflected light from the disk 4 is applied to the light receiving element 5 via the objective lens 3 and the phase type diffraction plate 2 as in the case of FIG.

〔作用〕[Action]

しかしてその作用を説明する。光源1から発せられた光
は、位相型回折板2の回折格子11がx軸方向と略平行
となされているため、y軸方向と略平行な方向に回折さ
れる。位相型回折板2は、例えば−1次回折光(又は+
1次回折光)のみを殆ど無収差で回折するように設計さ
れており、この無収差の−1次回折光が対物レンズ3に
入射光として入射され、ディスク4上に収束、照射され
る。ディスク4により反射され、対物レンズ3に入射し
た反射光は、さらに位相型回折板2に入射され、そこで
再び+1次回折光と−1次回折光とにy軸と平行な方向
に回折(分離)される。そして一方の1次回折光は光源
1に戻され、他方の1次回折光が受光素子5に入射され
る。受光素子5に入射される1次回折光として非点収差
を有する方を選定すれば、所謂非点収差法による焦点誤
差制御を行うことができる(勿論他の方法により焦点誤
差制御を行うこともできる)。
Then, the operation will be explained. The light emitted from the light source 1 is diffracted in a direction substantially parallel to the y-axis direction because the diffraction grating 11 of the phase type diffraction plate 2 is substantially parallel to the x-axis direction. The phase type diffraction plate 2 is, for example, −1st order diffracted light (or +
It is designed to diffract only the (first-order diffracted light) with almost no aberration, and the -1st-order diffracted light with no aberration is made incident on the objective lens 3 as incident light, converged and irradiated on the disk 4. The reflected light reflected by the disk 4 and incident on the objective lens 3 is further incident on the phase type diffraction plate 2, where it is again diffracted (separated) into the + 1st order diffracted light and the −1st order diffracted light in the direction parallel to the y axis. It Then, one first-order diffracted light is returned to the light source 1, and the other first-order diffracted light is incident on the light receiving element 5. If one having astigmatism is selected as the first-order diffracted light incident on the light receiving element 5, focus error control can be performed by the so-called astigmatism method (of course, focus error control can be performed by other methods as well. ).

一方受光素子5の出力からディスク4に形成されたトラ
ック12上に記録されている情報の再生信号を得ること
ができる。ディスク4が例えばビデオディスクにおける
場合のように、所定の信号(ビデオ信号)が周波数変調
されて記録されているようなときは、第1図に示すよう
に、回折格子11による回折方向(y軸方向)をトラッ
ク12の方向と略平行にするのがよい。このようにする
とマルチモードの半導体レーザのビームの広がりがトラ
ック12と平行な方向となり、隣接トラックからのクロ
ストークが増大するのを防止することができる。
On the other hand, the reproduction signal of the information recorded on the track 12 formed on the disk 4 can be obtained from the output of the light receiving element 5. When the disc 4 is, for example, a video disc and a predetermined signal (video signal) is frequency-modulated and recorded, as shown in FIG. It is preferable that the direction) be substantially parallel to the direction of the track 12. By doing so, the beam spread of the multi-mode semiconductor laser becomes parallel to the track 12, and it is possible to prevent an increase in crosstalk from an adjacent track.

またディスク4が例えば光学式ディジタルオーディオデ
ィスクにおける場合のように、所定の信号(オーディオ
信号)がEEM変調等ディジタル変調されているとき
は、第2図に示すように、回折格子11による回折方向
(y軸方向)をトラック12の方向と略垂直にするのが
よい。このようにするとマルチモードの半導体レーザの
ビームがトラック12と垂直な方向に広がり、同一トラ
ックの時間軸方向には広がらないので、時間軸方向のS
/Nが悪化するのを防止することが可能である。
Further, when the predetermined signal (audio signal) is digitally modulated such as EEM modulation as in the case where the disk 4 is an optical digital audio disk, as shown in FIG. It is preferable that the (y-axis direction) is substantially perpendicular to the direction of the track 12. In this way, the beam of the multimode semiconductor laser spreads in the direction perpendicular to the track 12 and does not spread in the time axis direction of the same track.
It is possible to prevent / N from deteriorating.

〔効果〕〔effect〕

以上の如く本発明は、光源と、該光源から発せられ、デ
ィスクに入射される入射光をディスク上に収束する対物
レンズと、ディスクにて反射された反射光の少なくとも
一部を受光する受光素子と、入射光と反射光の光路中に
配置され、その溝の深さが光源が発する光の波長の略1
/2に設定され、入射される光を所定の回折角度で±1
次回折光に回折する回折手段とを有する光学式ピックア
ップ装置において、回折手段により、+1次回折光又は
−1次回折光のうちの少なくとも一方が略無収差の光と
なるようにし、略無収差の1次回折光を対物レンズを介
してディスクに照射し、回折手段により回折された反射
光の一方の1次回折光を受光素子にて受光し、光源とし
て発振スペクトラムのピークを2つ以上有する半導体レ
ーザを用い、回折手段を、その回折方向がディスクに形
成されたトラックと平行又は垂直となるように配置する
ようにしたので、隣接トラックからのクロストークが増
大するのを防止したり、時間軸方向のS/Nが悪化する
のを防止することができる。
As described above, the present invention includes a light source, an objective lens that converges incident light emitted from the light source and incident on the disc onto the disc, and a light receiving element that receives at least a part of the reflected light reflected by the disc. And the depth of the groove disposed in the optical paths of the incident light and the reflected light is approximately 1 of the wavelength of the light emitted by the light source.
It is set to / 2 and the incident light is ± 1 at a predetermined diffraction angle.
In an optical pickup device having a diffracting means for diffracting to a diffracted light of at least one order, at least one of the + 1st order diffracted light and the -1st order diffracted light is made to be a substantially aberration-free light by the diffractive means. Folding light is applied to the disk through an objective lens, one first-order diffracted light of the reflected light diffracted by the diffracting means is received by a light receiving element, and a semiconductor laser having two or more peaks of an oscillation spectrum is used as a light source. Since the diffractive means is arranged such that its diffracting direction is parallel or perpendicular to the tracks formed on the disk, it is possible to prevent an increase in crosstalk from adjacent tracks and to suppress S / in the time axis direction. It is possible to prevent N from deteriorating.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の光学式ピックアップ装置の
模式的斜視図、第3図は従来の光学式ピックアップ装置
の模式的平面図、第4図はマルチモードの半導体レーザ
のスペクトラム図、第5図は従来の光学式ピックアップ
装置の模式的光路図である。 1……光源、2……位相型回折板 3……対物レンズ、4……ディスク 5……受光素子、11……回折格子 12……トラック
1 and 2 are schematic perspective views of an optical pickup device of the present invention, FIG. 3 is a schematic plan view of a conventional optical pickup device, and FIG. 4 is a spectrum diagram of a multimode semiconductor laser. FIG. 5 is a schematic optical path diagram of a conventional optical pickup device. 1 ... Light source, 2 ... Phase type diffraction plate 3 ... Objective lens, 4 ... Disk 5 ... Light receiving element, 11 ... Diffraction grating 12 ... Track

