JPS61265746A - Optical pickup device - Google Patents

Optical pickup device

Info

Publication number
JPS61265746A
JPS61265746A JP60107953A JP10795385A JPS61265746A JP S61265746 A JPS61265746 A JP S61265746A JP 60107953 A JP60107953 A JP 60107953A JP 10795385 A JP10795385 A JP 10795385A JP S61265746 A JPS61265746 A JP S61265746A
Authority
JP
Japan
Prior art keywords
light
reflected
diffracted
light source
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60107953A
Other languages
Japanese (ja)
Inventor
Kenjiro Hamanaka
賢二郎 浜中
Katsuharu Sato
勝春 佐藤
Satoshi Sugiura
聡 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP60107953A priority Critical patent/JPS61265746A/en
Publication of JPS61265746A publication Critical patent/JPS61265746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To facilitate the manufacture of a diffracting means and to attain thin profile and low cost by providing a reflecting type diffracting element represented by a special forming formula. CONSTITUTION:Let the optical length from a light source 1 generating a light of wavelength lambda be L1(x, y) and let the optical length of a conjugation point of the light source be L2(x, y), the reflection type diffracting element 11 expressed as a shape formula of L1(x, y)-L2(x, y)=mlambda is provided (where m=0, + or -1, + or -2, ...). One diffracting light diffracted and reflected by the diffracting means 11 is irradiated onto a disc 4 via an objective lens 3 and the other diffracted light diffracted and reflected by the diffracting means 11 is received by a photodetector 5. Thus, the depth of the groove of the diffracting means is made shallower more than that of the transmission type. Thus, the manufacture of the diffracting means is facilitated and thin profile and low cost are realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学式ビデオディスク、ディジタルオーディオ
ディスク等に情報を記録再生する光学式ピックアップ装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical pickup device for recording and reproducing information on optical video discs, digital audio discs, and the like.

〔発明の概要〕[Summary of the invention]

本発明は、波長がλの光を発する光源と、光源から発せ
られ、ディスクに入射される入射光をディスク上に収束
する対物レンズと、ディスクにて反射された反射光の少
なくとも一部を受光する受光素子と、入射光と反射光の
光路中に配置され。
The present invention includes a light source that emits light with a wavelength of λ, an objective lens that converges incident light emitted from the light source and incident on the disk onto the disk, and receives at least a portion of the reflected light reflected by the disk. A light receiving element is placed in the optical path of the incident light and reflected light.

入射される光を少なくとも2つの回折光に回折する回折
手段とを有する光学式ピックアップ装置において、回折
手段に、光源からの光路長をL□(X、y)−光源の兵
役点からの光路長をL2(x。
In an optical pickup device having a diffraction means for diffracting incident light into at least two diffracted lights, the diffraction means is provided with an optical path length from the light source L (X, y) - an optical path length from the military service point of the light source. to L2(x.

y)とするとき。When y).

LX  (Xp  y)   LX (X+  y)=
mλなる形状式で表わされる反射型の回折素子を設け(
但しm=0.±1.±2.・・・)、光源より発せられ
、回折手段により回折、反射された一方の回折光を対物
レンズを介してディスクに照射し、ディスクから反射さ
れ1回折手段により回折、反射された一方の回折光を受
光素子にて受光するようにし、回折手段の製作を容易に
し、薄型化、低コスト化を実現するようにしたものであ
る。
LX (Xp y) LX (X+ y)=
A reflective diffraction element expressed by the shape formula mλ is provided (
However, m=0. ±1. ±2. ), one diffracted light emitted from the light source, diffracted and reflected by the diffraction means is irradiated onto the disk through the objective lens, and the other diffracted light is reflected from the disk and diffracted and reflected by the diffraction means. The diffraction means is received by a light-receiving element, making it easy to manufacture the diffraction means, and realizing a reduction in thickness and cost.

〔従来の技術〕[Conventional technology]

ディスクに光学的に情報を記録再生する場合、レーザ光
等の記録再生用光をディスク上に正確に収束させる必要
があり、そのため種・々の光学式ピックアップ装置が提
案されている。第3図は従来の光学式ピックアップ装置
の模式的平面図である。
When optically recording and reproducing information on a disk, it is necessary to accurately focus recording and reproducing light such as a laser beam onto the disk, and various optical pickup devices have been proposed for this purpose. FIG. 3 is a schematic plan view of a conventional optical pickup device.

