JPS59106935A - Preparation of polyester resin film - Google Patents

Preparation of polyester resin film

Info

Publication number
JPS59106935A
JPS59106935A JP57218646A JP21864682A JPS59106935A JP S59106935 A JPS59106935 A JP S59106935A JP 57218646 A JP57218646 A JP 57218646A JP 21864682 A JP21864682 A JP 21864682A JP S59106935 A JPS59106935 A JP S59106935A
Authority
JP
Japan
Prior art keywords
film
cooling surface
extrusion die
molten
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57218646A
Other languages
Japanese (ja)
Other versions
JPS6251730B2 (en
Inventor
Junkichi Watanabe
渡辺 純吉
Jun Komatsuzaki
小松崎 醇
Kenji Tsubouchi
健二 坪内
Masaaki Yamazaki
正明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP57218646A priority Critical patent/JPS59106935A/en
Publication of JPS59106935A publication Critical patent/JPS59106935A/en
Publication of JPS6251730B2 publication Critical patent/JPS6251730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Abstract

PURPOSE:To make it possible to form a film by high speed electrostatic peening without applying a special device to an electrode, by setting film forming conditions such as the take-up angle of the film, viscosity or a draft ratio so as to reduce the curling at the end parts of the molten film. CONSTITUTION:A formula (1) is given by using the density (g/cm<3>) of a molten film, the air gap S(cm) imparted by the length ranging from the extrusion die lip A to the contact point B on a rotary cooling surface, neck-in delta(cm) shown by 1/2 of the difference between a die lip width L1 and the film width L2 at the contact point B, the draft ratio lambda(-) imparted by the value obtained by dividing the speed of the rotary cooling surface by the average emitting speed at the outlet of the extrusion die, the viscosity mu(gsec/cm) corresponding to the temp. and shearing speed of resin and the angle alpha deg. formed by the tangential line in a film flowing direction and a vertical direction and, when a film is formed under such a condition that the value rho shown by the formula (1) is 25.0(cm<2>/sec) or more, film curling is hardly generated and, if an electrostatic pining method is applied under said condition, a film forming speed of 40m/min or more can be easily achieved.

Description

【発明の詳細な説明】 本発明は厚み均一性が優れ、低結晶性のポリエステル樹
脂フィルムを高能率で製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polyester resin film with excellent thickness uniformity and low crystallinity with high efficiency.

ポリエステル系樹脂をダイから押出し9回転冷却体面上
に受けて製膜する工程において、フィルムの回転冷却体
面と接する側の反対側に高電圧の印加されたワイヤーあ
るいはナイフ状の電極を設けてフィルム表面上に静電荷
を析出させ、接地された回転冷却面との間に作用する静
電気的引力により該フィルムを回転冷却面に密着させる
ことにより急冷しながら製膜する方法(この方法は静電
ピニング法と呼ばれている)は厚み均一性、透明性等を
改良する方法として有効であり、広く利用されているも
のである。しかし、この方法は回転冷却面の速度が大き
くなるほど難しくなり、′#膜速度を上げると溶融体フ
ィルムと回転冷却面の間に気泡を捲へ込み易くなる。静
電ピニング法を用いた場合、溶融体フィルムは静電気的
引力により回転冷却体面に強く押1−付けられ急冷され
る。従って、もし溶融体フィルムと回転冷却体面の間に
気泡が捲き込まれると、冷却が阻害され均質なフィルム
ができないばかりでなく1表面に凹凸が発生する。従っ
て、気泡の捲き込みはこの製膜工程では致命的な欠陥と
なり、このことば製膜速度に限界を与える。
In the process of extruding polyester resin from a die and receiving it on the surface of a 9-rotating cooling body to form a film, a wire or knife-shaped electrode to which a high voltage is applied is provided on the opposite side of the film from the side that contacts the rotating cooling body surface. A method of forming a film while rapidly cooling the film by depositing an electrostatic charge on the surface and bringing the film into close contact with the rotary cooling surface using electrostatic attraction acting between the surface and the grounded rotating cooling surface (this method uses the electrostatic pinning method). ) is an effective method for improving thickness uniformity, transparency, etc., and is widely used. However, this method becomes more difficult as the speed of the rotating cooling surface increases, and as the film speed increases, air bubbles tend to become trapped between the melt film and the rotating cooling surface. When the electrostatic pinning method is used, the molten film is strongly pressed against the rotating cooling body surface by electrostatic attraction and is rapidly cooled. Therefore, if air bubbles are trapped between the molten film and the surface of the rotary cooling body, cooling will be inhibited and not only will a homogeneous film not be formed, but also unevenness will occur on one surface. Therefore, the entrainment of air bubbles is a fatal defect in this film forming process, and it puts a limit on the film forming speed.

静電ピニング法で製膜速度を高めるためになされた従来
の改良提案は電極に関するもの9例えば特公昭53−6
180号公報に示されるような補助電極を用いてイオン
を多量に発生させる束縛力を強化する方法。界囲気に関
するもの9例えば特開昭53−143659号公報に示
されるような電極近傍の温度を上げて空気をイオン化し
易くシ、フィルム面上に多量の静電荷を付与して束縛力
を強化する方法。特公昭50−28108号公報に示さ
れるような絶縁破壊前の放電電流の大きなガスで電極近
傍を覆い、多量の電流を流すことによりフィルム面上に
多量の静電荷を付与して束縛力を強化する方法。原料に
関するもので1例えば特公昭53−40231号公報等
に示されるような溶融ポリエステル樹脂の電気伝導性を
改良することにより高速化を可能にしたもの。その他特
公昭55−22257号公報に示されるような吸引型エ
アナイフを併用するもの。特公昭55−10365号公
報に示されるような赤外線を併用するもの等があるが、
製膜技術そのものに関する改良はない。
Conventional improvement proposals made to increase the film forming speed using the electrostatic pinning method are related to electrodes9.
A method of strengthening the binding force to generate a large amount of ions using an auxiliary electrode as shown in Japanese Patent No. 180. Related to ambient air 9 For example, as shown in JP-A No. 53-143659, the temperature near the electrode is raised to facilitate ionization of the air, and a large amount of static charge is applied to the film surface to strengthen the binding force. Method. As shown in Japanese Patent Publication No. 50-28108, the vicinity of the electrode is covered with a gas that has a large discharge current before dielectric breakdown, and by passing a large amount of current, a large amount of static charge is applied to the film surface to strengthen the binding force. how to. Regarding raw materials, 1. For example, as shown in Japanese Patent Publication No. 53-40231, etc., high-speed processing is possible by improving the electrical conductivity of molten polyester resin. Others use a suction type air knife as shown in Japanese Patent Publication No. 55-22257. There are some methods that use infrared rays as shown in Japanese Patent Publication No. 55-10365, but
There is no improvement regarding the film forming technology itself.

