JPS5910604Y2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device

Info

Publication number
JPS5910604Y2
JPS5910604Y2 JP16756575U JP16756575U JPS5910604Y2 JP S5910604 Y2 JPS5910604 Y2 JP S5910604Y2 JP 16756575 U JP16756575 U JP 16756575U JP 16756575 U JP16756575 U JP 16756575U JP S5910604 Y2 JPS5910604 Y2 JP S5910604Y2
Authority
JP
Japan
Prior art keywords
potentiometer
particle size
slider
size distribution
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16756575U
Other languages
Japanese (ja)
Other versions
JPS5279990U (en
Inventor
和 竹内
昇平 石田
和弘 林田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP16756575U priority Critical patent/JPS5910604Y2/en
Publication of JPS5279990U publication Critical patent/JPS5279990U/ja
Application granted granted Critical
Publication of JPS5910604Y2 publication Critical patent/JPS5910604Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 本考案は媒液中で粒子を自然沈降させる沈降法により粉
体の粒度分布を測定する装置の改良に関するもので、そ
の測定原理は周知の如( Stokes氏の式より V:沈降速度cm/sec ρS:媒液の密度g/画 H:沈降距離crn ρf:粉体の密度g/rm T:沈降時間sec η:媒液の粘性係数g/cm.SeC g:重力の加速度cm/sec2 r:粒子の半径cm とすると の関係があり、 この式より こ・でKは時間Tによって定まる定数である。
[Detailed description of the invention] This invention relates to an improvement of an apparatus for measuring the particle size distribution of powder by a sedimentation method in which particles naturally settle in a medium, and the measurement principle is well known (from Stokes' equation). V: Sedimentation velocity cm/sec ρS: Density of medium g/image H: Sedimentation distance crn ρf: Density of powder g/rm T: Sedimentation time sec η: Viscosity coefficient of medium g/cm.SeC g: Gravity There is a relationship where the acceleration cm/sec2 r is the radius of the particle cm, and from this equation, K is a constant determined by time T.

そこで最初各種粒径の粒子が均一に懸濁していた液のT
時間後の状態をみると、液面からの深さHの所ではr=
Kiより大径の粒子は存在せず、他方懸濁液中の各粒径
粒子の密度に時間に無関係に一定だから深さHの所の懸
濁液の比重と媒液のみの比重との差Wは、各粒子径の粒
子の媒液中の比重分布をw (r) とすると、 W=/rw (r) dr, r=Kv’n ・・−
・・・(.3)である。
Therefore, the T of the liquid in which particles of various diameters were initially uniformly suspended
Looking at the state after time, at depth H from the liquid surface, r=
There are no particles with a diameter larger than Ki, and on the other hand, the density of each particle size in the suspension is constant regardless of time, so the difference between the specific gravity of the suspension at depth H and the specific gravity of only the medium is W is defined as W=/rw (r) dr, r=Kv'n ・・−, where w (r) is the specific gravity distribution of particles of each particle size in the medium.
...(.3).

Wはrの関数でありrはHの関数だからWはHの関数で
あり、WとHとの関係曲線を徴分すればw(r)即ち粉
体の各粒径粒子の重量分布が求められる。
Since W is a function of r and r is a function of H, W is a function of H, and if we characterize the relationship curve between W and H, we can find w(r), that is, the weight distribution of each particle size of the powder. It will be done.

所でWをHの関数として記録すると、それからdW/d
r=w(r)を得るには、最初からHをrに変換してお
くのが便利である。
Now, if we record W as a function of H, then dW/d
In order to obtain r=w(r), it is convenient to convert H to r from the beginning.