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源と、該光源から発せられ、ディスクに
入射される入射光を該ディスク上に収束する対物レンズ
と、該ディスクにて反射された反射光の少なくとも一部
を受光する受光素子と、該入射光と反射光の光路中に配
置され、その溝の深さが該光源が発する光の波長の略1
/2に設定され、入射される光を所定の回折角度で±1
次回折光に回折する回折手段とを有する光学式ピックア
ップ装置において、 該回折手段により、該+1次回折光又は該−1次回折光
のうちの少なくとも一方が略無収差の光となるように
し、略無収差の該1次回折光を該対物レンズを介して該
ディスクに照射し、該回折手段により回折された該反射
光の一方の1次回折光を該受光素子にて受光し、該光源
として発振スペクトラムのピークを2つ以上有する半導
体レーザを用い、該回折手段を、その回折方向が該ディ
スクに形成されたトラックと平行又は垂直となるように
配置することを特徴とする光学式ピックアップ装置。
1. A light source, an objective lens for converging incident light emitted from the light source and incident on a disc onto the disc, and a light receiving element for receiving at least a part of reflected light reflected by the disc. And the depth of the groove disposed in the optical paths of the incident light and the reflected light is approximately 1 of the wavelength of the light emitted by the light source.
It is set to / 2 and the incident light is ± 1 at a predetermined diffraction angle.
In an optical pickup device having a diffracting means for diffracting into a diffracted light of at least one order, at least one of the + 1st order diffracted light and the -1st order diffracted light is made to be a substantially aberration-free light by the diffractive means. The first-order diffracted light of the above is applied to the disk through the objective lens, one of the first-order diffracted light of the reflected light diffracted by the diffracting means is received by the light-receiving element, and the peak of the oscillation spectrum is obtained as the light source. An optical pickup device characterized in that a semiconductor laser having two or more of the above is used, and the diffracting means is arranged so that its diffracting direction is parallel or perpendicular to a track formed on the disk.
JP60107952A 1985-05-20 1985-05-20 Optical pickup device Expired - Lifetime JPH0640398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107952A JPH0640398B2 (en) 1985-05-20 1985-05-20 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107952A JPH0640398B2 (en) 1985-05-20 1985-05-20 Optical pickup device

Publications (2)

Publication Number Publication Date
JPS61265745A JPS61265745A (en) 1986-11-25
JPH0640398B2 true JPH0640398B2 (en) 1994-05-25

Family

ID=14472213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107952A Expired - Lifetime JPH0640398B2 (en) 1985-05-20 1985-05-20 Optical pickup device

Country Status (1)

Country Link
JP (1) JPH0640398B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935911A (en) * 1987-05-20 1990-06-19 Ricoh Company, Ltd. Optical head device for recording and reproducing information
JP2624783B2 (en) * 1988-06-29 1997-06-25 株式会社日立製作所 Optical integrated circuit
JP2547826B2 (en) * 1988-10-19 1996-10-23 キヤノン株式会社 Interferometer using multimode semiconductor laser

Also Published As

Publication number Publication date
JPS61265745A (en) 1986-11-25

Similar Documents

Publication Publication Date Title
JP3155287B2 (en) Optical information recording / reproducing device
KR100543422B1 (en) Record and playback device and method
US6567355B2 (en) Optical detector, optical pickup and optical information reproducing apparatus using optical pickup
JPH01224933A (en) Optical scanner
EP0222238B2 (en) Pick-up device
JPH07182687A (en) Optical pick-up
KR20020008795A (en) Compatible optical pickup apparatus
JP2001222825A (en) Photodetector, optical pickup and optical information reproducing device using the same
JPH0640398B2 (en) Optical pickup device
JP2751884B2 (en) Optical head device
JP2004253111A (en) Optical pickup device
JPS62172538A (en) Optical head device
JPH10143883A (en) Optical head device
JP2595937B2 (en) Optical head device
JP2638778B2 (en) Optical head device
JP3389416B2 (en) Optical pickup device
JPS62145545A (en) Pickup device
JPH0519852Y2 (en)
JPS61265746A (en) Optical pickup device
JPH08153336A (en) Optical head device
JP2790729B2 (en) Optical information recording / reproducing device
JPH11238234A (en) Optical head for optical disk recording/reproducing device
JPS61122938A (en) Optical pick-up device
JP3294092B2 (en) Optical pickup device
JPS63856B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term