JPS59107007A - Production of tungsten carbide powder - Google Patents

Production of tungsten carbide powder

Info

Publication number
JPS59107007A
JPS59107007A JP57211031A JP21103182A JPS59107007A JP S59107007 A JPS59107007 A JP S59107007A JP 57211031 A JP57211031 A JP 57211031A JP 21103182 A JP21103182 A JP 21103182A JP S59107007 A JPS59107007 A JP S59107007A
Authority
JP
Japan
Prior art keywords
powder
plating
tungsten carbide
alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57211031A
Other languages
Japanese (ja)
Other versions
JPH0233763B2 (en
Inventor
Yukihiro Kondo
近藤 行広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP57211031A priority Critical patent/JPS59107007A/en
Publication of JPS59107007A publication Critical patent/JPS59107007A/en
Publication of JPH0233763B2 publication Critical patent/JPH0233763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain powder which has good conductivity and high hardness and is suitable as a material for contact, etc. by forming a plating layer on a metallic plate with a Pd-Ni alloy plating soln. contg. WC powder and stripping and disintegrating the same. CONSTITUTION:A Pd-Ni alloy plating soln. 1 and WC powder 2 are mixed 3, and are plated 4 on a metallic plate. The resulting plating layer is stripped 5 from the metallic plate and is disintegrated 6 by a suitable method. Then a powdery material 9 formed with a Pd-Ni alloy layer 7 on the surface of the WC powder 2 is thus obtd. Since the material 9 consists of WC particles of high hardness as a core material, it has an excellent mechanical strength such as wear resistance or the like and since it has the Pd-Ni alloy coating layer which is a noble metal on the surface part thereof, the material is resistant to corrosion by atmosphere gas and has excellent conductivity. The Pd-Ni alloy coating layer is formed by a composite plating method and has therefore extremely high adhesion strength to the WC particles.

Description

【発明の詳細な説明】 この発明は、電気接点製造用原料などとして使用するこ
とのできる粉末材料の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a powder material that can be used as a raw material for producing electrical contacts.

接点材料としては、耐溶着性や接触抵抗等の接点特性を
改良するため従来種々の合金が実用化されており、その
主なものは、例えば大電流用としては銀を主体とする合
金および焼結体、中ないし小電流用としては金、ロジウ
ム等の貴金属類である。このうち、後者はクラッドやメ
ッキ法による接点が多く、上記以外の特殊なものとして
線、例えば水銀を用いた液体接点がある。
Various alloys have been put into practical use as contact materials in order to improve contact properties such as welding resistance and contact resistance.The main ones are, for example, silver-based alloys and sintered alloys for high current applications. Noble metals such as gold and rhodium are used for solids and medium to small currents. Among these, most of the latter are contacts made by cladding or plating, and special types other than those mentioned above include liquid contacts using wires, for example, mercury.

電気接点は機械的な衝突により接触して導通部を形成す
るという構成のため、導電性のほかに機械的な耐摩耗性
、接点開閉時に発生するアークに対する耐消耗特性等の
緒特性が重大なポイントとなる。また、不活性ガス等に
よる封入接点は別として、接点の設置場所における雰囲
気に対する安定性も重要である。これら性質上の諸要求
に応えるため種々の対応策が提案されているが、いずれ
も一長一短があって、上記すべての要求を充分に満足す
るものは今のところ得られていない。例えば、機械的強
度を向上させるために、会場中に非金属粒子を分散ある
いは析出(例えば内部酸化法)させた複合材料が提唱さ
れているが、このような材料では導電率が低下するとい
う問題がある。また、セラミックス等の非金属粒子と金
属粉末の混合物を成形し焼結した材料もあるが、一般に
非金属粒子の融点は金属に比較して非常に高く、焼結温
度を融点の低い金属の焼結温度にあわせるので、金属と
非金属粒子との結合力が充分ではなく、機械的性質の向
上効果を充分に上げることができない。
Electrical contacts are constructed in such a way that they come into contact through mechanical collision to form a conductive part, so in addition to electrical conductivity, other properties such as mechanical wear resistance and wear resistance against arcs that occur when opening and closing contacts are important. This is the point. In addition, apart from contacts sealed with inert gas or the like, stability against the atmosphere at the location where the contacts are installed is also important. Various countermeasures have been proposed in order to meet these various demands, but each has advantages and disadvantages, and so far no one has been obtained that fully satisfies all of the above demands. For example, in order to improve mechanical strength, composite materials have been proposed in which non-metallic particles are dispersed or precipitated throughout the venue (e.g. by internal oxidation method), but such materials have the problem of reduced electrical conductivity. There is. There are also materials made by molding and sintering a mixture of nonmetallic particles such as ceramics and metal powder, but the melting point of nonmetallic particles is generally much higher than that of metals, so the sintering temperature is lower than that of metals with lower melting points. Since the temperature is adjusted to the freezing temperature, the bonding force between metal and nonmetal particles is not sufficient, and the effect of improving mechanical properties cannot be sufficiently increased.