この原理によってWとH(即ちr)との関係を記録する
要領は第1図の測定部Aに示す如く、天秤1の両端に沈
錘6を吊し、試料粉体を懸濁後一定時間経過した懸濁液
を入れた沈降瓶2と媒液のみを入れた沈降瓶3を天秤の
両腕の下方に位置させて載せた台4をモータ5により比
較的高速(前記式(2)でTを一定即ちKを一定とみな
し得る程度の時間内)で上昇させて沈錘6を両液中に下
降させて両液の密度差によって生じる指針7の振れ、即
ちアンバランス分を光源ランプ8及び光電検出器9で゛
検知し、これを密度差測定増幅器Fで増幅し、その出力
により、指針7がO位置を指すようにマグネット10を
制御し、この制御に必要な電流によって懸濁液中の粉体
の密度を求め、台4の上昇量(沈錘の液面からの下降量
)をHとして横軸にとり、上記求められた密度を縦軸に
して前記式(3)のWをチャート上に記録する。
The procedure for recording the relationship between W and H (i.e., r) based on this principle is as shown in measurement section A in Figure 1, by suspending sinkers 6 at both ends of the balance 1 and suspending the sample powder for a certain period of time. The table 4 on which the sedimentation bottle 2 containing the aged suspension and the sedimentation bottle 3 containing only the medium are placed under both arms of the balance is moved at a relatively high speed (by the equation (2) above) using the motor 5. The sinking weight 6 is lowered into both liquids by raising T at a constant value (that is, within a time period that allows K to be considered constant), and the light source lamp 8 is used to correct the deflection of the pointer 7, that is, the unbalance caused by the density difference between the two liquids. This is detected by the photoelectric detector 9, and is amplified by the density difference measuring amplifier F. The output thereof controls the magnet 10 so that the pointer 7 points to the O position, and the current necessary for this control controls the suspension. The density of the powder inside is determined, and the amount of rise of the platform 4 (the amount of descent of the sinking weight from the liquid level) is taken as H on the horizontal axis, and the density obtained above is taken as the vertical axis, and W in the above formula (3) is calculated. Record it on the chart.

第2図はこのようにして得られた記録でT=O, Tl
, T2,・・・無限大の場合を示す。
Figure 2 shows the records obtained in this way, T=O, Tl
, T2, ... shows the case of infinity.

こ・で横軸のHは前(3)式で粒径rに変換できるから
横軸は初めからrに変換しておくのが便利である。
Since H on the horizontal axis can be converted to the particle size r using the previous equation (3), it is convenient to convert the horizontal axis to r from the beginning.

更に粒径の分布幅Lよ広いので、通常はこれを実用的な
チャートの長さの中に収めるため横軸をlogrにして
いる。
Furthermore, since the particle size distribution width L is wider, the horizontal axis is usually set to logr in order to fit this into a practical chart length.

所で従来は上述した沈錘の液面からの降下量Hを比例的
に電気信号に変換し、Hに比例した信号から直接対数変
換でlogr=1ogK++ (1ogH)/2として
粒径rの対数値を得ていた。
However, conventionally, the above-mentioned drop H from the liquid level is proportionally converted into an electric signal, and the signal proportional to H is directly logarithmically converted to logr=1ogK++ (1ogH)/2, which is calculated as logr=1ogK++ (1ogH)/2. I was getting numbers.

こ・で装置において直接得られている量はHであり、r
=KJFFであるからrの小さい領域ではHのわづかの
変化によるrの差が大きく、従ってHの誤差の影響が大
であり、Hを直接対数変換して1ogr=logK+
(logH) /2としてlogrを求めたのではrの
小さい所で誤差が大きい。
The amount directly obtained in this apparatus is H, and r
= KJFF, so in the region where r is small, the difference in r due to a slight change in H is large, and therefore the influence of the error in H is large.
If logr is calculated as (logH)/2, the error will be large where r is small.

また沈錘には大きさがあり、試料懸濁液と媒液との密度
差は沈錘が完全に液面下に没した高さhの所から開始さ
れ、測定はH−0から始まらないので、下記のように補
正が必要なのであるが、従来はこの補正が目動的に行わ
れるようになってはいなーかった。
In addition, the sinking weight has a size, and the density difference between the sample suspension and the medium starts from the height h when the sinking weight is completely submerged under the liquid surface, and the measurement does not start from H-0. Therefore, the following correction is necessary, but in the past, this correction was not performed manually.

本考案はrが小さい領域における上記誤差を小さくする
ことを一つの目的としている。
One purpose of the present invention is to reduce the above error in a region where r is small.

更に前記式(3)のHは沈錘6の降下量であるが、実際
に密度測定ができるには沈錘6を液中に完全に浸さねば
ならないため水面下密度測定はH=Oからではな<hc
m(普通1cm程度)の所からであって、このために実
際に沈降瓶を載せた台4を上昇させる移動距離H′は理
論上のHではなくて、H=H’+hの関係になっている
Furthermore, H in the above equation (3) is the amount of descent of the sinker 6, but since the sinker 6 must be completely immersed in the liquid in order to actually measure the density, the density below the water surface cannot be measured from H=O. na<hc
m (usually about 1 cm), and for this reason, the actual travel distance H' to raise the platform 4 on which the sedimentation bottle is placed is not the theoretical H, but the relationship H = H' + h. ing.