本発明者らは静電ピニング法をポリエステル樹脂フィル
ムに適用する場合は、従来の製膜方法に前記のような改
良提案を加えたものでは限界があり、ます製膜方法その
ものを静電ピニング法に適したものに改良すべきである
と考え9種々の装置。
The present inventors believe that when applying the electrostatic pinning method to polyester resin films, there is a limit to the conventional film forming method with the above-mentioned improvement proposals. 9 various devices that should be improved to be suitable for use.

樹脂を用いて静電ピニング法を適用した押出製膜を行い
、気泡捲き込みの原因探索を行った。その結果、気泡捲
き込みのない状態で製膜速度を高めるためには、溶融フ
ィルム端部のカールのコントロールが極めて重要である
ことを知った。このカールにをま (イ)溶融フィルムを中央部と碑部に分けて考えた場合
、中央部のたわみに較べ端部のたわみが小さく、結果と
して端部がもち上ったように見えるカール。
We performed extrusion film formation using an electrostatic pinning method using resin, and investigated the cause of air bubble entrainment. As a result, we learned that controlling the curl at the edges of the molten film is extremely important in order to increase the film forming speed without entraining bubbles. (a) When the molten film is divided into a central part and a monument part, the bending of the edges is smaller than that of the central part, and as a result, the edges appear to be curled up.

(ロ)溶融フィルム端部が押出ダイリップと回転冷却面
に最初に接する点を結んだ直線より明らかに上方に位置
するようなカール。
(b) A curl in which the edge of the molten film is clearly located above the straight line connecting the first point of contact with the extrusion die lip and the rotating cooling surface.

5− 等が存在する。この(イ)および(ロ)のカールについ
て完全に理論的に解明することは困難である。
5- etc. exist. It is difficult to completely explain the curls in (a) and (b) theoretically.

これらのカールには溶融体フィルムの中央部分へ指向す
る横断方向の溶融張力9表面張力、記憶現象等が微妙に
影響するものと考えられ、製膜速度の増大と共に増加す
る。その結果、フィルム端部は中心部に向ってネックイ
ンシ、厚みが増大する。又、中央部分より遅れて回転冷
却面に到達する。従って電極を直線状に取付けた場合、
フィルム中全体に亘って束縛力を最良にすることが不可
能になる。何故ならば、フィルムの束縛力を生ずる静電
荷はフィルムと電極との間隔によって決まるからである
。例えば電極をフィルムの中心部分に関して最良の束縛
力が得られるように配置した場合、フィルムの両端部分
は極端に接近することになる。その結果、電極とフィル
ム端部分に火花放電が起こり、そのため電荷の析出が阻
害され束縛操作に支障を来たし、気泡が捲き込まれる。
These curls are thought to be subtly influenced by transverse melt tension 9 surface tension directed toward the center of the melt film, memory phenomenon, etc., and increase as the film forming rate increases. As a result, the edge of the film becomes neck in and thicker toward the center. Also, the water reaches the rotating cooling surface later than the central part. Therefore, when the electrodes are installed in a straight line,
It becomes impossible to optimize the binding force throughout the film. This is because the electrostatic charge that creates the binding force on the film is determined by the distance between the film and the electrode. For example, if the electrodes are placed to provide the best binding force relative to the center of the film, the ends of the film will be extremely close together. As a result, a spark discharge occurs at the electrode and the film end portion, which inhibits the deposition of charges, hinders the binding operation, and entrains air bubbles.

これを回避するためには電極をカールしたフィルム端部
から十分離して配置することが必要となるが。
In order to avoid this, it is necessary to place the electrodes at a sufficient distance from the curled ends of the film.

6− そのような間隔は中央部分に最良の束縛力を生ぜしめる
に必要な間隔より大きいため、フィルムと回転冷却面と
の間に気泡が捲き込まれることになる。
6- Such a spacing is greater than that required to produce the best restraint force in the central portion, resulting in the entrainment of air bubbles between the film and the rotating cooling surface.

この困難を解決するため特開昭56−53037号公報
に示されるように、ブレード電極を用いてフィルムの端
部に相当する位置のブレード電極に湾曲を与え、フィル
ムの全幅を横切る。フィルム横断面に実質的に適合する
ようにする方法、ブレード電極のフィルム端部に相当す
る位置をフィルム中心部に向って湾曲せしめ、グレード
電極がフィルム端部を超えて伸びることがないようにす
る方法等が提案されている。
In order to solve this difficulty, as shown in Japanese Patent Laid-Open No. 56-53037, a blade electrode is used to curve the blade electrode at a position corresponding to the edge of the film so as to cross the entire width of the film. A method of substantially conforming to the cross-section of the film, by curving the blade electrode at a position corresponding to the film edge toward the center of the film so that the grade electrode does not extend beyond the film edge. Several methods have been proposed.

しかし、これらの方法は第1に電極に与える湾曲の程度
を決めることが難しく、製作が稚しい。
However, in these methods, first, it is difficult to determine the degree of curvature to be applied to the electrode, and manufacturing is difficult.

第2に一肚でき上った電極はフィルムの巾等の異なるフ
ィルムに適用することがほぼ不可能であり。
Second, it is almost impossible to apply the electrode once completed to films of different film widths.

非常に使用しにくい。第3にフィルムに対する電極の位
置決めおよび電極の取付が難しい等の困難がある。
Very difficult to use. Third, there are difficulties in positioning and attaching the electrodes to the film.