この発明は、上記事情に鑑み、導電性が良好で硬度が高
く、接点材料として用いるに適した粉末の製法を提供す
ることを主目的になされたもので、その特徴とするとこ
ろは、パラジウムとニッケルの合金メッキ液中に炭化タ
ングステン粉末を混入し、金嬉板を被メッキ物として電
気メッキを行なつ几のち、金属板表面に形成されたメッ
キ層を剥離して粉砕する点にある。
In view of the above circumstances, the main purpose of this invention is to provide a method for producing a powder that has good conductivity and high hardness and is suitable for use as a contact material. The process involves mixing tungsten carbide powder into a nickel alloy plating solution, electroplating the metal plate as the object to be plated, and then peeling off and pulverizing the plating layer formed on the surface of the metal plate.

第1図はこの製法を例示するフローチャートであり、パ
ラジウム(Pd)、ニッケル(Nt)合金メッキ液1と
炭化タングステン(WC)粉末2とが混合され(工程3
)、金属板へのメッキが行なわれる(工程4)。金属板
としては、錆が発生しにくく、メッキ層の剥離が容易な
ステンレス鋼板を使用するのが好ましい。得られたメッ
キ層は適当な方法で釜属板から剥離され(工程5ン、粉
砕される(工程6)。これによって、第2図に例示する
ような、炭化タコ/ゲステン粉末20表面にノくラジウ
ム・ニッケル合金層7が形成された粉末材料9が得られ
る。得られた粉末材料9は、高硬度の炭化タングステン
(WC)粒子が芯材となっているため、耐摩耗性等の機
械的性質にすぐれ、しかもその表面部に貴金属であるパ
ラジウム(Pd)とニッケル(Nl)の合金被膜層が形
成されているため、雰囲気ガスによる腐蝕に強く導電性
にすぐれた粉末となっている。また、このパラジウム−
ニッケル合金被膜層は、複合メッキ法によって形成され
るため、炭化タングステン粒子との密着強度がきわめて
高いものとなっている。
FIG. 1 is a flowchart illustrating this manufacturing method, in which palladium (Pd), nickel (Nt) alloy plating solution 1 and tungsten carbide (WC) powder 2 are mixed (step 3).
), the metal plate is plated (step 4). As the metal plate, it is preferable to use a stainless steel plate that does not easily rust and has a plating layer that can be easily peeled off. The obtained plating layer is peeled off from the pot metal plate by an appropriate method (step 5) and crushed (step 6). As a result, nosions are formed on the surface of the carbide octopus/gesten powder 20 as illustrated in FIG. A powder material 9 on which a radium-nickel alloy layer 7 is formed is obtained.The obtained powder material 9 has high hardness tungsten carbide (WC) particles as a core material, so it has mechanical properties such as wear resistance. Moreover, since an alloy coating layer of noble metals palladium (Pd) and nickel (Nl) is formed on its surface, it is a powder that is resistant to corrosion by atmospheric gases and has excellent conductivity. Also, this palladium-
Since the nickel alloy coating layer is formed by a composite plating method, the adhesion strength with the tungsten carbide particles is extremely high.

