JPS59105083A - Selective hydrogenation for diene in pyrolized gasoline - Google Patents

Selective hydrogenation for diene in pyrolized gasoline

Info

Publication number
JPS59105083A
JPS59105083A JP58219632A JP21963283A JPS59105083A JP S59105083 A JPS59105083 A JP S59105083A JP 58219632 A JP58219632 A JP 58219632A JP 21963283 A JP21963283 A JP 21963283A JP S59105083 A JPS59105083 A JP S59105083A
Authority
JP
Japan
Prior art keywords
catalyst
stage
range
hydrogen
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58219632A
Other languages
Japanese (ja)
Other versions
JPH0631331B2 (en
Inventor
ウイレム・グレ−ネンダ−ル
オンノ・レ−ンデルト・マ−スカント
ランベルト・シヤ−パ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPS59105083A publication Critical patent/JPS59105083A/en
Publication of JPH0631331B2 publication Critical patent/JPH0631331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/06Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a selective hydrogenation of the diolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 素化方法およびそのようGこして得られた水素化された
熱分解ガソリンに関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a hydrogenation process and to the hydrogenated pyrolysis gasoline obtained by such G-filtration.

知られているであろう如く、熱分解ガソリンはナフサま
たはガス油のような気体または液体炭化水素の高温熱分
解(例えばスチームの存在下でのクラッキング)による
エテンおよび/またはプロペンの製造における副生成物
として得られる。
As may be known, pyrolysis gasoline is a by-product in the production of ethene and/or propene by high temperature pyrolysis (e.g. cracking in the presence of steam) of gaseous or liquid hydrocarbons such as naphtha or gas oil. Obtained as an object.

熱分解ガソリンは一方で、高度にオレフィン型不飽和の
炭化水素が比較的高い割合で存在するために極めて不安
定であり、そし゛C他方で、格別に価値がありおよび安
定な自動車ガソリン成分としてそれら自身有用である高
オクタン価企有する芳香族化合物およびアルケンを含有
する。
Pyrolysis gasoline is, on the one hand, extremely unstable due to the presence of a relatively high proportion of highly olefinically unsaturated hydrocarbons, and on the other hand, it is an exceptionally valuable and stable motor gasoline component. Contains aromatics and alkenes with high octane numbers that are themselves useful.

種々の1j的に、例えば高オクタン価の安定なガソリン
としてまたは芳香族化合物製造用原料として使用しうる
生成物を得るためには、主としてジエン例えばシクロペ
ンタジェン型のものからなる高度にオレフィン型不飽和
の化合物を熱分解ガソリンから除去し7:「ければなら
ない。この除去はジエンのモノオレフィンへの部分水素
化により達成しうる。モノオレフィンの水素化は一般に
オクタン価の低下を招くから、そのような水素化はでき
るだけ避けねばならない。更に、そうすることで水素消
費が所望の低い水準に保たれる。
In order to obtain products which can be used for various purposes, for example as stable gasolines with high octane numbers or as raw materials for the production of aromatic compounds, highly olefinically unsaturated products consisting mainly of dienes, for example of the cyclopentadiene type, are used. compounds must be removed from pyrolysis gasoline. This removal can be accomplished by partial hydrogenation of dienes to monoolefins. Hydrogenation of monoolefins generally results in a decrease in octane number, so such Hydrogenation should be avoided as much as possible; furthermore, hydrogen consumption is kept at the desired low level.

熱分解ガソリン中に存在するジエンは、元素の周期表第
6および/または第ど族の金属を含む支持された触媒と
いった水素化活性を有する触媒の助けにより2つの引続
く段階で選択的に水素化することができる。このような
触媒が充分な水素化活性を保持する期間の長さは、特に
第1段階触媒床の反応器入口に最も近い部分において、
ガム生成、触媒上への重合体沈着および増大する圧力降
下のために通常不満足である。
The dienes present in the pyrolysis gasoline are selectively converted to hydrogen in two subsequent stages with the aid of a catalyst with hydrogenation activity, such as a supported catalyst containing a metal from Group 6 and/or Group 1 of the Periodic Table of the Elements. can be converted into The length of time such catalysts retain sufficient hydrogenation activity is determined by the length of time that such catalysts retain sufficient hydrogenation activity, particularly in the portion of the first stage catalyst bed closest to the reactor inlet.
Usually unsatisfactory due to gum formation, polymer deposition on the catalyst and increased pressure drop.

