JPS59105909A - Compound electric power generating system by fuel cracking - Google Patents

Compound electric power generating system by fuel cracking

Info

Publication number
JPS59105909A
JPS59105909A JP21591482A JP21591482A JPS59105909A JP S59105909 A JPS59105909 A JP S59105909A JP 21591482 A JP21591482 A JP 21591482A JP 21591482 A JP21591482 A JP 21591482A JP S59105909 A JPS59105909 A JP S59105909A
Authority
JP
Japan
Prior art keywords
fuel
exhaust
power generation
steam generator
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21591482A
Other languages
Japanese (ja)
Other versions
JPS6310287B2 (en
Inventor
Yukihisa Tamai
玉井 幸久
Kiyomitsu Iwata
岩田 清光
Takeshi Arase
荒瀬 健
Tadashi Tsuji
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21591482A priority Critical patent/JPS59105909A/en
Publication of JPS59105909A publication Critical patent/JPS59105909A/en
Publication of JPS6310287B2 publication Critical patent/JPS6310287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To obtain high power generating efficiency even when methanol or the like is employed as fuel and enable to set the amount of high pressure steam produced at starting in a short time by a method wherein a fuel cracking reactor is arranged in an exhaust branch pipe in order to convert the supplied fuel into the secondary fuel with higher energy by utilizing waste heat energy. CONSTITUTION:The fuel to supply to a gas turbine 2a is in advance heated by the fuel preheater 7a of an exhaust main pipe 3a and chemically reacted and converted into the secondary fuel with higher fuel energy by being given the heat energy of the high temperature exhaust gas (c) from a gas turbine 2a by means of the fuel vaporizer 7b in an exhaust branch pipe 8a. Accordingly, because the heat energy of the exhaust gas (c) is effectively given to both a steam generator 3c and a fuel cracking reactor 7b, the power generating efficiency can be enhanced. In addition, the amount of high pressure steam developed in the steam generator 3c at the starting of a system can be set in a short time. Even if trouble occurs in the fuel cracking reactor 7b, the influence of the trouble does not spread to the steam generator 3c.

Description

【発明の詳細な説明】 本発明は発電効率の高い燃料クラッキング複合発電シス
テムに関する0 近時、ガスタービンと、その排熱エネルギにより駆動さ
れる蒸気タービンとを組合せた複合発電システムが、L
NG気化ガス等のり1ノーン燃刺の不動利用を図り得る
新らしl/1技術として注目されている。第1図はこa
)種C〕システA 9)概略構成を示す概略図である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cracking combined cycle system with high power generation efficiency.
It is attracting attention as a new l/1 technology that can make use of glue such as NG vaporized gas in a permanent manner. Figure 1 is a
) Species C] System A 9) It is a schematic diagram showing the schematic configuration.

燃焼ン1目ま供給された燃料a’t、燃焼用空気すと共
に螺過焼し、その燃焼エネルギにエリガスタービン発電
基又を駆動しているOこC)ガスタービン発電系、、L
lよ、ガスタービン2aと、そ(7りタービン出力によ
って駆動される発電機2bお工ひ前ハ己灯も焼用空気す
に対する空気圧縮器2cf備えて構成され、発電出力を
得ているoし力1して、ガク、タービン発電系互の高温
排ガスCは、排p5ボイラ系ユの排気管Jaffi通し
て排出される。こσ)オド気管3a内にはボイラ蒸気に
対する給水予熱Q%3bお工び蒸気発生器3Cが設けら
れてお4ノ、前8己排ガスCの熱エネルギを回収して蒸
気を発生させるように構成されている0そして、この蒸
気が蒸乞タービン発電系工の蒸気タービン4aに供+t
4jされ、発電機4bが駆動されてタービン出力がイ(
Iられるように7:つでいる。尚、上記蒸気タービン4
aを駆動した後の蒸気は復水器5に供が;1ざA16、
冷却水dにより冷却液化されたのち冷却Aくポンプ6を
介して前記給水予熱器3ヒに供給され、さらに蒸気発生
器3Cに↓り加熱されて■ら用蒸気となる。
The fuel a't supplied for the first time during combustion is overfired with the combustion air, and the combustion energy is used to drive the gas turbine power generation system.C) Gas turbine power generation system.
The generator 2b driven by the turbine output is also equipped with an air compressor 2cf for the baking air to obtain the power generation output. Then, the high temperature exhaust gas C from the turbine power generation system is discharged through the exhaust pipe Jaffi of the exhaust p5 boiler system. A built-in steam generator 3C is provided and is configured to recover the thermal energy of the exhaust gas C to generate steam. Supply to steam turbine 4a +t
4j, the generator 4b is driven, and the turbine output is
7: To be able to be loved. Note that the steam turbine 4
The steam after driving a is supplied to the condenser 5;
After being cooled and liquefied by the cooling water d, it is supplied to the feed water preheater 3H via the cooling pump 6, and further heated by the steam generator 3C to become steam for use.