本発明者等はかかる従来技術の改良について鋭意検討し
、フィルム端部のカールとフィルムの引取り角度、粘度
、ドラフト比等の間には密接な関係があることを見出し
、エアーギャップ中のフィルムについての力学的考察と
、上記のファクターについての詳細な実験を繰返すこと
等により製膜条件を改良し、電極についての特別な工夫
をすることなしに高速静電ピニング製膜を可能にする方
法を見出した。
The inventors of the present invention have made extensive studies on improvements to the prior art, and have found that there is a close relationship between the curl of the film edge, the film take-up angle, viscosity, draft ratio, etc. Through mechanical considerations and repeated detailed experiments on the above factors, we improved the film forming conditions and developed a method that enables high-speed electrostatic pinning film forming without special devising of electrodes. I found it.

即ち、溶融フィルムの密度ρ(F//ct/l ) 、
押出ダイリップから回転冷却面上に最初に溶融フィルム
が接する点捷での溶融フィルムに沿って計った長さで与
えられるエアギャップ5(Crn)、押出ダイから押出
された溶融フィルムが回転冷却面に最初に接するまでに
それぞれの端縁部で縮少する横断方向の量(ダイリップ
巾と接点におけるフィルム巾の差の1/2)で示される
ネックインδ(tM)、押出ダイ出口における横断方向
の平均的吐出速度で。
That is, the density of the molten film ρ(F//ct/l),
The air gap 5 (Crn) is given by the length measured along the molten film at the point where the molten film first contacts the rotating cooling surface from the extrusion die lip, and the molten film extruded from the extrusion die is placed on the rotating cooling surface. Neck-in δ (tM), expressed as the amount of transverse reduction at each edge before initial contact (1/2 of the difference between the die lip width and the film width at the point of contact); At average discharge speed.

回転冷却面速度を除した値で与えられるドラフト比λ(
−)、押出ダイリップを通過する樹脂の温度。
The draft ratio λ (
−), the temperature of the resin passing through the extrusion die lip.

剪断速度に対応する粘度μ(11sec/cJ ) e
押出ダイと回転冷却面に最初に接する位置の間に存在す
る溶融フィルムの流れ方向及び横断方向の中間点におけ
る流れ方向に対する接線の鉛直方向とのなす角α(度)
を用いて で示される値Pが25.0 (all/ sec )以
上になるような条件で製膜すればカールが発生しに〈〈
、その条件で静電ピニング法を適用すれば比較的容易に
製膜速度を上げることができることを発見した。
Viscosity μ (11 sec/cJ) corresponding to shear rate e
Angle α (degrees) between the tangent to the flow direction and the vertical direction at the midpoint between the flow direction and the transverse direction of the molten film between the extrusion die and the position where it first contacts the rotating cooling surface
If the film is formed under conditions such that the value P shown by is 25.0 (all/sec) or more, curling will not occur.
They discovered that if the electrostatic pinning method was applied under these conditions, it was possible to increase the film forming rate relatively easily.

Pの意味するところを次に説明する。The meaning of P will be explained next.

一般に引張粘度ηを有する流体を歪速度dv/dx(V
は移動速度、Xは流体の流線に沿って計った考阜点まで
の長さ)で変形させた場合、流体の単位面積当りに働く
張カチは次式で与えられる。
In general, a fluid with a tensile viscosity η is strained at a strain rate dv/dx (V
is the moving speed, and X is the length measured along the streamline of the fluid to the point of consideration), then the tension acting per unit area of the fluid is given by the following equation.

フィルム成形用ポリエステル樹脂は通常の成形条件では
ニー−トン流体とみなせるから引張粘度9− ηは近似的に一般的な溶融粘度(剪断粘度)μと次の関
係にある。
Since the polyester resin for film molding can be regarded as a Neilton fluid under normal molding conditions, the tensile viscosity 9-η has approximately the following relationship with the general melt viscosity (shear viscosity) μ.

η= 3μ フィルム端縁部の影響がない中央部では単位巾当りの張
力は流れ方向任意の点でつり合っていることおよび単位
巾当りの流量が一定であることがら v 3μT−=一定 x Tv = Q (一定) (Tは考繋点のフィルム厚さ、Qは単位巾当りの流量) 従って、ダイリップ吐出点のフィルム厚さToeエアー
ギャップ長S、ドラフト比λとすると次の関係が得られ
る。
η = 3μ Since the tension per unit width is balanced at any point in the flow direction at the center where there is no influence from the edge of the film, and the flow rate per unit width is constant, v 3μT-=constant x Tv = Q (constant) (T is the film thickness at the connecting point, Q is the flow rate per unit width) Therefore, if the film thickness at the die lip discharge point is Toe, the air gap length is S, and the draft ratio is λ, the following relationship is obtained. .

O T=□□ 一 λS 10− 以上の関係はフィルム中央部について求めたものである
が、フィルム端縁部についてもこれらの関係を適用して
も重大な誤りとはならないはずである。フィルム自由端
の影響を強く受ける部分。
OT=□□ -λS 10- The above relationships were determined for the center portion of the film, but applying these relationships to the edge portions of the film should not result in any serious errors. The part that is strongly affected by the free edge of the film.

すなわち端部の1]をB(この概念を第2図に示す)と
考えればその部分の張力は次式で近似できる。
In other words, if we consider the end 1] to be B (this concept is shown in FIG. 2), the tension at that part can be approximated by the following equation.

このときこの部分の重量Wは近似的に (T’は端部平均厚さ、δはフィルム片側のネックイン
量、ρはフィルム密度) 従って、フィルム端部なたわませようとする力W(αは
フィルムの流れ方向接線と鉛直方向とのなす角で、中央
部と端部は同じと近似する)たわみ量をDとすると、フ
ィルム端部には次の近似的力学バランスが成立するはず
である(以上の関係を第3図に示す。Fは端部の張力で
ある)。
At this time, the weight W of this part is approximately (T' is the average thickness of the edge, δ is the neck-in amount on one side of the film, and ρ is the film density). Therefore, the force W that tries to bend the edge of the film ( α is the angle between the tangent to the film's flow direction and the vertical direction, and it is approximated that the center and edges are the same.) If the amount of deflection is D, the following approximate mechanical balance should be established at the edges of the film. (The above relationship is shown in Figure 3. F is the tension at the end).