このようにして得られた粉末材料9は、例えば所定の形
状に加圧成形して焼結することにより、ビッカース硬度
(Hv)300程度の所望の形状の電気接点とすること
ができる。また、この粉末材料9を適当な溶剤、硬化剤
と混合することにより、導電性のペーストを構成するこ
とも可能である。
The powder material 9 thus obtained can be made into an electrical contact in a desired shape with a Vickers hardness (Hv) of about 300 by, for example, being pressure-molded into a predetermined shape and sintered. It is also possible to form a conductive paste by mixing this powder material 9 with a suitable solvent and curing agent.

この粉末材料9を用いてPd−Ni −WC系の接点を
製造し、小型リレーに組み込んだ実施例では、p95=
1.5X10’回、30VIA  DC(D電気寿命を
持ち、接触抵抗値も40mΩ以下と安定していた。した
がって、これを大容量の接点として使用することも可能
である。また、不法で得られた粉末材料9を用い、圧延
を施すことによって、従来のメッキ法では形成不能な1
0ミクロン以上の厚みをもつ接点を得ることが可能とな
る。
In an example in which a Pd-Ni-WC type contact was manufactured using this powder material 9 and incorporated into a small relay, p95=
1.5 x 10' times, 30 VIA DC (D electrical life, and contact resistance value was stable at 40 mΩ or less. Therefore, it is possible to use this as a large capacity contact. Also, it is possible to use it as a large capacity contact. By using powdered material 9 and rolling it, 1, which cannot be formed by conventional plating methods, is
It becomes possible to obtain contacts with a thickness of 0 microns or more.

〔実施例〕〔Example〕

メッキ液として下記組成のPd−Ni合金メッキ液を使
用した。
A Pd-Ni alloy plating solution having the following composition was used as the plating solution.

パラダスアミンクロライド   Pd (NH3) z
cl z  40 g/l硫酸ニッケル     Ni
SO4・6H2050g/l硫酸アンモニウム   (
NH4)2504  50g/lポリオキシエチレンナ
トリウム          3g/lこのメッキ液に
平均粒度0.7ミクロンのWC粉末を25 g/l の
割合で混入し、12時間予備撹拌を行なったのち、ステ
ンレス鋼板を被メッキ物として下記条件で複合メッキし
た。
Paradus amine chloride Pd (NH3) z
cl z 40 g/l Nickel sulfate Ni
SO4・6H2050g/l ammonium sulfate (
NH4) 2504 50g/l polyoxyethylene sodium 3g/l WC powder with an average particle size of 0.7 microns was mixed into this plating solution at a ratio of 25g/l, and after preliminary stirring for 12 hours, a stainless steel plate was coated. As a plated product, composite plating was performed under the following conditions.

電流密度    0.5 A / d m”pH8,9 温度      30℃ 時間      30分 メッキ中は撹拌 このメッキ条件のもとてメッキを行なったところ、ステ
ンレス鋼板上に約5ミクロンの厚みのPd・N i −
WC複合メッキ層が形成された。このときのPd−Ni
の合金比率は、Pd:80重量%、Ni:20重iチで
あった。
Current density: 0.5 A/dm” pH: 8,9 Temperature: 30°C Time: 30 minutes Stirring during plating When plating was performed under these plating conditions, approximately 5 micron thick Pd Ni was deposited on a stainless steel plate. −
A WC composite plating layer was formed. Pd-Ni at this time
The alloy ratio was Pd: 80% by weight, Ni: 20% by weight.

得られたメッキ層はステンレス鋼板に対して密着性が悪
いので1、ステンレス鋼板を折り曲げることにより容易
にメッキ層とステンレス鋼板とを分離することができた
。このようにしてステンレス鋼板から分離した複合メッ
キ被膜を乳鉢で粉砕し、さらに石川式掴潰機を用いて4
0分間粉砕した。
Since the obtained plating layer had poor adhesion to the stainless steel plate, the plating layer and the stainless steel plate could be easily separated by bending the stainless steel plate. The composite plating film separated from the stainless steel plate in this way was crushed in a mortar, and then crushed into powder using an Ishikawa crusher.
Milled for 0 minutes.