本考案はこのH’+hの演算を特別の加算装置を使わす
H→logrの変換手段の中で行うことにより装置を簡
単化しようとするものである。
The present invention attempts to simplify the device by performing the calculation of H'+h in the H→logr conversion means using a special addition device.

本考案は上記目的を達戊するため、試料懸濁液と媒液に
おける沈錘の受ける浮力差を電気信号に変換する天秤と
、スライダの変位に対しそのルートに比例する電圧を出
力するような抵抗分布を有するポテンショメー夕と、試
料懸濁液を入れる沈降槽及び媒液槽を一体的に上下移動
させる機構とを有し、上記ポテンショメータのスライダ
と上記沈降槽の上下移動とを連動させ、上記ポテンショ
メータのスライダを対数変換回路に接続し、この対数変
換回路の出力端子をレコーダのX軸信号端子に接続し、
上記天秤の電気信号出力端子をレコーダのY軸信号端子
に接続すると共に、上記ポテンショメータの抵抗に直列
に、試料懸濁液と媒液との密度差測定を開始する深さに
相当する電圧補正値を与える直列抵抗部分を付加したこ
とを特徴とする粒度分布測定装置を提供するものである
In order to achieve the above objectives, the present invention includes a balance that converts the buoyancy difference between the sample suspension and the sinker in the medium into an electrical signal, and a balance that outputs a voltage proportional to the route of the displacement of the slider. comprising a potentiometer having a resistance distribution, and a mechanism for integrally moving up and down a sedimentation tank containing a sample suspension and a medium tank, and interlocking the slider of the potentiometer with the up and down movement of the sedimentation tank, Connect the slider of the potentiometer to a logarithmic conversion circuit, connect the output terminal of this logarithmic conversion circuit to the X-axis signal terminal of the recorder,
The electric signal output terminal of the balance is connected to the Y-axis signal terminal of the recorder, and a voltage correction value corresponding to the depth at which the density difference measurement between the sample suspension and the medium is started is connected in series with the resistance of the potentiometer. The present invention provides a particle size distribution measuring device characterized in that a series resistance portion is added to give the following characteristics.

上記構或により、沈降槽及び媒液槽の上下移動量は上記
ポテンショメー夕により、その平方根に比例した信号に
変換され、この上下移動量の平方根に比例した信号が対
数変換されるから、上下移動量を直接対数変換するのに
比し、rの小さい領域での上下移動量の変化に対しrの
変化が過敏であることが緩和され、また上記ポテンショ
メータの抵抗に直列に補正用の抵抗部分を接続すること
により測定がH=0から始められないことの補正か1動
的に行われる。
With the above structure, the amount of vertical movement of the settling tank and the medium tank is converted by the potentiometer into a signal proportional to the square root thereof, and the signal proportional to the square root of this vertical movement is logarithmically converted. Compared to directly logarithmically converting the amount of movement, changes in r are less sensitive to changes in the amount of vertical movement in a region where r is small. By connecting , the fact that the measurement cannot be started from H=0 can be corrected dynamically.

第1図は本考案の一実施例を示す。FIG. 1 shows an embodiment of the present invention.

Aは測定部で前述したように天秤1の両腕に沈錘6を吊
し、台4上に載置された沈降瓶2及び3内の液中に浸漬
させるようになっている。
As mentioned above, A is the measuring section, and sinking weights 6 are suspended from both arms of the balance 1, and are immersed in the liquid in the sedimentation bottles 2 and 3 placed on the table 4.

瓶2,3中の液面は同じ高さになるようにし、台4はモ
ータ5によって上下せしめられる。
The liquid levels in the bottles 2 and 3 are made to be at the same height, and the stand 4 is moved up and down by a motor 5.

Cは上下機構制御部でモータ5を正転させて台4を一定
速さで所定高さまで上昇させ、次にモータを逆転させて
もとの位置まで下降させる。
C is a vertical mechanism control unit that rotates the motor 5 in the normal direction to raise the platform 4 at a constant speed to a predetermined height, and then rotates the motor in the reverse direction to lower it to the original position.