Q/T’は速度に対応するものであるから、たわみ量の
指標pは次式で与えられる。
Since Q/T' corresponds to speed, the deflection amount index p is given by the following equation.

以上詳述したように、パラメーターPは実際のたわみ量
を表わし得ないまでも少なくともフィルム端縁部のたわ
み量に関係する特性値であることは明白である。
As described in detail above, it is clear that the parameter P is a characteristic value related to at least the amount of deflection at the edge of the film, even if it cannot represent the actual amount of deflection.

即ち、Pの意味するところは、同一引取速度で考えれば
Pが大きければ端部のたわみが大きくなりカールが小さ
くなることを示し、又同−たわみ即ち同一カールを考え
た場合はPが太きければ大きいほど引取速度Vを上げる
ことができることを示す値である。
In other words, the meaning of P is that if P is large, the deflection at the end will be large and the curl will be small, assuming the same take-up speed, and if the same deflection, that is, the same curl, is considered, P will be thicker. This value indicates that the higher the take-up speed V is, the more the take-up speed V can be increased.

本発明者等は静電ピニング法に適した製膜条件を決定す
る重要なパラメータとしてPをとり上げ。
The present inventors have taken up P as an important parameter for determining film forming conditions suitable for the electrostatic pinning method.

種々の原料9種々の形状をした押出ダイ、押出温度、押
出条件、引取条件等において詳細な実験を行った。その
結果、エアギャップ:20%〜150%。
Detailed experiments were conducted using nine different raw materials, extrusion dies of various shapes, extrusion temperatures, extrusion conditions, withdrawal conditions, etc. As a result, air gap: 20% to 150%.

ドラフト比:5〜20.溶融粘度: 1500pois
e〜5000poise、引取角度30〜90の範囲の
製膜条件ではm1図に示すようにPがかなり良く、気泡
の捲き込みの状況を示していることがわかった。
Draft ratio: 5-20. Melt viscosity: 1500pois
It was found that under film forming conditions in the range of e to 5000 poise and take-up angle of 30 to 90, P was quite good as shown in the m1 diagram, indicating the state of bubble entrainment.

第1図にはそれぞれの製膜条件で気泡の捲き込みの発生
したものをX印9発生しなかったものを○印で示(−だ
。この図はカールが小さく気泡の捲き込みが発生しない
範囲は引取速度が犬きくなればなるほど、P値が大きく
なければならず、Pが大きくなればなる程引取速度を上
げることができることを示している。P≧25.0 (
ad/ see )になれば従来ワイヤ電極を用いては
実現の難しかった引取速度40 m7’m以上を容易に
実現することができる。
In Figure 1, under each film forming condition, cases where air bubble entrainment occurred are indicated by X marks, 9 cases where bubble entrainment did not occur are indicated by ○ marks (-).This figure shows small curls and no air bubble entrainment. The range shows that the faster the take-up speed is, the larger the P value must be, and the larger P is, the more the take-up speed can be increased.P≧25.0 (
ad/see), it is possible to easily achieve a take-up speed of 40 m7'm or more, which was difficult to achieve using conventional wire electrodes.

ここにいうポリエステルとは、2塩基酸と2価アルコー
ルから得られるフィルム形成能を有するポリエステル又
はその共重合体をいう。勿論第3成分としてイソフタル
酸、アジピン酸、トリエチ13− レンゲリコールなどの2塩基酸あるいは2価アルコール
等を共重合させたポリエステルでもよく。
The term "polyester" as used herein refers to a polyester having film-forming ability obtained from a dibasic acid and a dihydric alcohol, or a copolymer thereof. Of course, the third component may be a polyester copolymerized with a dibasic acid such as isophthalic acid, adipic acid, or triethyl-13-lengelicol, or a dihydric alcohol.

又、安定剤2着色剤等の添加剤を配合したものでもよい
Further, the stabilizer 2 may contain additives such as a coloring agent.

このようにして製造された厚み均一性の優れた低結晶性
の無延伸フィルムは特に厚み精度についての要求が厳し
いポリエステル系2軸延伸フイルムを造る場合に延伸性
2強靭性、光学的性質等までも含めて最適の素材となる
The low-crystalline unstretched film with excellent thickness uniformity produced in this way is particularly useful when making biaxially stretched polyester films that have strict requirements for thickness accuracy, such as stretchability, toughness, and optical properties. This makes it the perfect material.

本発明方法を汎用的な条件でライン全体としての最良の
効果を得るためにはさらにもう一つの考慮が重要なもの
となる。即ち、押出ダイの吐出角である。従来において
は押出ダイを回転冷却体頂上点付近に設置し、吐出方向
を鉛直又は鉛直に近い角度にして押出製膜していた。こ
の方法は機械精度、厚み精度等の実現には有利であり、
そのために従来においては一般的な方法であった。押出
ダイの方向を傾げる従来技術としては2例えば特公昭5
1−31267号公報があるが、この方法は単に溶融体
フィルムの振動を防止するに押出ダイな14− 傾げることを示したものであり9本発明のように押出ダ
イリップの汚れ、即ち「目やに」を減少させる方法を述
べたものではなく、押出ダイリップ先端における吐出方
向と溶融フィルムの流れ方向との角度について述べたも
のではない。本発明方法を具体的に実施してカールの発
生しにくい条件を見出すと、引取速度が高速になるに従
ってかなり大きな引取り角を有するようになる。このよ
うな時押出ダイをそのリップ方向を鉛直又はそれに近い
方向に取付けるとダイの吐出方向とダイリップ先端にお
ける溶融フィルムの流れ方向は必然的に大きな角度を有
することになる(この関係を模式的に第4図に示す)。
In order to obtain the best effect of the method of the present invention on the entire line under general conditions, one more consideration becomes important. That is, it is the discharge angle of the extrusion die. Conventionally, an extrusion die was installed near the top of the rotary cooling body, and the extrusion film was formed with the discharge direction vertical or at an angle close to vertical. This method is advantageous in achieving mechanical accuracy, thickness accuracy, etc.
For this reason, this has been a common method in the past. Conventional techniques for tilting the direction of the extrusion die include 2, for example, Japanese Patent Publication No. 5
No. 1-31267, but this method simply tilts the extrusion die to prevent vibration of the molten film, and unlike the present invention, it prevents dirt on the lip of the extrusion die, that is, "eye mucus". The present invention does not describe a method for reducing the molten film, nor does it describe the angle between the extrusion direction and the flow direction of the molten film at the tip of the extrusion die lip. If the method of the present invention is specifically carried out to find conditions in which curling is less likely to occur, as the drawing speed becomes higher, the drawing angle becomes considerably larger. In such a case, if the extrusion die is installed with its lip direction vertical or close to vertical, the direction of discharge of the die and the flow direction of the molten film at the tip of the die lip will inevitably have a large angle (this relationship is schematically shown below). (shown in Figure 4).