ところで、上記システムは一般に燃料a・とじてI、N
G気化ガス、つ゛まり王としてメタン(CI(4) ヲ
用いること全想定し゛〔開発されている。これに対して
最近では、メタ7ノール(c n3o H) 咎の炭素
数の少ないアルコールと燃料aとして用いることが試み
られている。このメタノールは、天然ガス、石灰、褐戻
、亜炭、重質油、石油コークス、木材等の多様な炭化水
塁質源を出発原料として製造され、石油代替燃料として
注目されている。これは常温下では液体であり、ガソリ
ン並みの性状を示す0またそのシタ!造時に硫買々tの
不純物が除去された純度の高い含酸素炭化水素化合物で
あり、所謂りIJ−ン燃別として有用である。
By the way, the above system generally uses fuel a.
It has been developed with the assumption that methane (CI(4)) will be used as the main vaporized gas.On the other hand, recently, methanol (Cn3oH), an alcohol with a small number of carbon atoms, and a fuel a Attempts have been made to use this methanol as a starting material from various hydrocarbon sources such as natural gas, lime, browning, lignite, heavy oil, petroleum coke, and wood. It is attracting attention as a highly pure oxygenated hydrocarbon compound that is liquid at room temperature and has properties comparable to gasoline.It is also a highly pure oxygenated hydrocarbon compound from which impurities such as sulfur and sulfur are removed during production. It is useful as a fuel for IJ-ons.

しかしながら、メタン(CH4)の燃焼熱が高位ベース
で212.8 ki7’mo lであるのに対してメタ
ノ−/l/ (Cf130 H)のそれは182.6 
k J/ mo 1と低い。そして単位燃焼熱当りの水
蒸気生成比率が高く、排ガスCの放出時の損失熱量が多
い等の問題がある。このため、メタノール全燃料とした
場合、発電効率が低くなるという問題が。
However, while the heat of combustion of methane (CH4) is 212.8 ki7'mol on a high-level basis, that of methane/l/(Cf130H) is 182.6
kJ/mo is as low as 1. There are also problems such as a high steam generation ratio per unit combustion heat and a large amount of heat loss when the exhaust gas C is released. For this reason, there is a problem that when using methanol as the fuel, power generation efficiency becomes low.

あ−っだ、) ここで、発電効率を高める対策として、第2図の如く排
気管3a内における下流端部に燃料予熱器7a、上流端
部に燃料クラッキング反応器7bをそれぞれ配設し、燃
料a′ff:上記燃料予熱器7aおよび燃料クラッキン
グ反応器7b′ff:通して、燃焼エネルギの高い二次
燃料に変換してmJ記ガスタービン1に供給することが
考えられる。そしてこれは、既に本件出願人により出願
されている(特願昭57−164090’i)。
Here, as a measure to increase power generation efficiency, a fuel preheater 7a and a fuel cracking reactor 7b are installed at the downstream end and upstream end of the exhaust pipe 3a, respectively, as shown in FIG. Fuel a'ff: The above-mentioned fuel preheater 7a and fuel cracking reactor 7b'ff: It is possible to convert the fuel into a secondary fuel with high combustion energy and supply it to the mJ gas turbine 1. This has already been filed by the applicant (Japanese Patent Application No. 57-164090'i).