同図において1は所定の波長λの記録再生用光を発する
半導体レーザ、ガスレーザ等の光源である。
In the figure, reference numeral 1 denotes a light source such as a semiconductor laser or a gas laser that emits recording and reproducing light of a predetermined wavelength λ.

2は入射される光を回折、透過する位相型回折板(回折
格子)である。位相型回折板2は例えば第4図に示す如
き溝(格子)を有し、その溝の深さ。
2 is a phase type diffraction plate (diffraction grating) that diffracts and transmits incident light. The phase type diffraction plate 2 has grooves (gratings) as shown in FIG. 4, for example, and the depth of the grooves is as follows.

間隔及び向きによって回折光の分布状態が決定されるが
、その深さく厚さ)は波長λの略1/2に設定されてお
り、略々1次回折光のみが導出されるようになっている
。、3は対物レンズであり、ディスク4上に光を収束す
るように図示せぬフォーカスモータ等により駆動される
。5はディスク4により反射された反射光を受光し、焦
点誤差信号やディスク4に記録されている情報の再生信
号を出力する受光素子である。6は光源1の共役点であ
る。
The distribution state of the diffracted light is determined by the spacing and direction, and the depth (depth and thickness) is set to approximately 1/2 of the wavelength λ, so that approximately only the first-order diffracted light is derived. . , 3 are objective lenses, which are driven by a focus motor (not shown) or the like so as to converge light onto the disk 4. Reference numeral 5 denotes a light receiving element that receives the reflected light reflected by the disc 4 and outputs a focus error signal and a reproduction signal of information recorded on the disc 4. 6 is a conjugate point of the light source 1.

光源1から発せられた光は位相型回折板2により回折さ
れる。その溝の深さく厚さ)が光の波長λの略々1/2
に設定されているため、このとき導出されるのは殆ど+
1次回折光と一1次回折光のみである。位相型回折板2
は9例えば−1次回折光(又は+1次回折光)のみを殆
ど無収差で回折するように設計されており、この−1次
回折光が対物レンズ3に入射光として入射され、ディス
ク4上に収束、照射される(+1次回折光は図示してい
ない)。ディスク4により反射され、対物レンズ3に入
射した反射光は、さらに位相型回折板2に入射され、そ
こで再び+1次回折光と一1次回折光とに回折される。
Light emitted from a light source 1 is diffracted by a phase type diffraction plate 2. The depth and thickness of the groove is approximately 1/2 of the wavelength λ of light.
Since it is set to , most of the results derived at this time are +
There are only the first-order diffracted light and the first-order diffracted light. Phase type diffraction plate 2
9 is designed to diffract, for example, only the −1st order diffracted light (or +1st order diffracted light) with almost no aberration, and this −1st order diffracted light is incident on the objective lens 3 as an incident light and converged on the disk 4. (+1st-order diffracted light is not shown). The light reflected by the disk 4 and incident on the objective lens 3 is further incident on the phase type diffraction plate 2, where it is diffracted again into +1st order diffraction light and 11th order diffraction light.

そしてそのうち殆ど無収差の+1次回折光(又は−1次
回折光)は光源1に戻され、非点収差を有する一1次回
折光(又は+1次回折光)が受光素子5に照射される。
Then, the +1st order diffracted light (or -1st order diffracted light) which has almost no aberration is returned to the light source 1, and the 11st order diffracted light (or +1st order diffracted light) which has astigmatism is irradiated onto the light receiving element 5.

従って受光素子5を4つの部分に分割しておき、所謂非
点収差法により焦点誤差制御を行うことができる6 〔発明が解決しようとする問題点〕 しかしながら従来の装置はこのように位相型回折板2が
光を透過させる構成であるため1回折素子のレリーフ(
溝)が深く(厚く)なり、その製作が困難となる欠点が
あった。また装置を薄型化するためには、ミラー等他の
光学手段を付加してビームを偏向する必要があり、部品
点数が増加し。
Therefore, by dividing the light-receiving element 5 into four parts, the focus error can be controlled by the so-called astigmatism method.6 [Problems to be Solved by the Invention] However, conventional devices do not perform phase-type diffraction as described above. Since the plate 2 is configured to transmit light, the relief of the first diffraction element (
The problem was that the grooves were deep (thick), making it difficult to manufacture. Furthermore, in order to make the device thinner, it is necessary to add other optical means such as a mirror to deflect the beam, which increases the number of parts.