このような状態で製膜操作を続けるとダイリップに「目
やに」と称される溶融樹脂およびその炭化物が付着L 
9  フィルムには厚み斑9表面凹凸が発生し、製膜操
作を続けることが不可能になる。ダイリップの掃除を頻
繁に行うことは能率性を著しく低下させる。この問題に
ついて種々検討した結果、ダイリップにおける吐出方向
と溶融フィルムのダイリップ先端における流れ方向との
なす角が「目やに」の付着に太いに関係があり、この角
度を小さくすれば「目やに」の付着が減少することがわ
かった(この時の配置を模式的に第5図に示す)。これ
は溶融樹脂の表面張力、粘度、密度、ダイリップの鋭利
度等に関係するものと思われるが、ポリエステル樹脂を
使用し通常の鋭利度を有するダイリップを用いた場合、
そのなす角度が60より小さければ「目やに」の付着が
著しく減少することが判明した。これは第6図(吐出方
向とダイリップ先端における溶融フィルムの流れ方向の
角度が小さい場合の形状を示す)、第7図(吐出方向と
ダイリップ先端における溶融フィルムの流れ方向の角度
が大きい場合の形状を示す)に示すようにダイリップの
吐出方向とダイリップ先端における溶融フィルムの流れ
方向の角度が60以下であれば溶融樹脂がダイリップの
エッヂを回って付着することはないが、60を越えると
ダイリップのエッヂを回って付着又は滞留し、炭化する
ためと考えられる。又9本発明の効果の現われる製膜引
取条件ではダイリップ先端における溶融フィルムの流れ
方向はαと近似的に同じと見なせる。
If the film forming operation is continued under such conditions, molten resin and its carbide, called "eye mucus", will adhere to the die lip.
9 Thickness unevenness 9 surface irregularities occur in the film, making it impossible to continue the film forming operation. Frequent cleaning of the die lip significantly reduces efficiency. As a result of various studies on this problem, we found that the angle between the discharge direction at the die lip and the flow direction of the molten film at the tip of the die lip has a strong relation to the adhesion of "eye mucus", and that reducing this angle will reduce the adhesion of "eye mucus". (The arrangement at this time is schematically shown in FIG. 5). This seems to be related to the surface tension, viscosity, density, and sharpness of the die lip of the molten resin, but when using polyester resin and a die lip with normal sharpness,
It has been found that if the angle formed is smaller than 60, the adhesion of "eye mucus" is significantly reduced. This is shown in Figure 6 (showing the shape when the angle between the discharge direction and the flow direction of the molten film at the die lip tip is small) and Figure 7 (the shape when the angle between the discharge direction and the flow direction of the molten film at the die lip tip is large). If the angle between the discharge direction of the die lip and the flow direction of the molten film at the tip of the die lip is 60 or less, the molten resin will not go around the edge of the die lip and adhere, but if it exceeds 60, the molten resin will not adhere to the die lip. This is thought to be due to the fact that it moves around the edge, adheres or stagnates, and carbonizes. Furthermore, under the film forming and taking-off conditions under which the effects of the present invention are manifested, the flow direction of the molten film at the tip of the die lip can be considered to be approximately the same as α.

以上に示すように9本発明は静電ピニング法を用いた製
膜方法において、従来性われていなかった製膜方法その
ものの改良を行い、以て非常に容易に製膜速度の高速化
を達成した本のであり、工業的価値は大きい。
As shown above, the present invention improves the film forming method itself, which has not been achieved in the past, in a film forming method using electrostatic pinning, and thereby achieves a high speed of film forming very easily. This book is of great industrial value.

以下に実施例、比較例を示す。Examples and comparative examples are shown below.

実施例1 フェノールと四塩化炭素の1:1混合溶液で20℃で測
定した相対粘度が1.41のポリエチレンテレフタレー
トを280Cで押出製膜した。この時ダイリップを通過
する樹脂の溶融粘度は3450 poiseであった。
Example 1 Polyethylene terephthalate having a relative viscosity of 1.41 measured at 20° C. was extruded into a film at 280° C. using a 1:1 mixed solution of phenol and carbon tetrachloride. At this time, the melt viscosity of the resin passing through the die lip was 3450 poise.

その他の製膜条件としてはエアギャップ: 50%、ネ
ックイン38%、引取速度:42m/am。
Other film forming conditions were air gap: 50%, neck-in 38%, and take-up speed: 42 m/am.

ドラフト比:6.7.  フィルム厚さ:120μ、引
取角度:52で製膜した。この時静電ピニング条件は電
極に直径150μSUS鋼線を用い、電圧ニア、Okv
、電流: 0.035mA/crn、電極とフィルム間
の距離:5.0%であった。この時P値25.7 (c
J/ see )17− である。この時カールは発生せず、気泡の捲き込みは見
られなかった。
Draft ratio: 6.7. The film was formed with a film thickness of 120 μm and a take-off angle of 52 μm. At this time, the electrostatic pinning conditions were as follows: 150μ diameter SUS steel wire was used as the electrode, voltage near, Okv
, current: 0.035 mA/crn, distance between electrode and film: 5.0%. At this time, P value 25.7 (c
J/see) 17-. At this time, no curling occurred and no air bubbles were observed.