これによって第2図に示すような粉末材料が得られた。As a result, a powder material as shown in FIG. 2 was obtained.

以上の説明から明らかなように、この発明にかかる炭化
タングステン系粉末の製法は、導電性が良好で硬度が高
く、接点材料などとして用いるに適した粉末材料を容易
に製造することのできるすぐ−れたものである。
As is clear from the above description, the method for producing tungsten carbide powder according to the present invention is a method for producing tungsten carbide powder that has good conductivity, high hardness, and is suitable for use as a contact material. It is something that was given.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる製法を例示するフローチャー
ト、第2図は得られた粉末材料の断面図である。 l・・・パラジウム・ニッケル合金メッキ液 2・・・
炭化タングステン粉末 3・・・混合工程 4・・・メ
ッキ工程 5・・・剥離工程 6・・・粉砕工程 7・
・・パラジウム・ニッケル合金層 9・・・粉末材料 代理人 弁理士 松 本 武 彦 第1図 第2図 月巨糸六ネ市正書(自発) 昭和59年01月13日 特許庁長官 殿 1、E件の表示 昭til157年特許願第211031号2、発明の名
称 炭化タングステン系粉末の製法 3、補正をする者 事件との関係     特許出願人 件   所    大阪府門真市大字門真1048番地
名 称(583)松下電工株式会社 代表者  イ憬卵没小林 郁 4、代理人 な   し 6、補正の対象 明細書 7、 補正の内容 (1)明細書第4頁第19行に[ビッカース硬度()l
v)300Jとあるを、「マイクロビッカース硬度(m
Hy) 2000Jと訂正する。
FIG. 1 is a flowchart illustrating the manufacturing method according to the present invention, and FIG. 2 is a sectional view of the obtained powder material. l...Palladium-nickel alloy plating solution 2...
Tungsten carbide powder 3...Mixing process 4...Plating process 5...Peeling process 6...Crushing process 7.
...Palladium-nickel alloy layer 9...Powder material agent Patent attorney Takehiko Matsumoto Figure 1 Figure 2 Moon Kyoto Rokune Ichisho (spontaneous) January 13, 1980 Commissioner of the Japan Patent Office Tono 1 , Indication of E, Patent Application No. 211031, filed in 1972, 2, Name of the invention, Process for producing tungsten carbide powder 3, Relationship with the case of the person making the amendment, Patent applicant, Address, 1048 Kadoma, Kadoma City, Osaka, Name (583) ) Matsushita Electric Works Co., Ltd. Representative Iku Kobayashi 4, no agent 6, Specification subject to amendment 7, Contents of amendment (1) [Vickers hardness ()l] on page 4, line 19 of the specification
v) 300J is replaced with “micro Vickers hardness (m
Hy) Corrected to 2000J.

Claims (2)

【特許請求の範囲】[Claims] (1)  パラジウムとニッケルの合金メッキ液中に炭
化タングステン粉末を混入し、金属板を被メッキ物とし
て電気メッキを行なったのち、金属板表面に形成された
メッキ層を剥離して粉砕することによって、炭化タング
ステン粒子の表面にパラジウム・ニッケル合金被膜層が
形成された粉末を得ることを特徴とする炭化タングステ
ン系粉末の製法。
(1) By mixing tungsten carbide powder into a palladium and nickel alloy plating solution and performing electroplating on a metal plate as the object to be plated, the plating layer formed on the surface of the metal plate is peeled off and crushed. A method for producing tungsten carbide powder, which is characterized by obtaining a powder in which a palladium-nickel alloy coating layer is formed on the surface of tungsten carbide particles.
(2)金属板がステンレス鋼板である特許請求の範囲第
1項記載の炭化タングステン系粉末の製法。
(2) The method for producing tungsten carbide powder according to claim 1, wherein the metal plate is a stainless steel plate.
JP57211031A 1982-11-30 1982-11-30 Production of tungsten carbide powder Granted JPS59107007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57211031A JPS59107007A (en) 1982-11-30 1982-11-30 Production of tungsten carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57211031A JPS59107007A (en) 1982-11-30 1982-11-30 Production of tungsten carbide powder

