JPS5910542B2 - Catalyst for storage batteries - Google Patents

Catalyst for storage batteries

Info

Publication number
JPS5910542B2
JPS5910542B2 JP51057471A JP5747176A JPS5910542B2 JP S5910542 B2 JPS5910542 B2 JP S5910542B2 JP 51057471 A JP51057471 A JP 51057471A JP 5747176 A JP5747176 A JP 5747176A JP S5910542 B2 JPS5910542 B2 JP S5910542B2
Authority
JP
Japan
Prior art keywords
catalyst
container
temperature rise
amount
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51057471A
Other languages
Japanese (ja)
Other versions
JPS52139930A (en
Inventor
茂 佐々木
立己 村上
一郎 岡崎
昭夫 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP51057471A priority Critical patent/JPS5910542B2/en
Priority to GB20430/77A priority patent/GB1569449A/en
Priority to DE19772722690 priority patent/DE2722690A1/en
Publication of JPS52139930A publication Critical patent/JPS52139930A/en
Publication of JPS5910542B2 publication Critical patent/JPS5910542B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は蓄電池用触媒せんの遣水効率の向上と安全性、
耐久性の向上を同時に達成せんとするものである。
[Detailed Description of the Invention] The present invention aims to improve water supply efficiency and safety of catalyst cells for storage batteries,
The aim is to simultaneously improve durability.

既に、据置用蓄電池には補水頻度を減らし、酸霧や爆発
性ガスの排出を防ぐ目的で、水素ガス−酸素ガス結合触
媒を用いた触媒せんが用いられている。
Catalytic cells that use a hydrogen gas-oxygen gas combination catalyst are already being used in stationary storage batteries to reduce the frequency of water replenishment and to prevent the emission of acid mist and explosive gas.

しかし、従来のものは遣水効率を向上せんとすれば安全
面(温度上昇)で問題が生じ、それ二:S$■■■一ー
■τ一■一■■■■■■造で大形化の傾向をもつていた
。本発明はこの欠点を解消し、遣水効率が大きく、安全
性も高く、単純な構造で信頼性の高い触媒せんを得るこ
とを目的とするものである。
However, if the conventional type does not improve the efficiency of water supply, there will be problems in terms of safety (temperature rise). It had a tendency to change. The object of the present invention is to eliminate this drawback and to obtain a catalyst cell which has high water supply efficiency, high safety, simple structure, and high reliability.

この目的を達成するための本発明の要旨は、つぎの通り
である。即ち、せん体を単純な形とし、触媒容器の制限
能力のあるものを用い、その触媒容器の持つている反応
能力による温度上昇の最高値を制限することで、他の二
次的遮弊物などによる反応性の低下をなくし、遣水効率
の高い触媒せんで、なおかつ安全性および信頼性も高い
ものを得ることにある。つぎに本発明を詳細に説明する
The gist of the present invention for achieving this object is as follows. In other words, by making the cylindrical body simple, using a catalyst container with a limiting ability, and limiting the maximum temperature rise due to the reaction ability of the catalyst container, other secondary barriers can be prevented. The object of the present invention is to eliminate the decrease in reactivity caused by such factors, and to obtain a catalyst that has high water dispensing efficiency and is also highly safe and reliable. Next, the present invention will be explained in detail.

本発明の一実施例を示す第1図において、1はせん体、
2はガス導入と遣水を行なう流出入口、3は排気孔、4
は水素ガス−酸素ガス結合触媒、例えばγ−アルミナ担
体にパラジウムを付着させたもの、5は無機物質粒子を
焼結した狭隙防爆機能を有する円筒状の触媒容器で、触
媒4を収納している。6はこの触媒容器をせん体1内の
空間に設置するための支持台で、例えばエボナイトのよ
うな耐熱性の材料の成形品である。
In FIG. 1 showing an embodiment of the present invention, 1 is a helical body;
2 is an inlet and an inlet for gas introduction and water supply, 3 is an exhaust hole, and 4 is an exhaust port.
5 is a hydrogen gas-oxygen gas combined catalyst, for example, a γ-alumina carrier with palladium adhered to it; 5 is a cylindrical catalyst container with a narrow gap explosion-proof function made of sintered inorganic particles; There is. Reference numeral 6 denotes a support base for installing the catalyst container in the space inside the cylinder 1, and is a molded product of a heat-resistant material such as ebonite.