装置の小型化が妨げられるばかりでなく、高価となる欠
点があった。
This not only hinders miniaturization of the device, but also has the disadvantage of being expensive.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の光学式ピックアップ装置の模式的平面
図を表わしている。同図において第3図における場合と
対応する部分には同一の符号を付してあり、その詳述は
省略する。本発明においては、位相型回折板11の表面
が例えばアルミニ、ラム等により形成され、光を反射す
るようになされている。そして位相型回折板11上にX
+ y座標をとった場合における任意の点(x、y)と
波長λの光を発生する光源lとの光路長をり1、任意の
点(xty)と光源1の共役点6との光路長をLX と
するとき1位相型回折板11には。
FIG. 1 shows a schematic plan view of the optical pickup device of the present invention. In this figure, parts corresponding to those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted. In the present invention, the surface of the phase type diffraction plate 11 is made of aluminum, laminate, etc., and is adapted to reflect light. Then, on the phase type diffraction plate 11
+ When taking the y coordinate, the optical path length between any point (x, y) and a light source l that generates light with wavelength λ is 1, and the optical path between any point (xty) and the conjugate point 6 of light source 1 is 1. When the length is LX, for the one-phase diffraction plate 11.

LL (xt y) −LX (xt y) =mλな
る形状式で表わされる反射型の回折素子が形成されてい
る(但しm=0.±1.±2.・・・)。
A reflective diffraction element is formed which is expressed by the shape formula: LL (xty) - LX (xty) = mλ (where m = 0.±1.±2. . . ).

すなわちその形状は光源1から発せられる波面と共役点
6から発せられる波面との位相整合により決定される。
That is, its shape is determined by phase matching between the wavefront emitted from the light source 1 and the wavefront emitted from the conjugate point 6.

またその格子の溝の深さは、溝の上面と下面で反射1回
折される光の光路長の差が略λ/2(又はその奇数倍)
となるように構成することができる。このようにすると
0次回折光を低減し、±1次回折光の回折効率を増加さ
せることができる。さらにまた±1次回折光の回折効率
を増加させるため、溝の断面形状を矩形に対してブレー
ズ化する(階段状(理想的には曲線)にする)こともで
きる。そして光源1より発せられ1位相型回折板11に
より回折、反射された一方の回折光が対物レンズ3を介
してディスク4に照射され、ディスク4にて反射され1
位相型回折板11により回折1反射された一方の回折光
が受光素子5にて受光されるようになされている。
In addition, the depth of the groove of the grating is such that the difference in optical path length of the light that is reflected and diffracted on the upper and lower surfaces of the groove is approximately λ/2 (or an odd number multiple thereof).
It can be configured as follows. In this way, it is possible to reduce the 0th-order diffracted light and increase the diffraction efficiency of the ±1st-order diffracted light. Furthermore, in order to increase the diffraction efficiency of the ±1st-order diffracted light, the cross-sectional shape of the groove can be blazed (made step-like (ideally curved)) with respect to the rectangular shape. One of the diffracted lights emitted from the light source 1 and diffracted and reflected by the 1-phase diffraction plate 11 is irradiated onto the disk 4 via the objective lens 3, and reflected by the disk 4.
One of the diffracted lights that has been diffracted and reflected by the phase type diffraction plate 11 is received by the light receiving element 5.

〔作用〕[Effect]

しかしてその作用を説明する。光源1から発せられた光
は位相型回折板11により反射、回折される。位相型回
折板11は、例えば−1次回折光(又は+1次回折光)
のみを殆ど無収差で回折するように設計されており、こ
の無収差の一1次回折光が対物レンズ3に入射光として
入射され、ディスク4上に収束、照射される(+1次回
折光は図示していない)、ディスク4により反射され、
対物レンズ3に入射した反射光は、さらに位相型回折板
11に入射され、そこで再び+1次回折光と一1次回折
光とに反射、回折(分離)される。
The effect will now be explained. Light emitted from the light source 1 is reflected and diffracted by the phase type diffraction plate 11. The phase type diffraction plate 11 is, for example, -1st order diffracted light (or +1st order diffracted light)
This aberration-free 1st-order diffracted light enters the objective lens 3 as incident light, and is converged and irradiated onto the disk 4 (the +1st-order diffracted light is not shown in the figure). ), reflected by disk 4,
The reflected light incident on the objective lens 3 is further incident on the phase type diffraction plate 11, where it is again reflected and diffracted (separated) into +1st-order diffracted light and 11th-order diffracted light.