Publications (2)

Publication Number Publication Date
JPS59107007A true JPS59107007A (en) 1984-06-21
JPH0233763B2 JPH0233763B2 (en) 1990-07-30

Family

ID=16599211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57211031A Granted JPS59107007A (en) 1982-11-30 1982-11-30 Production of tungsten carbide powder

Country Status (1)

Country Link
JP (1) JPS59107007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274254B1 (en) * 1999-08-23 2001-08-14 Lucent Technologies Inc. Electrodeposited precious metal finishes having wear resistant particles therein
US9466843B2 (en) 2010-07-30 2016-10-11 Samsung Electronics Co., Ltd. Electrode catalyst and method of preparing electrode catalyst for fuel cell, and membrane electrode assembly and fuel cell including same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785999A (en) * 1980-11-14 1982-05-28 Nippon Telegr & Teleph Corp <Ntt> Production of electric contact and contact material
JPS57198254A (en) * 1981-05-29 1982-12-04 C Uyemura & Co Ltd Manufacture of inorganic fine particle coated with metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785999A (en) * 1980-11-14 1982-05-28 Nippon Telegr & Teleph Corp <Ntt> Production of electric contact and contact material
JPS57198254A (en) * 1981-05-29 1982-12-04 C Uyemura & Co Ltd Manufacture of inorganic fine particle coated with metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274254B1 (en) * 1999-08-23 2001-08-14 Lucent Technologies Inc. Electrodeposited precious metal finishes having wear resistant particles therein
US9466843B2 (en) 2010-07-30 2016-10-11 Samsung Electronics Co., Ltd. Electrode catalyst and method of preparing electrode catalyst for fuel cell, and membrane electrode assembly and fuel cell including same

Also Published As

Publication number Publication date
JPH0233763B2 (en) 1990-07-30

Similar Documents

Publication Publication Date Title
US4290859A (en) Process for preparing electrode
US4309457A (en) Process of producing multilayer-coated composite powder
EP0144959A2 (en) Powdered metal composite
JP5460585B2 (en) Sliding member manufacturing method, sliding member and sliding member base material
CA1225614A (en) Cathode with alloy of nickel or cobalt and platinum group metal or rhenium
TW200529263A (en) Multilayer ceramic electronic component and method of manufacturing for the same
US4622269A (en) Electrical contact and process for making the same
CN102044347B (en) Preparation method and products of silver-copper-nickel-ceramic alloy contact material with high welding resistance
EP0101936B1 (en) Boride-dispersed alloy material and process for manufacturing same
US4666568A (en) Electrolytic codeposition of metals and nonmetallic particles
JPS59107007A (en) Production of tungsten carbide powder
JP3559564B2 (en) Method for producing cured lead-acid battery electrode
JP2003511563A (en) Method for producing electrolytically coated cold rolled material (Kaltband) for use in the production of a battery shell, and a battery shell produced according to said method
US3305324A (en) Tungsten powder bodies infiltrated with copper-titanium-bismuth or copper-titanium-tin
CA1291445C (en) Cathode having on the core hydrogen absorbing metal and raney metal
CN100477044C (en) Contact consisted of silver, nickel, rare-earth oxide and carbon, and method for producing same
CN112941398B (en) Graphite reinforced self-lubricating copper alloy and preparation method thereof
US4599148A (en) Galvanically deposited dispersion layer and method for making such layer
EP0273876A1 (en) Spot welding electrode and method for making it
GB189701657A (en) An Improvement in the Electro Deposition of Metals and Alloys.
JPH0520961A (en) Manufacture of electric contact point and sliding contact material
US4528207A (en) Plated dental amalgam alloys
JPH03146602A (en) Metal coating powder and manufacture thereof
JPS59150099A (en) Plating method of palladium dispersed with carbide
JPS6044277B2 (en) Multilayer metal-coated carbon powder and its sintered body