実施例2 実施例1と同じポリエステル樹脂を290℃で押出製膜
した。この時ダイリップを通過する樹脂の溶融粘度は2
930 poiseであった。その他の製膜条件として
はエアギャップ:50%、ネックイン:45%、引取速
度:45ff!//da、ドラフト比:8.4゜フィル
ム厚さ=120μ、引取角度:50であった。
Example 2 The same polyester resin as in Example 1 was extruded into a film at 290°C. At this time, the melt viscosity of the resin passing through the die lip is 2
It was 930 poise. Other film forming conditions are air gap: 50%, neck-in: 45%, take-up speed: 45ff! //da, draft ratio: 8.4°, film thickness = 120μ, and take-up angle: 50.

又、静電ピニング条件は実施例1と同じ電極を用い、電
圧:6.5kv、電流: 0.03 mk/cm、電極
とフィルム間の距離:5.0■であった。この時のP値
は28 (ctd/ see )である。この時カール
は発生せず。
Further, the electrostatic pinning conditions were as follows: using the same electrode as in Example 1, voltage: 6.5 kv, current: 0.03 mk/cm, and distance between electrode and film: 5.0 square meters. The P value at this time is 28 (ctd/see). No curling occurred at this time.

気泡の捲き込みは見られなかった。No air bubbles were observed.

実施例3 実施例1の場合と同様処して測定した相対粘度が1.3
8のポリエチレンテレフタレートを290℃で押出製膜
した。この時ダイリップを通過する樹脂の溶融粘度は2
040 poiseであった。その他の製膜条件として
は、エアギャップ:45%、ネックイン18− =42%、引取速度:50m/騙、ドラフト比:9.1
゜フィルム厚さ:90μ、引取角度:55であった。
Example 3 The relative viscosity measured in the same manner as in Example 1 was 1.3.
Polyethylene terephthalate No. 8 was extruded into a film at 290°C. At this time, the melt viscosity of the resin passing through the die lip is 2
It was 040 poise. Other film forming conditions include air gap: 45%, neck-in 18-=42%, take-up speed: 50 m/frame, draft ratio: 9.1
゜Film thickness: 90μ, take-up angle: 55.

この時静電ピニング条件は実施例1と同じ電極を用い、
電圧ニア、2kv、電流: 0.(140mA/cm 
、電極とフィルムの間隔=5.0%であった。この時P
値は31.1である。この時カールは発生せず気泡の捲
き込みは見られなかった。
At this time, the electrostatic pinning conditions used the same electrodes as in Example 1,
Voltage near, 2kv, current: 0. (140mA/cm
, the distance between the electrode and the film was 5.0%. At this time P
The value is 31.1. At this time, no curling occurred and no air bubbles were observed.

実施例4 実施例3と同じポリエステル樹脂を実施例3と同条件で
押出製膜した。製膜条件としてはエアギャップ:45%
、ネックイン:42〜.引取速度:60 m/” 、 
 ドラフト比:10.9.  フィルム厚さ=75μ、
引取角度:55であった。この時の静電ピニング条件は
実施例1と同じ電極を用い、電圧ニア、0kv、電流:
 0.046mA/crn、  電極とフィルムの間隔
:40%であった。この時P値は28.4 (ti/ 
sec )である。
Example 4 The same polyester resin as in Example 3 was extruded into a film under the same conditions as in Example 3. Air gap: 45% as film forming conditions
, Neck in: 42~. Pick-up speed: 60 m/”,
Draft ratio: 10.9. Film thickness = 75μ,
Take-off angle: 55. The electrostatic pinning conditions at this time were to use the same electrodes as in Example 1, voltage near, 0kv, and current:
0.046 mA/crn, distance between electrode and film: 40%. At this time, the P value is 28.4 (ti/
sec).

この時カールは発生せず気泡の捲き込みは見られなかっ
た〇 比較例1 実施例1に対応するものとして、実施例1と同じ樹脂、
同温度で押出製膜した。製膜条件は引取速度42m/”
、  ドラフト比:6.7.フィルム厚さ:120μ、
引取角度30であり、エアギャップを50%とした時ネ
ックインは42%であった。この時のP値は17.5 
(ca/ see )である。この時カールが発生し、
フィルム中央部に対し端部は3%程度電極に近づいた状
態になった。種々のピニング条件で製膜したが、気泡捲
き込みのないフィルムは得られなかった。
At this time, no curling occurred and no bubble entrainment was observed. Comparative Example 1 As a material corresponding to Example 1, the same resin as Example 1,
A film was formed by extrusion at the same temperature. Film forming conditions are take-up speed 42m/”
, Draft ratio: 6.7. Film thickness: 120μ,
When the take-off angle was 30 and the air gap was 50%, the neck-in was 42%. The P value at this time is 17.5
(ca/see). At this time, curls occur,
The edges of the film were about 3% closer to the electrodes than the center of the film. Films were formed under various pinning conditions, but a film free from air bubble entrainment could not be obtained.

比較例2 実施例2に対応するものとして、実施例2と同樹脂を同
温度で押出製膜した。製膜条件は引取速度45m/m、
  ドラフト比:8.4.  フィルム厚さ120μ、
引取角度40であり、エアギャップを50%としだ時ネ
ックインは46%であった。この時のP値は24.0 
(crl/ sec )である。この時カールが発生し
、フィルム中央部に対し端部は2%程度電極に近づいた
状態になった。種々のピニング条件で製膜したが、気泡
捲き込みのないフィルムは得られなかった。
Comparative Example 2 As a product corresponding to Example 2, the same resin as Example 2 was extruded into a film at the same temperature. The film forming conditions were a take-up speed of 45 m/m,
Draft ratio: 8.4. Film thickness 120μ,
When the take-off angle was 40 and the air gap was 50%, the neck-in was 46%. The P value at this time is 24.0
(crl/sec). At this time, curling occurred, and the edges of the film were about 2% closer to the electrodes than the center of the film. Films were formed under various pinning conditions, but a film free from air bubble entrainment could not be obtained.