なお、第2図は従来形の耐過電流形触媒せんの一例で、
その構造は第1図に示す本発明実施例と符号1〜6につ
いては同じであるが、符号Tで示す内カバーとしてガス
の流れを一定量以下に押える作用をするものが付加され
ており、そのためにせん体金容積が大きいなど大きく相
違している。本発明の触媒せんの作用機構はつぎの通り
である。
Furthermore, Figure 2 shows an example of a conventional type of overcurrent type catalytic converter.
Its structure is the same as the embodiment of the present invention shown in FIG. 1 with respect to symbols 1 to 6, but an inner cover indicated by symbol T that acts to suppress the flow of gas to a certain amount or less is added. For this reason, there are major differences, such as the large volume of the shell metal. The mechanism of action of the catalyst of the present invention is as follows.

蓄電池の充電時に発生した水素ガスと酸素ガスとは流出
入口2よりせん体1内に流入し、触媒容器5の壁面より
侵入して触媒4に接触し、化学的な結合により水蒸気と
なり、再び触媒容器5の壁面から排出され、せん体1の
内面に接触して冷却されて水になり還水する。また、残
つたガスは排気孔3より、未反応ガスのままで排出され
る。さて、触媒容器の構造および触媒量を適当に選択す
れば、それに応じてその反応量はそれぞれ一定の値にて
飽和する性質があるから、そのなかから効率のよい最適
な反応条件のものを選ぶことができる。これを単純な形
の流出入口と排気孔を備えたせん体内の空間に設置する
ことにより、所要の反応容量の触媒せんを製作すること
ができる。これに関する実験結果の一例を第1表に示す
。この結果は同一の触媒せんせん体及び内径25驕、内
面高さ25驕の同一の触媒容器を使用し、触媒量のみを
適当に選択して変えた場合の触媒量と最大反応電流との
関係を示したものである。なお、表中の最大反応電流と
は、触媒せんの取付けられた完全充電済の蓄電池に流す
充電電流を段階的に増加させた場合、下記の式により求
まる反応電流が飽和した時の電流値を意味する。第1表
から明らかなように、上記触媒容器を用いた場合におい
て、触媒の劣化とぬれを考慮した最適触媒容器温度上昇
と考えられる120℃〜170℃程度の触媒量は3〜7
(9)であることがわかる。
Hydrogen gas and oxygen gas generated during charging of the storage battery flow into the cylinder 1 through the inlet 2, enter through the wall of the catalyst container 5, come into contact with the catalyst 4, become water vapor due to chemical bonding, and return to the catalyst. It is discharged from the wall of the container 5, contacts the inner surface of the cylindrical body 1, is cooled, becomes water, and is returned. Further, the remaining gas is exhausted from the exhaust hole 3 as an unreacted gas. Now, if the structure of the catalyst container and the amount of catalyst are selected appropriately, the reaction amount will be saturated at a certain value accordingly, so choose the one with the most efficient and optimal reaction conditions. be able to. By installing this in a space inside a cylinder provided with a simple inlet/outlet and exhaust hole, a catalyst cylinder with the required reaction capacity can be manufactured. An example of experimental results regarding this is shown in Table 1. These results show the relationship between the amount of catalyst and the maximum reaction current when using the same catalyst spiral body, the same catalyst container with an inner diameter of 25 mm and an inner surface height of 25 mm, and changing only the amount of catalyst by appropriately selecting it. This is what is shown. In addition, the maximum reaction current in the table is the current value when the reaction current is saturated, calculated by the following formula, when the charging current flowing through a fully charged storage battery with a catalyst installed is increased in stages. means. As is clear from Table 1, when the above catalyst container is used, the amount of catalyst at about 120°C to 170°C, which is considered to be the optimal catalyst container temperature rise considering catalyst deterioration and wetting, is 3 to 7.
(9).

また触媒の温度上昇と触媒により生成された水蒸気がせ
ん体内で冷却され凝縮して水になる能力を表わす還水効
率との関係を第3図に示す。
Further, FIG. 3 shows the relationship between the temperature rise of the catalyst and the return water efficiency, which represents the ability of the water vapor generated by the catalyst to be cooled and condensed into water within the cylinder.