ところが、この第2図の梠成には次の点に改良の余地が
残されCいた。
However, the structure shown in Figure 2 leaves room for improvement in the following points.

pi′q、 lに、燃料クランキング反応器7bか抽気
管3a内におりる上流端部に配設されるため、そgより
下ぴしに配設される蒸気発生器3Cにおいては加熱効果
が十分に得られないことO第2に、システム起動時には
燃料クランキング反毘、d* 7 bが作動温度以下で
あるため、別途に燃料系統を設りておき、システム起動
時にはその別途に設けられた燃料系統を通して燃料供給
が行なわれる0そして燃料クラッキング反応器7bが所
定温度に達したとき、この反応器7bを作動させて別途
に設けられた燃料系Affcとのり換金性なう必要があ
るが、この燃料系統Q〕切換完了時までは蒸気発生器3
Cからの高圧蒸気の発生器が整定しないという問題があ
る。。
Since pi'q and l are disposed at the upstream end of the fuel cranking reactor 7b or the bleed pipe 3a, the heating effect is less in the steam generator 3C disposed downstream from pi'q and l. Second, since the fuel cranking reaction, d*7b, is below the operating temperature when the system is started, a separate fuel system is installed; When the fuel cracking reactor 7b reaches a predetermined temperature, it is necessary to operate the reactor 7b and convert it into cash with the separately provided fuel system Affc. , this fuel system Q] until the switching is completed, the steam generator 3
There is a problem that the generator of high pressure steam from C does not settle. .

第3に、燃料クランキング反応器7bのトラブル特に燃
料漏洩の発生等があると、そQ)影響が下流側の蒸気発
生器3Cにも及び、2次被害が発生するおそれもある。
Thirdly, if there is any trouble in the fuel cranking reactor 7b, especially fuel leakage, the influence may extend to the steam generator 3C on the downstream side, and secondary damage may occur.

本発明はこのような事情全考慮してなされたもので、そ
の目白りは、ガスタービンと、こcL)ノJスタービン
の排熱エネルギにエリ駆動される蒸気タービンとを備え
た複合発電システムにおV)で、排気分岐管内に燃料ク
ランキング反応器を配設し、上記ガスタービンに供給す
る燃料を上記ガスタービンの排熱エネルギを用いて化学
的に反応させ、上記燃料エリ燃焼エネルギ0−)、高す
に二次燃料に変換して前記ガスタービンに供給すること
にエリ、例えばメタノール等を燃料とする場合であって
も高度の発電効率が得られるようにすること、並びに蒸
気タービン系の蒸気発生器に対する加熱効果を低下させ
ず、システム起動時における蒸気発生器からの高圧蒸気
の発生量を短時間で整定させることができ、万一、燃料
クラッキング反応器にトラブルが発生した場合でもその
影響が蒸気発生器に及ぶことC)ないようにすることに
ある0 以下、第3図に示す本発明システムQ〕一実施例につき
説明するO 第3図は燃料クランキング複合発電システムのイ(几略
構成才示すものである。尚、第1図、第2図のシステム
と同一の部分は同一イ、1号を付しである。
The present invention has been made taking all of these circumstances into consideration, and its highlight is that it is a combined power generation system that is equipped with a gas turbine and a steam turbine that is driven by the exhaust heat energy of the J turbine. In V), a fuel cranking reactor is disposed in the exhaust branch pipe, and the fuel supplied to the gas turbine is chemically reacted using the exhaust heat energy of the gas turbine, and the combustion energy of the fuel is reduced to 0- ), it is possible to obtain a high power generation efficiency even when methanol is used as a fuel, and a steam turbine system It is possible to quickly stabilize the amount of high-pressure steam generated from the steam generator at the time of system startup without reducing the heating effect on the steam generator, and even in the unlikely event that trouble occurs with the fuel cracking reactor. The purpose is to prevent C) the influence from reaching the steam generator. Below, we will explain one embodiment of the system of the present invention shown in Fig. 3. Fig. 3 is an illustration of a fuel cranking combined cycle power generation system. (This is a simplified illustration of the structure. The same parts as the systems in FIGS. 1 and 2 are designated by the same A and No. 1.