瓶2には試料懸濁液を入れ、瓶3には媒液だけを入れて
あるので、夫々の瓶の液中に浸漬されている沈錘6の県
掛けの重さの差は両方の瓶中の液の沈錘6が浸漬されも
)る深さにおける液の密度の差に相当しており、この密
度差は試料液中のその深さいおいて沈錘と同体積中に含
まれている粒子の重さW(前記(3)式)である。
Since bottle 2 contains the sample suspension and bottle 3 contains only the medium, the difference in weight of sinker 6 immersed in the liquid in each bottle is the same as that between both bottles. This corresponds to the difference in the density of the liquid at the depth at which the sinker 6 is immersed in the sample liquid, and this density difference corresponds to the difference in the density of the liquid contained in the same volume as the sinker at that depth in the sample liquid. is the weight W of the particles (formula (3) above).

密度差測定増幅器Fの出力はこの重さWを電気信号に変
換したものである。
The output of the density difference measuring amplifier F is the weight W converted into an electrical signal.

台4の上昇速度は瓶2中の試料液における粒子の沈降速
度に比し充分に速く、沈錘6が瓶2,3内の液の表面か
ら底に到達する迄の間、試料液中の粒子径の深さ方向の
分布は不変と見なせる程度であり、前述したKはその間
一定としてよい。
The rising speed of the platform 4 is sufficiently faster than the sedimentation speed of the particles in the sample liquid in the bottles 2, and until the sinking weight 6 reaches the bottom from the surface of the liquid in the bottles 2 and 3, the particles in the sample liquid are The distribution of particle diameters in the depth direction can be considered to be unchanging, and the above-mentioned K may be kept constant during that time.

Rはルート関数発生回路で第3図に示すようなポテンシ
ョメータPであり、そのスライダSが台4に連結されて
台4の上下に伴い、スライダSがポテンショメータPの
抵抗上を摺動する。
R is a root function generating circuit, which is a potentiometer P as shown in FIG. 3, and its slider S is connected to a platform 4, and as the platform 4 moves up and down, the slider S slides on the resistance of the potentiometer P.

スライダSの上下移動距離は台4の上下移動距離と一致
しており、台4が一番下った位置においてスライダSは
第3図でポテンショメータPの下端に位置するようにな
っている。
The vertical movement distance of the slider S matches the vertical movement distance of the table 4, and the slider S is located at the lower end of the potentiometer P in FIG. 3 when the table 4 is at its lowest position.

この位置からの台4の上昇距離が前述したH′である。The lifting distance of the platform 4 from this position is the above-mentioned H'.

台4の最下位置において沈錘6は瓶2,3内の液中に完
全に浸漬されて、液面から深さhだけ沈んだ高にある(
そのように瓶2,3に液を入れる)。
At the lowest position of the platform 4, the sinking weight 6 is completely immersed in the liquid in the bottles 2 and 3, and is at a height h below the liquid surface (
Pour the liquid into bottles 2 and 3 like that).

従ってルート関数発生回路Rはv’n−1に比例した信
号を出力するようになっている必要がある。
Therefore, the root function generating circuit R needs to output a signal proportional to v'n-1.

このためポテンショメータPの下端に直列に抵抗Pを接
続してある。
For this purpose, a resistor P is connected in series to the lower end of the potentiometer P.

ポテンショメータPはこの抵抗P′の部分も含めて、ス
ライダSがPの下端からHだけ上昇した位置で同スライ
ダにJH′+hに比例した電圧が得られるように下部に
おいて摺動抵抗線の巻ピッチが細かく上に行く程ピッチ
が粗になっている。
The potentiometer P, including this resistance P', has a winding pitch of the sliding resistance wire at the bottom so that a voltage proportional to JH'+h is obtained on the slider S at the position where the slider S is raised by H from the bottom end of P. The pitch becomes coarser as it goes up.

この構戊によってルート関数発生回路Rは沈錘6が液面
からH’+hだけ沈んだ位置でJH′+hに比例した電
圧信号を出力している。
With this structure, the root function generating circuit R outputs a voltage signal proportional to JH'+h at a position where the sinking weight 6 is submerged by H'+h from the liquid surface.

この電圧信号が対数変換回路Lに印加されて同回路Lか
らlog −,IFF = log v’有]下の信号
が得られる。
This voltage signal is applied to the logarithmic conversion circuit L, and a signal below log -, IFF = log v' is obtained from the circuit L.