この試験結果は、せん体寸法や触媒量との関係より触媒
の温度上昇が還水効率に最も直接的な影響をもつことを
示しており、実用上要求される90%の値は約220℃
以下の触媒温度上昇の時に達成されることが判明した。
また触媒や触媒容器のぬれ防止のために用いられる撥水
剤(通常はシリコン系のものでその耐熱温度は約250
℃)の劣化を防止して寿命を延長するためにも220℃
以下の触媒温度上昇値は好ましい結果をもたらす。更に
第4図は触媒量と触媒の最高温度上昇値の関係を触媒容
器の形状をパラメータとして示した試験結果である。図
中のAは触媒容器の形状が高形(内径157IgR×内
面高さ607mの円筒状)の場合を示し、Bは中形(内
径221!Glt×内面高さ30−の円筒状)の場合、
Cは低形(内径44顧×内面高さ77!g!tの円筒状
)の場合をそれぞれ示しており、また前記内径および内
面高さより明らかなように触媒容器A,B,Cはいずれ
も約111のほぼ同一内容積に構成されている。この結
果から触媒の最高温度上昇値を220℃とするとしても
触媒量と触媒容器の形状の組合せ方は色々あり、例えば
、高形容器Aでは5g、低形容器Cでは10yというこ
とがわかる。また第4図から触媒容器の内容積が同一で
触媒量を一定にした場合、そのときの触媒容器の形状は
内面高さを低くして内径を大きくした方が触媒の温度上
昇を低く押えることができることも分かる。即ち、触媒
の最高温度上昇値は触媒量と触媒容器の形状によつて左
右されることが理解されよう。この触媒の最高温度上昇
値と触媒量および触媒容器との関係の実験結果から得た
実験式をもとにして一般化して示すと下式のようになる
This test result shows that the temperature rise of the catalyst has the most direct effect on the water return efficiency due to its relationship with the cylinder size and catalyst amount, and the practically required value of 90% is approximately 220°C.
It has been found that this is achieved when the catalyst temperature increases as follows.
In addition, water repellents (usually silicone-based, with a heat resistance temperature of approximately 250°C) are used to prevent catalysts and catalyst containers from getting wet.
220℃ to prevent deterioration and extend the service life.
The following catalyst temperature rise values give favorable results. Further, FIG. 4 shows the test results showing the relationship between the amount of catalyst and the maximum temperature rise value of the catalyst using the shape of the catalyst container as a parameter. A in the figure shows the case where the shape of the catalyst container is tall (cylindrical shape with inner diameter 157IgR x inner height 607m), and B shows the case where the catalyst container is medium (cylindrical shape with inner diameter 221!Glt x inner height 30-). ,
C shows the case of a low type (cylindrical shape with an inner diameter of 44 x inner height of 77 g!t), and as is clear from the above inner diameter and inner height, catalyst containers A, B, and C are all They are configured to have approximately the same internal volume of about 111. From this result, it can be seen that even if the maximum temperature increase value of the catalyst is 220° C., there are various combinations of the amount of catalyst and the shape of the catalyst container, for example, 5 g for high container A and 10 y for low container C. Also, from Figure 4, when the internal volume of the catalyst container is the same and the amount of catalyst is constant, the temperature rise of the catalyst can be suppressed to a lower level by reducing the inner height and increasing the inner diameter of the catalyst container. I also know that it is possible. That is, it will be understood that the maximum temperature increase value of the catalyst is influenced by the amount of catalyst and the shape of the catalyst container. The following formula is generalized based on the experimental formula obtained from the experimental results of the relationship between the maximum temperature rise value of the catalyst, the amount of catalyst, and the catalyst container.

こゝに、Tmax:触媒の最高温度上昇値(c)K:主
として触媒容器の材料によつて定まる定数W:触媒の重
量(g)ρ:触媒の見掛け比重(f!/CC) D:円筒状触媒容器の内面直径(CTrL)触媒容器に
は36メツシユのアルミナを厚さ約5?で2.49/m
lの密度になるように焼結したものが用いられており、
この場合のKの値は32、3である。
Here, Tmax: maximum temperature rise value of the catalyst (c) K: constant mainly determined by the material of the catalyst container W: weight of the catalyst (g) ρ: apparent specific gravity of the catalyst (f!/CC) D: cylinder Inner diameter of the catalyst container (CTrL): The catalyst container is made of 36 mesh alumina with a thickness of about 5mm. at 2.49/m
The material used is sintered to a density of l.
The value of K in this case is 32.3.