そして殆ど無収差の1次回折光は光源1に戻され。The first-order diffracted light with almost no aberration is then returned to the light source 1.

非点収差を有する方の1次回折光が受光素子5に入射さ
れる。
The first-order diffracted light having astigmatism is incident on the light receiving element 5.

ディスク4と対物レンズ3との相対的距離が変化すると
、受光素子5上におけるビームスポットは第2図(a)
乃至(c)に示すように変化する。
When the relative distance between the disk 4 and the objective lens 3 changes, the beam spot on the light receiving element 5 changes as shown in FIG. 2(a).
It changes as shown in (c).

すなわちスポットは、ディスク4が合焦点位置にあると
き第2図(a)に示す如く略円形となり。
That is, when the disk 4 is at the focused position, the spot becomes approximately circular as shown in FIG. 2(a).

それより近ずくか又は遠ざかると第2図(b)又は(c
)に各々示すように縦長又は横長の楕円形となる。従っ
て受光素子5を4つの部分に分割しておき、対角線上に
位置する部分からの出力の和の差を得ることにより焦点
誤差信号を生成することができる。この焦点誤差信号を
図示せぬフォーカスモータに供給し、対物レンズ3とデ
ィスク4との相対的距離を制御することができる。
If you get closer or further away, Figure 2 (b) or (c)
) as shown respectively in a vertically long or horizontally long oval shape. Therefore, the focus error signal can be generated by dividing the light receiving element 5 into four parts and obtaining the difference between the sums of the outputs from the diagonally located parts. This focus error signal is supplied to a focus motor (not shown) to control the relative distance between the objective lens 3 and the disk 4.

光源1として少なからぬ非点収差を有する半導体レーザ
を用いた場合や、対物レンズ3に球面収差等が残ってい
る場合等においては、これらの収差を考慮した上で位相
型回折板11の形状を決定するようにすれば、斯かる収
差を相殺した光をディスク4に照射することができる。
In cases where a semiconductor laser with considerable astigmatism is used as the light source 1, or where spherical aberration etc. remain in the objective lens 3, the shape of the phase type diffraction plate 11 should be determined by taking these aberrations into consideration. If this is determined, it is possible to irradiate the disc 4 with light that cancels out such aberrations.

また位相型回折板11を傾けることにより光の方向を変
えることができるので、光学系の調整としては、光源1
と受光素子5の光軸方向の調整と、位相型回折板11の
面内方向における回転調整と、仰角の調整を行えばよい
Furthermore, since the direction of the light can be changed by tilting the phase type diffraction plate 11, the light source 1 can be adjusted to adjust the optical system.
What is necessary is to adjust the optical axis direction of the light receiving element 5, rotate the phase type diffraction plate 11 in the in-plane direction, and adjust the elevation angle.

尚以上においては位相型回折板11の溝の深さをλ/2
として実質的に1次回折光のみを得るようにし、この1
次回折光をディスク4に照射するようにしたが、0次回
折光と1次回折光とが得られるように位相型回折板11
を構成し、ディスク4には0次回折光が照射されるよう
になし、受光素子5には焦点誤差信号を生成するために
非点収差を有する1次回折光を入射させるようにするこ
ともできる。
In the above, the depth of the groove of the phase type diffraction plate 11 is set to λ/2.
As a result, substantially only the first-order diffracted light is obtained, and this first-order diffraction light is
Although the disk 4 is irradiated with the diffracted light of the next order, the phase type diffraction plate 11 is used so that the diffracted light of the 0th order and the diffracted light of the 1st order can be obtained.
It is also possible to configure the disc 4 to be irradiated with the 0th order diffracted light and to make the 1st order diffracted light having astigmatism enter the light receiving element 5 in order to generate a focus error signal.