台4を最下位置から上昇させながら密度差測定増幅器F
の出力信号をXY記録計を用いた記録部DにY軸信号と
して印加し、対数変換回路Lの出力をX軸信号として印
加すると横軸を10gJ¥Iにとり、縦軸に前記Wをと
った第2図に示すようなチャートが得られる。
Density difference measurement amplifier F while raising platform 4 from the lowest position.
When the output signal of is applied as a Y-axis signal to the recording section D using an XY recorder, and the output of the logarithmic conversion circuit L is applied as an X-axis signal, the horizontal axis is set to 10 gJ\I, and the vertical axis is set to W. A chart as shown in FIG. 2 is obtained.

このようなチャートを試料液を瓶2に注入してからT1
時間後、T2時間後と云うように適当時間後にとる。
A chart like this is shown at T1 after injecting the sample solution into bottle 2.
Take the sample after an appropriate time, such as after T2 hours.

上述したチャートの横軸はlog!’でその始端(左端
)はlogJKから始っている。
The horizontal axis of the chart mentioned above is log! ' and its starting end (left end) starts from logJK.

従ってこの横軸の目盛の読みから粒子径rを求めるには
チャートをとったときの時間T(試料液を瓶2に注入し
たときからの経過時間)により前記式(2)によって計
算したKの値からlogKを求めて横軸の目盛の読みに
加算した後、その数の真数を求める(逆対数変換)。
Therefore, to find the particle diameter r from the reading on the scale of this horizontal axis, use the time T when the chart was taken (the elapsed time from when the sample liquid was injected into the bottle 2) to calculate the K calculated using the formula (2) above. After calculating logK from the value and adding it to the scale reading on the horizontal axis, the antilog of that number is calculated (antilogarithmic transformation).

チャートに横軸対数目盛の用紙を用いるときは、横軸の
目盛の読みにKを掛ければ直ちに粒径が求まる。
When using paper with a logarithmic scale on the horizontal axis for the chart, the particle size can be immediately determined by multiplying the reading on the horizontal scale by K.

又この方法は沈降瓶を上方へ移動させながら光透過法に
よって濃度変化を検出する型の粒度測定装置にも応用で
きる。
This method can also be applied to a type of particle size measuring device that detects concentration changes using a light transmission method while moving a sedimentation bottle upward.