このシステムの動機とするところは、ガスタービン28
の尚温排ガスを流通させる排気本管(第1図、ε1ル2
図の排気管3aと同一構成)3a内の上流端部と下流端
部との間を連結して抽気分岐管8 a ”(設け、排気
本管3a内には第2図のシステムと同様に、上流[il
lより下流側に向って熱気発生器3c、給水予熱器3b
および燃料予熱器7a’(z配設し、排気分岐管8a内
には燃料クシツキング反応器?bを配設した点にある。
The motivation for this system is that the gas turbine 28
Exhaust main pipe that circulates still hot exhaust gas (Fig. 1, ε1 le 2
A bleed branch pipe 8a'' (same configuration as the exhaust pipe 3a shown in the figure) is provided by connecting the upstream end and the downstream end of the exhaust main pipe 3a, similar to the system shown in Figure 2. , upstream [il
A hot air generator 3c and a water preheater 3b are located downstream from l.
A fuel preheater 7a' (z) is provided, and a fuel pumping reactor (b) is provided in the exhaust branch pipe 8a.

’l−1ii気分岐管8aの入口部と出口部にはそれぞ
れ分岐ダクト人口ダンパ8b、分岐ダクト出口ダンパ8
Cが設けられ、排気分岐管8a内を分流する排ガス流景
を制御できる構成となっている。′!l:た少なくとも
前記蒸気発生器3Cと給水予熱器3bとは排気本管3a
内における前記入ロダンバ8bと出口ダンパ8cとの間
の位置に自己設されている。
'l-1ii A branch duct artificial damper 8b and a branch duct outlet damper 8 are provided at the inlet and outlet of the air branch pipe 8a, respectively.
C is provided, and is configured to be able to control the flow of exhaust gas that is divided within the exhaust branch pipe 8a. ′! l: At least the steam generator 3C and the feed water preheater 3b are connected to the exhaust main pipe 3a.
The damper is self-installed at a position between the input damper 8b and the exit damper 8c in the damper.

そこで、前記がヌタービン2aに供給される燃オ]は、
予め、排気本管3a内0)燃料予熱器7aにエリ加熱さ
れ、さらに排気分岐管8a内の燃料気化器7bにより、
ノJスタービン2aからのiシb温排ガスCの熱エネル
ギ全力えられて化学的に反応(クランキング反応)シ、
燃焼エネルギの高い二次燃料に変換されることになる。
Therefore, the fuel gas supplied to the nut turbine 2a is as follows:
The fuel is heated in advance by the fuel preheater 7a in the exhaust main pipe 3a, and further heated by the fuel vaporizer 7b in the exhaust branch pipe 8a.
The full thermal energy of the hot exhaust gas C from the J turbine 2a is applied to cause a chemical reaction (cranking reaction).
It will be converted into secondary fuel with high combustion energy.

したがって上記構成のシステムによれば、ガスタービン
2aの排ガスCの熱エネルキ全M 気発止器3cJ6エ
び燃料クラッキング反応器7bの双方に対して有効に与
えることができ、これによって発電効率を高めることが
できる。
Therefore, according to the system configured as described above, the total thermal energy of the exhaust gas C of the gas turbine 2a can be effectively given to both the gas starter 3cJ6 and the fuel cracking reactor 7b, thereby increasing the power generation efficiency. be able to.