また非点収差法により焦点誤差信号を生成する場合は、
受光素子5への1次回折光路中に円柱レンズを配置した
り、その先軸に対して傾斜して平行平面板を配置するこ
ともできる。勿論例えばウェッジプリズムを配置する等
して、非点収差法以外の方法で焦点誤差信号を得るよう
にすることもできる。
Also, when generating a focus error signal using the astigmatism method,
It is also possible to arrange a cylindrical lens in the first-order diffraction optical path to the light-receiving element 5, or to arrange a plane-parallel plate inclined with respect to its tip axis. Of course, it is also possible to obtain the focus error signal by a method other than the astigmatism method, for example by arranging a wedge prism.

〔効果〕〔effect〕

以上の如く本発明は、波長がλの光を発する光源と、光
源から発せられ、ディスクに入射される入射光をディス
ク上に収束する対物レンズと、ディスクにて反射された
反射光の少なくとも一部を受光する受光素子と、入射光
と反射光の光路中に配置され、入射される光を少なくと
も2つの回折光に回折する回折手段とを有する光学式ピ
ックアップ装置において1回折手段に、光源からの光路
長をLx (xt y)−光源の共役点からの光路長を
L2 (xt y)とするとき、 LL (xt y)−L2 (xt y)=mλなる形
状式で表わされる反射型の回折素子を設け(但しm =
 Q 、±1.±2.・・・)、光源より発せられ、回
折手段により回折、反射された一方の回折光を対物レン
ズを介してディスクに照射し、ディスクから反射され1
回折手段により回折、反射された一方の回折光を受光素
子にて受光するようにしたので1回折手段の溝の深さを
透過型に較べ浅くすることができ、回折手段の製作が容
易となり、薄型化、低コスト化を実現することができる
As described above, the present invention includes a light source that emits light with a wavelength of λ, an objective lens that converges the incident light emitted from the light source and incident on the disk, and at least one of the reflected light reflected by the disk. In an optical pickup device, the optical pickup device includes a light-receiving element that receives a portion of the light, and a diffraction means that is disposed in the optical path of incident light and reflected light and that diffracts the incident light into at least two diffracted lights. When the optical path length from the conjugate point of the light source is Lx (xt y) - the optical path length from the conjugate point of the light source is L2 (xt y), the reflective type Provide a diffraction element (however, m =
Q, ±1. ±2. ), one of the diffracted lights emitted from the light source, diffracted and reflected by the diffraction means is irradiated onto the disc via the objective lens, and the one reflected from the disc is
Since one of the diffracted lights diffracted and reflected by the diffraction means is received by the light-receiving element, the depth of the groove of the first diffraction means can be made shallower than that of a transmission type, making it easier to manufacture the diffraction means. Thinness and cost reduction can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学式ピックアップ装置の模式的平面
図、第2図はその受光素子上のスポットの模式的平面図
、第3図は従来の光学式ピックアップ装置の模式的平面
図、第4図はその位相型回折板の平面図である。 1・・・光源  2.11・・・位相型回折板3・・・
対物レンズ  4・・・ディスク5・・・受光素子  
6・・・共役点 以上
FIG. 1 is a schematic plan view of the optical pickup device of the present invention, FIG. 2 is a schematic plan view of a spot on the light receiving element, and FIG. 3 is a schematic plan view of a conventional optical pickup device. FIG. 4 is a plan view of the phase type diffraction plate. 1... Light source 2.11... Phase type diffraction plate 3...
Objective lens 4... Disk 5... Light receiving element
6...Conjugate point or more

Claims (1)