触媒にはγ−アルミナ担体にパラジウムを付着させたペ
レツト状のものが最も広く用いられており、Wは担体重
量込みの触媒重量である。ρは触媒容器に充填された上
記触媒の見掛け比重であり、Oくρ≦1の値をとる。し
たがつてW/ρは触媒容器の内容積を示す。これより明
らかなように、温度上昇を220℃に押える組合せは色
々あるが、触媒量(5)と見掛け比重(ρ)とが決まれ
ばこれを収納するに必要な容積も判るので、その結果必
要な容器の形状(円筒状の場合は内面直径と内面高さ)
が一義的に定まる。
The most widely used catalyst is a pellet-like catalyst in which palladium is adhered to a γ-alumina carrier, and W is the weight of the catalyst including the weight of the carrier. ρ is the apparent specific gravity of the catalyst filled in the catalyst container, and takes a value of 0≦1. Therefore, W/ρ indicates the internal volume of the catalyst container. As is clear from this, there are various combinations that can suppress the temperature rise to 220℃, but once the amount of catalyst (5) and apparent specific gravity (ρ) are determined, the volume required to accommodate it can be determined, and as a result, the required volume is determined. shape of the container (inner diameter and inner height if cylindrical)
is uniquely determined.

つぎに本発明の実験結果を従来品と比較して第2表に示
す。
Next, the experimental results of the present invention are shown in Table 2 in comparison with the conventional product.

比較を容易にするため、いずれもγ−アルミナを担体と
してパラジウムを付着した触媒を同一の見掛け比重にな
るように用い、触媒容器には36メツシユのアルミナを
約5顧の厚さで同一密度になるように焼結したもので、
本発明品は内径401a×内面高さ87!i!!tの円
筒状、従来方式品は内径20w1tX内面高さ3271
111の円筒状のものを用いた。この表より本発明品が
小形で安全性の高いものであることが明らかである。
To facilitate comparison, catalysts with palladium attached using γ-alumina as a carrier were used in each case so that they had the same apparent specific gravity, and 36 mesh alumina was used in the catalyst container at a thickness of about 5 mesh with the same density. It is sintered so that
The product of this invention has an inner diameter of 401a and an inner height of 87! i! ! T cylindrical shape, conventional type product has inner diameter 20w1t x inner height 3271
A cylindrical one of No. 111 was used. From this table, it is clear that the product of the present invention is small and highly safe.

なお、この実験結果は第1図に示す形状の本発明品と第
2図に示す形状の従来方式の一例において、同一反応電
流を得るように構成した場合の本発明品と従来方式の一
例における触媒せんの外形寸法などの比較を求めたもの
である。以上述べたように本発明品によれば、触媒量と
その見掛け比重の最適条件を選ぶことによつて、小形で
安全性が高く反応容量の大きい触媒容器を得ることがで
き、これを単純な構造の小形のせん体内の容間に収納す
ればよく、本発明の工業的価値は大きい。
The results of this experiment are as follows: The inventive product with the shape shown in Fig. 1 and an example of the conventional method with the shape shown in Fig. 2 are configured to obtain the same reaction current. This is a comparison of the external dimensions of catalyst cylinders. As described above, according to the product of the present invention, by selecting the optimal conditions for the amount of catalyst and its apparent specific gravity, it is possible to obtain a small, highly safe catalyst container with a large reaction capacity. The present invention has great industrial value because it can be stored in a space within a cylindrical body having a small structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明蓄電池用触媒せんの一実施例を示す断面
図、第2図は従来の耐過電流形触媒せんの一例を示す縦
断面図、第3図は触媒の温度上昇と還水効率の実験結果
の一例を示す特性図、第4図は触媒量と触媒の最高温度
上昇値の関係を触媒容器の形状をパラメータとして実験
した結果の一例を示す特性図である。 1・・・・・・せん体、4・・・・・・触媒、5・・・
・・・触媒容器。
Fig. 1 is a cross-sectional view showing an example of the catalyst cell for storage batteries of the present invention, Fig. 2 is a vertical cross-sectional view showing an example of a conventional overcurrent type catalyst cell, and Fig. 3 is a diagram showing temperature rise of the catalyst and water return. FIG. 4 is a characteristic diagram showing an example of the experimental results of efficiency. FIG. 4 is a characteristic diagram showing an example of the experimental results of the relationship between the amount of catalyst and the maximum temperature rise value of the catalyst using the shape of the catalyst container as a parameter. 1... Cylinder, 4... Catalyst, 5...
...Catalyst container.