本考案は上述したように沈錘による密度測定では液面か
らの測定ができないことによる補正を沈錘の降下量を電
気信号に変換するポテンショメー夕において行っている
から別途補正の手段が不要で装置が簡単となり、かつ上
記ポテンショメー夕を単に変位電圧変換用としてだけで
なくルート変換にも利用し、沈錘の降下量を粒径の対数
に変換するに当って直接対数変換せずルート変換を挿入
することによりr=KV汗の関係で小径領域でH変化に
対しrの変化が過敏であることによる誤差を他の手段を
付加することなしに除去し得たものである。
As mentioned above, the present invention uses a potentiometer that converts the amount of descent of the sinking weight to convert the amount of descent of the sinking weight into an electrical signal to compensate for the fact that density measurement using a sinking weight cannot be performed from the liquid level, so no separate correction means is required. The device is simple, and the potentiometer is used not only for displacement voltage conversion but also for root conversion, and when converting the sinking weight drop into the logarithm of the particle size, root conversion is performed instead of direct logarithmic conversion. By inserting , the error due to the sensitivity of the change in r to the change in H in the small diameter region due to the relationship r=KV perspiration can be removed without adding any other means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の一実施例を示す説明図、第2図は
沈降法粒度測定によって得られるチャート例、第3図は
本考案装置のルート関数発生回路の回路図で゛ある。 1・・・天秤、2・・・懸濁液用沈降瓶、3・・・媒液
用沈降瓶、4・・・台、5・・・モータ、6・・・沈錘
、7・・・指針、8・・・光源ランプ、9・・・光源検
出器、10・・・マグネット。
FIG. 1 is an explanatory diagram showing one embodiment of the device of the present invention, FIG. 2 is an example of a chart obtained by sedimentation method particle size measurement, and FIG. 3 is a circuit diagram of the root function generating circuit of the device of the present invention. DESCRIPTION OF SYMBOLS 1... Balance, 2... Sedimentation bottle for suspension, 3... Sedimentation bottle for medium, 4... Stand, 5... Motor, 6... Sinking weight, 7... Pointer, 8... Light source lamp, 9... Light source detector, 10... Magnet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料懸濁液と媒液における沈錘の受ける浮力差を電気信
号に変換する天秤と、スライダの変位に対しそのルート
に比例する電圧を出力するような抵抗分布を有するポテ
ンショメータと、試料懸濁液を入れる沈降槽及び媒液槽
を一体的に上下移動させる機構とを有し、上記ポテンシ
ョメー夕のスライダと上記沈降槽等の上下移動とを連動
させ、上記ポテンショメー夕のスライダを対数変換回路
に接続し、この対数変換回路の出力端子をレコーダのX
軸信号端子に接続し、上記天秤の電気信号出力端子をレ
コーダのY軸信号端子に接続すると共に、上記ポテンシ
ョンメータの抵抗に直列に、試料懸濁液と媒液との密度
差測定を開始する深さに相当する電圧補正値を与える直
列抵抗部分を付加したことを特徴とする粒度分布測定測
置。
A balance that converts the buoyancy difference between the sample suspension and the sinking weight in the medium into an electrical signal, a potentiometer that has a resistance distribution that outputs a voltage proportional to the route of the displacement of the slider, and the sample suspension. The slider of the potentiometer is linked with the vertical movement of the sedimentation tank, etc., and the slider of the potentiometer is connected to a logarithmic conversion circuit. and connect the output terminal of this logarithmic conversion circuit to the X of the recorder.
Connect the electric signal output terminal of the balance to the Y-axis signal terminal of the recorder, and start measuring the density difference between the sample suspension and the medium in series with the resistance of the potentiometer. A particle size distribution measuring instrument characterized by adding a series resistance part that gives a voltage correction value corresponding to the depth of the particle size distribution.
JP16756575U 1975-12-11 1975-12-11 Particle size distribution measuring device Expired JPS5910604Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16756575U JPS5910604Y2 (en) 1975-12-11 1975-12-11 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16756575U JPS5910604Y2 (en) 1975-12-11 1975-12-11 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JPS5279990U JPS5279990U (en) 1977-06-15
JPS5910604Y2 true JPS5910604Y2 (en) 1984-04-03

Family

ID=28646185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16756575U Expired JPS5910604Y2 (en) 1975-12-11 1975-12-11 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JPS5910604Y2 (en)

Also Published As

Publication number Publication date
JPS5279990U (en) 1977-06-15

Similar Documents

Publication Publication Date Title
US3090222A (en) Apparatus for continuous measurement of degree of polymerization
JPS5910604Y2 (en) Particle size distribution measuring device
Riebling Improved Counterbalanced Sphere Viscometer for Use to 1750° C
Dow The Effects of Pressure and Temperature on the Viscosity of Lubricating Oils
Glover et al. Ebulliometric Apparatus for Studying Number-Average Molecular Weights of Polymers
Bego et al. Voltage balance for replacing the kilogram
Farell et al. On the experimental determination of the resistance components of a submerged spheroid
JP4018301B2 (en) Surface tension measurement method
CN2243077Y (en) Electronic densimeter
US2889703A (en) Apparatus for measuring the density of a solid
JP2672696B2 (en) Capillary radius and contact angle measuring device for powder layer
SU1597546A1 (en) Method of hydrodynamic levelling and instrument pickup for effecting same
Lingane Precision polarography by time-integration of the diffusion current
Campbell et al. Simple Conversion for Automatically Recording Weight Changes with Analytical Balance
RU2082958C1 (en) Method for measuring viscosity of liquid
RU1528177C (en) Porosity simulator
Peake et al. The Densities and Molal Volumes of Molten Mixtures of Potassium Chloride and Barium Chloride
Wilhelm et al. Concentric-Cyclinder Motor-Driven Viscometer
RU1837208C (en) Method of measuring viscosity and density of liquids
CN213749482U (en) Density measurement physical experiment device
RU2163356C2 (en) Process determining amount of liquid in tank and device for its implementation
JPS6318897Y2 (en)
SU596864A1 (en) Liquid density meter
US3807878A (en) Optical densitometer for indicating the optical density and rate of change of the optical density of a specimen
Honick An electromagnetic method of measurement of density or specific gravity of liquids