また、蒸気発生器3Cは排気本管3a内に、燃料クシツ
キング反応器7bは排気分岐管8a内に配設さJtてい
るので、燃料クランキング反応器7bが蒸気発生器3C
の加熱効率全低下させることはない。
Further, the steam generator 3C is disposed in the exhaust main pipe 3a, and the fuel cranking reactor 7b is disposed in the exhaust branch pipe 8a, so that the fuel cranking reactor 7b is disposed in the steam generator 3C.
The heating efficiency will not be reduced completely.

さらに、蒸気発生器3Cと燃料クラッキング反応器7c
とが互いに影響し合うことはないので、いず、11、か
一方のみについて、1牛能、運転モード、47.’j尺
いt71e jX着−全自由に変更することができろ。
Furthermore, a steam generator 3C and a fuel cracking reactor 7c
Since these do not affect each other, for only one of 1 and 11, 1 cow power, driving mode, and 47. 'J size T71e jX arrival - You can change it freely.

1だ、システム起動時における蒸気発生器3cからの高
圧蒸気の発生量を短時間で整定さぜることができ、万一
、燃料クランキング反応器7bにトラブルが発生した場
合でもその影響が蒸気発生器3Cには及ばないので、2
次被害の発生全防止することができる0 以上詳述したように、本発明によれば、高度の発電効率
が得られ、蒸気タービン系の蒸気発生器に対゛する加熱
効果を低下させず、システム起動11力における蒸気発
生器からの高圧蒸気の発生器を短時間で整定さぜること
かでき、万一、燃料クランキング反応器にトラブルが発
生した場合でもその影響を蒸気発生器に及岨すことなく
、2次被害を防止できる燃料クラッキング板台発電シス
テムを提供することができる。
1. The amount of high-pressure steam generated from the steam generator 3c at the time of system startup can be adjusted in a short time, and even if trouble occurs in the fuel cranking reactor 7b, the effect will be Since it is not as good as generator 3C, 2
As detailed above, according to the present invention, a high power generation efficiency is obtained, and the heating effect on the steam generator of the steam turbine system is not reduced. The generator of high-pressure steam from the steam generator at system start-up of 11 hours can be stabilized in a short time, and even if trouble occurs in the fuel cranking reactor, the effect will not be affected by the steam generator. It is possible to provide a fuel cracking plate platform power generation system that can prevent secondary damage without causing damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の背景技術を説明するため
の概略構成図、第3図は本発明の一実施例全示ず概略4
74成図である。 2a’−ガスタービン、2b・発電機、3 a ゛=排
気本管、3b・・・給水′″に熱器、3C・・・頽気発
住器、4a・・・蒸気タービン、4b・・・発電機、2
a・・・カビ(料才熱器、7b・・・燃料クランキング
反応器、8a・・・排気分岐管。
FIGS. 1 and 2 are schematic configuration diagrams for explaining the background technology of the present invention, and FIG. 3 is a schematic diagram of an embodiment of the present invention;
74 compositions. 2a'-gas turbine, 2b-generator, 3a'=exhaust main pipe, 3b...heater for water supply''', 3C...dry generator, 4a...steam turbine, 4b...・Generator, 2
a... Mold (heater, 7b... Fuel cranking reactor, 8a... Exhaust branch pipe.

Claims (1)