比較例3 実施例3に対応するものとして、実施例3と同樹脂を同
温度で押出製膜した。製膜条件は引取速度: 50m/
m、  ドラフト比:9.1.  フィルム厚さ:90
μ、引取角度35であり、エアギャップ45%とした時
ネックインは44%であった。この時P値は22.0 
(ctl/ see )である。この時カールが発生し
、フィルム中央部に対し端部は2%程度電極に近づいた
状態になった。気泡捲き込みのないピニング条件を求め
たが9発見できなかった。
Comparative Example 3 As a product corresponding to Example 3, the same resin as in Example 3 was extruded to form a film at the same temperature. Film forming conditions are take-up speed: 50m/
m, draft ratio: 9.1. Film thickness: 90
μ, the take-off angle was 35, and when the air gap was 45%, the neck-in was 44%. At this time, the P value is 22.0
(ctl/see). At this time, curling occurred, and the edges of the film were about 2% closer to the electrodes than the center of the film. We searched for pinning conditions that would not entrain air bubbles, but we were unable to find any.

実施例5 押出ダイの吐出方向とダイリップ先端における溶融樹脂
の流れ方向の角度を40とし、実施例1と同じ樹脂を2
90℃でドラフト比6.7.引取速度4 Q m/mで
押出製膜し120μのフィルムを得た。
Example 5 The angle between the discharge direction of the extrusion die and the flow direction of the molten resin at the tip of the die lip was set to 40, and the same resin as in Example 1 was
Draft ratio 6.7 at 90°C. Extrusion film formation was carried out at a take-up speed of 4 Q m/m to obtain a 120μ film.

この時リップ掃除1回当りの製膜可能時間は180時間
程度であった。
At this time, the film forming time per lip cleaning was approximately 180 hours.

実施例6 押出ダイの吐出方向とダイリップ先端における21− 溶融樹脂の流れ方向の角度を55一度とする以外は実施
例5と同じ条件で押出製膜した。この時リップ掃除1回
当りの製膜可能時間は160時間程度であった。
Example 6 Extrusion film formation was carried out under the same conditions as in Example 5, except that the angle between the discharge direction of the extrusion die and the flow direction of the 21-molten resin at the tip of the die lip was set to 55 degrees. At this time, the film forming time per lip cleaning was about 160 hours.

比較例4 実施例5,6に対応するものとして押出ダイ吐出方向と
ダイリップ先端における溶融樹脂の流れ方向の角度を6
5とする以外実施例5と同条件で押出製膜した。この時
リップ掃除1回当りの製膜可能時間は40時間程度であ
った。
Comparative Example 4 Corresponding to Examples 5 and 6, the angle between the extrusion die discharge direction and the flow direction of the molten resin at the tip of the die lip was set to 6
Extrusion film formation was carried out under the same conditions as in Example 5, except that the number was changed to 5. At this time, the film forming time per lip cleaning was about 40 hours.

実施例7 ・実施例3と同じ樹脂を実施例5と同条件で押出製膜し
た。結果リップ掃除1回当りの製膜可能時間は180時
間程度であった。
Example 7 - The same resin as in Example 3 was extruded into a film under the same conditions as in Example 5. As a result, the film forming time per lip cleaning was about 180 hours.

実施例8 実施例7と同じ樹脂を実施例6と同条件で押出製膜した
。その結果リップ掃除1回当りの製膜可能時間は160
時間程度であった。
Example 8 The same resin as in Example 7 was extruded into a film under the same conditions as in Example 6. As a result, the film forming time per lip cleaning is 160
It was about an hour.

比較例5 実施例7.8に対応するものとして、押出ダイ22− 吐出方向とダイリップ先端における溶融樹脂の流れ方向
の角度を65とする以外は実施例7と同条件で押出製膜
した。結果リップ掃除1回当りの製膜可能時間は32時
間程度であった。
Comparative Example 5 As a product corresponding to Example 7.8, extrusion film formation was carried out under the same conditions as Example 7 except that the angle between the extrusion die 22-discharge direction and the flow direction of the molten resin at the tip of the die lip was set to 65. As a result, the film forming time per lip cleaning was about 32 hours.

【図面の簡単な説明】 第1図はP値、引取速度に対する静電ピニング可否の図
である。第2図は製膜時の正面図であり。 第3図はその側面図である。第4図は通常のTダイ配置
において、引取り角を大きくして引取った場合の図であ
り、第5図は押出ダイリップ先端における溶融樹脂の吐
出方向と引取方向の角度を小さくするため押出ダイを傾
斜させた図である。第6図は第5図の押出ダイリップの
部分を拡大したものであり、第7図は第4図の押出ダイ
リップの部分を拡大したものである。 図中に示す番号1文字は次の通りである。 】・・・ダイ、2・・・回転冷却体、3・・・フィルム
、4・・・フィルム端部、5.6・・・ダイリップ。7
・・・溶融樹脂だ1つ。 特許出願人  ユニチカ株式会社 23− 第1 図 引取:rLl (’%;−〕 才4図 一才す酬 オフ囚
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram showing whether or not electrostatic pinning is possible with respect to P value and take-up speed. FIG. 2 is a front view during film formation. FIG. 3 is a side view thereof. Figure 4 shows the case where the take-off angle is increased in a normal T-die arrangement, and Figure 5 shows the case where the take-off angle is increased to reduce the angle between the extrusion direction and the take-off direction of the molten resin at the tip of the extrusion die lip. FIG. 3 is a diagram showing a tilted die. 6 is an enlarged view of the extrusion die lip shown in FIG. 5, and FIG. 7 is an enlarged view of the extrusion die lip shown in FIG. 4. The number 1 character shown in the figure is as follows. ]...Die, 2...Rotary cooling body, 3...Film, 4...Film end, 5.6...Die lip. 7
...It's molten resin. Patent Applicant Unitika Co., Ltd. 23- Figure 1 Collection: rLl ('%;-) Age 4 Figure 1 Year Off Prisoner

Claims (1)