【特許請求の範囲】 波長がλの光を発する光源と、該光源から発せられ、デ
ィスクに入射される入射光を該ディスク上に収束する対
物レンズと、該ディスクにて反射された反射光の少なく
とも一部を受光する受光素子と、該入射光と反射光の光
路中に配置され、入射される光を少なくとも2つの回折
光に回折する回折手段とを有する光学式ピックアップ装
置において、 該回折手段に、該光源からの光路長をL_1(x、y)
、該光源の共役点からの光路長をL_2(x、y)とす
るとき、 L_1(x、y)−L_2(x、y)=mλなる形状式
で表わされる反射型の回折素子を設け(但しm=0、±
1、±2、・・・)、該光源より発せられ、該回折手段
により回折、反射された一方の回折光を該対物レンズを
介して該ディスクに照射し、該ディスクから反射され、
該回折手段により回折、反射された一方の回折光を該受
光素子にて受光することを特徴とする光学式ピックアッ
プ装置。
[Scope of Claims] A light source that emits light with a wavelength of λ, an objective lens that converges the incident light emitted from the light source and incident on the disk onto the disk, and a An optical pickup device comprising a light receiving element that receives at least a portion of light, and a diffraction means that is disposed in an optical path of the incident light and reflected light and that diffracts the incident light into at least two diffracted lights, the diffraction means , the optical path length from the light source is L_1(x,y)
, where the optical path length from the conjugate point of the light source is L_2(x,y), a reflective diffraction element is provided ( However, m=0, ±
1, ±2, ...), one of the diffracted lights emitted from the light source, diffracted and reflected by the diffraction means, is irradiated onto the disk via the objective lens, and is reflected from the disk,
An optical pickup device characterized in that one of the diffracted lights diffracted and reflected by the diffraction means is received by the light receiving element.
JP60107953A 1985-05-20 1985-05-20 Optical pickup device Pending JPS61265746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107953A JPS61265746A (en) 1985-05-20 1985-05-20 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107953A JPS61265746A (en) 1985-05-20 1985-05-20 Optical pickup device

Publications (1)

Publication Number Publication Date
JPS61265746A true JPS61265746A (en) 1986-11-25

Family

ID=14472240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107953A Pending JPS61265746A (en) 1985-05-20 1985-05-20 Optical pickup device

Country Status (1)

Country Link
JP (1) JPS61265746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175238A (en) * 1987-01-16 1988-07-19 Nec Corp Optical head device
JPS63191328A (en) * 1987-02-04 1988-08-08 Canon Inc Optical head device
JPS63225930A (en) * 1987-03-16 1988-09-20 Mitsubishi Electric Corp Optical information reproducing device
JPS63228428A (en) * 1987-03-17 1988-09-22 Matsushita Electric Ind Co Ltd Optical head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175238A (en) * 1987-01-16 1988-07-19 Nec Corp Optical head device
JPS63191328A (en) * 1987-02-04 1988-08-08 Canon Inc Optical head device
JPS63225930A (en) * 1987-03-16 1988-09-20 Mitsubishi Electric Corp Optical information reproducing device
JPS63228428A (en) * 1987-03-17 1988-09-22 Matsushita Electric Ind Co Ltd Optical head

Similar Documents

Publication Publication Date Title
JP3677319B2 (en) Focus control method and optical disc apparatus
KR900007141B1 (en) Optical reproducing apparatus
JP3396890B2 (en) Hologram, optical head device and optical system using the same
US4924082A (en) Optical scanning device, mirror objective suitable for use in said device and optical write and/or read apparatus provided with said device
JPH07182687A (en) Optical pick-up
JPH09180245A (en) Recording and reproducing optical pickup usable for disks of different thickness
CA2004982A1 (en) Optical scanning device, mirror objective suitable for use in said device and optical write and/or read apparatus provided with said device
EP0802529B1 (en) Optical information recording or playbacking system, optical head apparatus used in the system and method for recording or playbacking optical information
JP2796196B2 (en) Optical head device
JP2726029B2 (en) Method and apparatus for forming double focus
JPH0340232A (en) Laser pickup
JPS61265746A (en) Optical pickup device
US5856961A (en) Laser detector grating unit (LDGU) for producing focus error, a push-pull tracking error, and differential phase tracking error signals
JPS61151844A (en) Optical reproducer
JP2004253111A (en) Optical pickup device
JPS62172538A (en) Optical head device
JP3220347B2 (en) Optical pickup device
JP2735062B2 (en) Optical head device
JPH0519852Y2 (en)
JPS61265745A (en) Optical pickup device
JPS63191328A (en) Optical head device
JPH085441Y2 (en) Beam Splitter
JPS5827890B2 (en) Optical beam branching device in video disc playback device
JPH0668849B2 (en) Optical playback method
KR100421012B1 (en) Optical pickup comprising a beam splitter formed a hologram and method of compensating optical axes using the same