【特許請求の範囲】[Claims] ガスタービン発電系と、このガスタービン発電系からの
高温排ガスを流通させる排気本管と、この排気木管の上
流端部と下流端部との間を連結して設けられた排気分岐
管と、上記排気本管内における上記排気分岐管入口と出
目との間に配設された蒸気発生器と、この蒸気発生器よ
り発生した高圧蒸気により駆動される蒸気タービン発電
系と、上記排気分岐管内に配設され上記ガスタービン発
電系に供給される燃料を上記排気分岐管全流通する排ガ
スの熱エネルギにより化学的に反応させて燃焼エネルギ
の高い二次燃料に変換する燃料クランキング反応器とを
具備したことを特徴とする燃料クラッキング複合発電シ
ステム。
A gas turbine power generation system, an exhaust main pipe through which high-temperature exhaust gas from the gas turbine power generation system flows, an exhaust branch pipe provided to connect the upstream end and downstream end of the exhaust wood pipe, and the above-mentioned exhaust pipe. A steam generator disposed between the exhaust branch pipe inlet and the outlet in the exhaust main pipe, a steam turbine power generation system driven by high pressure steam generated from the steam generator, and a steam turbine power generation system disposed within the exhaust branch pipe. and a fuel cranking reactor that chemically reacts the fuel supplied to the gas turbine power generation system with the thermal energy of the exhaust gas flowing through the exhaust branch pipe to convert it into a secondary fuel with high combustion energy. A fuel cracking combined power generation system characterized by:
JP21591482A 1982-12-09 1982-12-09 Compound electric power generating system by fuel cracking Granted JPS59105909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21591482A JPS59105909A (en) 1982-12-09 1982-12-09 Compound electric power generating system by fuel cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21591482A JPS59105909A (en) 1982-12-09 1982-12-09 Compound electric power generating system by fuel cracking

Publications (2)

Publication Number Publication Date
JPS59105909A true JPS59105909A (en) 1984-06-19
JPS6310287B2 JPS6310287B2 (en) 1988-03-05

Family

ID=16680338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21591482A Granted JPS59105909A (en) 1982-12-09 1982-12-09 Compound electric power generating system by fuel cracking

Country Status (1)

Country Link
JP (1) JPS59105909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258107A (en) * 1986-05-01 1987-11-10 Mitsubishi Heavy Ind Ltd Compound prime mover device
JP2001020757A (en) * 1999-07-01 2001-01-23 General Electric Co <Ge> Method for humidifying and heating fuel gas and system for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258107A (en) * 1986-05-01 1987-11-10 Mitsubishi Heavy Ind Ltd Compound prime mover device
JP2001020757A (en) * 1999-07-01 2001-01-23 General Electric Co <Ge> Method for humidifying and heating fuel gas and system for the same

Also Published As

Publication number Publication date
JPS6310287B2 (en) 1988-03-05

Similar Documents

Publication Publication Date Title
RU2215165C2 (en) Method of regeneration of heat of exhaust gases in organic energy converter by means of intermediate liquid cycle (versions) and exhaust gas heat regeneration system
US5590518A (en) Hydrogen-rich fuel, closed-loop cooled, and reheat enhanced gas turbine powerplants
FI76625B (en) MEDELBELASTNINGSKRAFTVERK MED INTEGRERAD KOLFOERGASNINGSANLAEGGNING.
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
US5669216A (en) Process and device for generating mechanical energy
RU2085754C1 (en) Method of and gas turbine plant for continuous conversion of energy
US20070113562A1 (en) Methods and apparatus for starting up combined cycle power systems
JPH0339166B2 (en)
JPS59231112A (en) Gas turbine-steam turbine composite installation
JPH06500374A (en) Gas/steam turbine complex equipment
JP2005274123A (en) Power generation system and control method thereof
CA2340650C (en) Gas turbine and steam turbine installation
US3334486A (en) Continuous flow combustion engine
JP2002520541A (en) Gas / steam combined turbine equipment
RU2237815C2 (en) Method of and device for obtaining useful energy in combination cycle (versions)
JP2000054855A (en) External heating type gas turbine
CA2429938C (en) A turbine arrangement and a method of operating a turbine arrangement
JPH08210151A (en) Power plant
RU2428575C1 (en) Combination gas-turbine plant
JPS59105909A (en) Compound electric power generating system by fuel cracking
JP2554060B2 (en) Combined generation system
EP3844371A1 (en) System for generating energy in a working fluid from hydrogen and oxygen and method of operating this system
US20040038094A1 (en) Fuel cell system
KR102473756B1 (en) Combined power plant and operating method of the same
RU2791380C1 (en) Method for operation of gas turbine gas pumping unit and device for its implementation