【特許請求の範囲】 1、溶融したポリエステル樹脂を押出ダイから回転冷却
面上にフィルム状に押出し、フィルムと回転冷却面との
接点近傍に電極を配置し、フィルム面上に静電荷を析出
させて、接地された回転冷却面との間に作用する静電気
的引力により回転冷却面に密着、急冷させて製膜する工
程において、溶融フィルムの密度ρ(#/ff1)、押
出ダイリップから回転冷却面上に最初に溶融フィルムが
接する点までの溶融フィルムに沿って計った長さで与え
られるエアギャップS (crn) 、押出ダイから押
出された溶融フィルムが回転冷却面に最初に接するまで
にそれぞれの端縁部で縮少する横断方向の量(ダイリッ
プ巾と接点におけるフィルム巾の差の1/2)で示され
るネックインδ(m)、押出ダイ出口における横断方向
の平均的吐出速度で9回転冷却面速度を除した値で与え
られるドラフト死人(−)、押出ダイリップを通過する
樹脂の温度、剪断速度に対応する溶融粘度μ(g・se
e/i) −押出ダイと回転冷却面に最初に接する位置
の間に存在する溶融フィルムの流れ方向および横断方向
の中間点における流れ方向に対する接線の鉛直方向との
なす角α(度)によって次式で示されるパラメータPを
25.0 (a/I/see )以上にすることを特徴
とするポリエステル樹脂フィルムの製造方法。 2、押出ダイリップの吐出方向と鉛直方向とのなす角を
θ(度)とする時 1α−01≦60 とすることを特徴とする特許請求範囲第1項記載のポリ
エステル樹脂フィルムの製造方法。
[Claims] 1. Molten polyester resin is extruded from an extrusion die onto a rotating cooling surface in the form of a film, and an electrode is placed near the contact point between the film and the rotating cooling surface to deposit electrostatic charges on the film surface. In the step of forming a film by adhering to the rotary cooling surface and rapidly cooling it by electrostatic attraction acting between the grounded rotary cooling surface and the grounded rotary cooling surface, the density ρ (#/ff1) of the molten film is increased from the extrusion die lip to the rotary cooling surface. The air gap S (crn) is given by the length measured along the molten film up to the point where it first contacts the molten film above, Neck-in δ (m) expressed as the transverse amount of reduction at the edge (1/2 of the difference between the die lip width and the film width at the contact point), 9 revolutions at the average transverse discharge speed at the exit of the extrusion die The draft deadness (-) given by the cooling surface velocity divided by the melt viscosity μ (g se
e/i) - the angle α (in degrees) between the vertical direction and the tangent to the flow direction at the midpoint between the flow direction and transverse direction of the molten film between the extrusion die and the first point of contact with the rotating cooling surface; A method for producing a polyester resin film, characterized in that a parameter P expressed by the formula is set to 25.0 (a/I/see) or more. 2. The method for producing a polyester resin film according to claim 1, wherein the angle between the discharge direction of the extrusion die lip and the vertical direction is 1α-01≦60, where θ (degrees) is the angle formed by the extrusion die lip discharge direction and the vertical direction.
JP57218646A 1982-12-13 1982-12-13 Preparation of polyester resin film Granted JPS59106935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218646A JPS59106935A (en) 1982-12-13 1982-12-13 Preparation of polyester resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218646A JPS59106935A (en) 1982-12-13 1982-12-13 Preparation of polyester resin film

Publications (2)

Publication Number Publication Date
JPS59106935A true JPS59106935A (en) 1984-06-20
JPS6251730B2 JPS6251730B2 (en) 1987-10-31

Family

ID=16723204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218646A Granted JPS59106935A (en) 1982-12-13 1982-12-13 Preparation of polyester resin film

Country Status (1)

Country Link
JP (1) JPS59106935A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395930A (en) * 1986-10-14 1988-04-26 Idemitsu Petrochem Co Ltd Manufacture of liquid crystalline polyester film
JP2002347099A (en) * 2001-05-28 2002-12-04 Toray Ind Inc Mouthpiece for manufacturing sheet as well as apparatus and method for manufacturing sheet
CN111873281A (en) * 2020-07-22 2020-11-03 常州回天新材料有限公司 High voltage generator for width expansion and thinning of cast PVDF fluorine film and use method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218814A (en) * 2011-06-21 2011-11-04 Fujifilm Corp Method for manufacturing thermoplastic film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395930A (en) * 1986-10-14 1988-04-26 Idemitsu Petrochem Co Ltd Manufacture of liquid crystalline polyester film
JP2002347099A (en) * 2001-05-28 2002-12-04 Toray Ind Inc Mouthpiece for manufacturing sheet as well as apparatus and method for manufacturing sheet
JP4636356B2 (en) * 2001-05-28 2011-02-23 東レ株式会社 Sheet manufacturing method
CN111873281A (en) * 2020-07-22 2020-11-03 常州回天新材料有限公司 High voltage generator for width expansion and thinning of cast PVDF fluorine film and use method thereof

Also Published As

Publication number Publication date
JPS6251730B2 (en) 1987-10-31

Similar Documents

Publication Publication Date Title
US6409958B1 (en) Method of producing biaxially stretched polyester film
WO2007142291A1 (en) Polyethylene terephthalate resin film roll and process for producing the same
US20010038907A1 (en) Laminated polyester film
JPS59106935A (en) Preparation of polyester resin film
US4038354A (en) Process for extruding and quenching a polymeric film
JPH10244587A (en) Manufacture of polycarbonate film
JP2008265298A (en) Polyethylene terephthalate resin film roll and its manufacturing method
JPH0691747A (en) Slip sheet made of ultra-high molecular weight polyethylene and manufacture thereof
JP3903100B2 (en) Solution casting method
JP3010666B2 (en) Casting method of thermoplastic resin sheet
JPH11216759A (en) Manufacture of thermoplastic resin film
KR970010453B1 (en) Process for the preparation of thermoplastic resin films
JP2003019741A (en) Method for manufacturing polyamide film
JPH091947A (en) Thermal transfer biaxially oriented polyester film
JP2010018649A (en) Shaped film formed of crystalline resin
JP3415963B2 (en) Polyester composition and polyester film
JPH10249937A (en) Manufacture of polycarbonate film
JP2570453B2 (en) Polyester film casting method
KR0165832B1 (en) Manufacturing method of thermoplastic resin sheet
JP3453859B2 (en) Manufacturing method of cast film
JP2000318013A (en) Die for extrusion molding for thermoplastic resin and molding method for polyester sheet using the same
JP3238589B2 (en) Biaxially oriented laminated polyester film
JP2001158035A (en) Extrusion molding die and method for manufacturing film
JPS5850173B2 (en) Manufacturing method of polyester film
JPH0669718B2 (en) Polyester film