Claims (1)

【特許請求の範囲】 1 下方に電池内で発生したガスの導入と凝縮水の還流
のための経路をもち、上方に未反応ガスの排出経路を有
するせん体内の空間に、無機物質粒子を焼結した狭隙防
爆機能を有する多孔性容器内に水素ガス−酸素ガス結合
触媒を収納した触媒容器で、触媒の最高温度上昇が22
0℃以下になるように下記式に基づき一律に定まる触媒
量および容器構造を選んだ触媒容器を配置した構造の蓄
電池用触媒せん。 Tmax= K・([4W/ρD]+0.225πD)^0^.^5
・(4W/ρπD^3)^0^.^0^6^5但し、T
max:触媒の最高温度上昇値、K:主として触媒容器
の材料で定まる定数、W:触媒の重量、ρ:触媒の見掛
け比重、D:円筒状触媒容器の内面直径。
[Scope of Claims] 1. Inorganic particles are burned in a space inside a cylindrical body, which has a path for introducing gas generated within the battery and refluxing condensed water at the bottom, and an exhaust path for unreacted gas at the top. This is a catalyst container in which a hydrogen gas-oxygen gas combination catalyst is housed in a porous container with a narrow gap explosion-proof function, and the maximum temperature rise of the catalyst is 22
A catalyst cell for a storage battery has a structure in which a catalyst container is arranged in which the catalyst amount and container structure are uniformly determined based on the following formula so that the temperature is below 0°C. Tmax=K・([4W/ρD]+0.225πD)^0^. ^5
・(4W/ρπD^3)^0^. ^0^6^5 However, T
max: maximum temperature increase value of the catalyst, K: constant mainly determined by the material of the catalyst container, W: weight of the catalyst, ρ: apparent specific gravity of the catalyst, D: inner diameter of the cylindrical catalyst container.
JP51057471A 1976-05-18 1976-05-18 Catalyst for storage batteries Expired JPS5910542B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP51057471A JPS5910542B2 (en) 1976-05-18 1976-05-18 Catalyst for storage batteries
GB20430/77A GB1569449A (en) 1976-05-18 1977-05-16 Catalytic storage battery cap
DE19772722690 DE2722690A1 (en) 1976-05-18 1977-05-18 CATALYTIC ACCUMULATOR STOPPER PLUG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51057471A JPS5910542B2 (en) 1976-05-18 1976-05-18 Catalyst for storage batteries

Publications (2)

Publication Number Publication Date
JPS52139930A JPS52139930A (en) 1977-11-22
JPS5910542B2 true JPS5910542B2 (en) 1984-03-09

Family

ID=13056600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51057471A Expired JPS5910542B2 (en) 1976-05-18 1976-05-18 Catalyst for storage batteries

Country Status (1)

Country Link
JP (1) JPS5910542B2 (en)

Also Published As

Publication number Publication date
JPS52139930A (en) 1977-11-22

Similar Documents

Publication Publication Date Title
US4002496A (en) Catalytic device for storage battery
US6993888B2 (en) Metal hydride storage canister design and its manufacture
US3893870A (en) Hydrogen absorbing material for electrochemical cells
JP4800319B2 (en) Hydrogen production apparatus and fuel cell system using the same
JP4947718B2 (en) Hydrogen generating material and hydrogen generating apparatus
CN108183287B (en) Metal fuel cell system with hydrogen elimination function
KR0130137B1 (en) Catalytic recombination of envolved hydrogen in alkaline cells
EP1093674A1 (en) Catalyst equipped vapor-communicating multi-cell valve regulated lead-acid battery
EP1286406A2 (en) Metal hydride storage canister and its manufacture
JPS5910542B2 (en) Catalyst for storage batteries
JPS6249703B2 (en)
US3929422A (en) Means for recombining hydrogen and oxygen in a sealed battery and controlling recombination at catalyst surfaces
US3261714A (en) Sealed dry cells having an ionization catalyst in the depolarizer
JPS5812382Y2 (en) Catalyst for storage batteries
JP2010001188A (en) Hydrogen production apparatus and fuel cell
US3278334A (en) Anode limited sealed secondary battery having an auxiliary electrode
JP4324829B2 (en) Control valve type lead battery
JPS5814537Y2 (en) Catalyst plug for storage battery
JP3089310B2 (en) Sealed nickel / metal hydride storage battery
JPS5841644Y2 (en) Catalyst plug for storage battery
RU2168810C2 (en) Hermetically sealed nickel-cadmium accumulator
RU2192073C1 (en) Sealed lead-acid storage cell
JPS5678401A (en) Utilization of metallic hydride and storage tank for hydrogen
JP3412161B2 (en) Sealed nickel-metal hydride storage battery
JPS6342378B2 (en)