本発明は、第1段階を低い水素化性第g族金属含量を有
する支持された触媒の存在下に実施し;第2段階におい
てより高い第ざ族金属含量を有する触媒を使用すること
により、この問題の解決を与える。
The present invention comprises carrying out the first stage in the presence of a supported catalyst with a low hydrogenating Group G metal content; by using a catalyst with a higher Group G metal content in the second stage; give a solution to this problem.

従って本発明は熱分解ガソリン中のジエンの選択的水素
化方法において、熱分解カッリンを2つの引続く段階で
高められた温度および圧力で支持された触媒の存在下に
水素と接触させ、第1段階の触媒は触媒全体を基準にし
て/−j%Wの/またはそれ以上の元素周期表第ざ族が
らの金属を含み、そして第2段階の触媒は触媒全体を基
準にして汐−1to%Wの/またはそれ以上の第ざ族が
らの金属を含むことからなる前記選択的水素化方法を提
供する。
The present invention therefore provides a process for the selective hydrogenation of dienes in pyrolyzed gasoline, in which pyrolyzed kaline is contacted with hydrogen in the presence of a supported catalyst at elevated temperature and pressure in two successive stages; The stage catalyst contains /-j% W/or more of a metal from Group Z of the Periodic Table of the Elements, based on the total catalyst, and the second stage catalyst contains /-1 to % W, based on the total catalyst. The selective hydrogenation process comprises W and/or more metals from Group ZA.

好ましくは第1および第!段階の触媒は、触媒全体を基
準にしてそれぞれ/−夕、乙−3o%Wの/またはそれ
以上の第g族がらの金属を含む。最も好ましい第1およ
び第2段階の触媒は共に第g族金属としてニッケルを含
量。
Preferably the first and the first! The catalyst of the step contains, respectively, 30% W and/or more of the Group G metal, based on the total catalyst. The most preferred first and second stage catalysts both contain nickel as the Group G metal.

第1および第2段階の触媒の支持体はアルミナ、シリカ
またはシリカ−アルミナといった耐火性酸化物からなる
のが適当である;好ましいのはシリカ含量が0−乙%W
のアルミナである。
The support for the first and second stage catalysts suitably consists of a refractory oxide such as alumina, silica or silica-alumina; preferably the silica content is 0-2% W
It is alumina.

金属は含浸、イオン交換または(共)沈澱といった、担
体ゴニに/またはそれ以上の成分を含む触媒の製造に当
該技術分野で知られているいずれ。〕方法によっても組
込むことができる。そのような触媒の適当な製造法は、
担体物質を/またはそれ以上の段階で、/またはそれ以
上の第に族金属塩を含有する水溶液で含浸し、次に乾燥
および燻焼することである。
The metal may be impregnated, ion-exchanged or (co)precipitated by any method known in the art for the preparation of catalysts containing additional components on a carrier. ] method. A suitable method for preparing such a catalyst is
The carrier material is impregnated in one or more stages with an aqueous solution containing the Group metal salt, followed by drying and smoldering.

第1段階の触媒は適当には100−600m’/9の表
面積を有する;最も好ましいのは、200− j 00
 m’/シの表面積である。
The first stage catalyst suitably has a surface area of 100-600 m'/9; most preferably 200-j 00
The surface area is m'/shi.

仕上げられた第1および第2段階の触媒は通常水素また
は水素含有気体で300ないし300 ’Cの温度て/
−’Ig時間処理され、そして次に少なくとも部分的に
硫化される。硫化はその使用前に当該技術分野で知られ
ているいずれかの方法により、例えば触媒付水素および
硫化水素の混合物と、または水素および含量ガス油また
はナフサまたはC82あるいはジメチルジスルフィド(
DM])S)トいった硫黄化合物で割った( 5pik
ed )ナフサといった含量炭化水素油と、乙0ないし
300°Cの温度て接触させることζこより、実施しう
る。
The finished first and second stage catalysts are typically heated with hydrogen or a hydrogen-containing gas at a temperature of 300 to 300'C.
-'Ig time and then at least partially sulfurized. The sulfidation is carried out by any method known in the art before its use, for example with a mixture of catalyzed hydrogen and hydrogen sulfide, or with hydrogen and a content of gas oil or naphtha or C82 or dimethyl disulfide (
DM])S) Divided by the sulfur compound (5pik
ed) It can be carried out by contacting with a hydrocarbon oil such as naphtha at a temperature of 0 to 300°C.

本発明による方法は、両方の段階において液相て、また
は一部気相一部液相で行なうことがてきる。本方法の両
方の段階で固定触媒床を適用するのが好ましい。しかし
触媒を流動または膨張床で適用することも可能である。
The process according to the invention can be carried out in both stages in the liquid phase or partly in the gas phase and partly in the liquid phase. Preferably, a fixed catalyst bed is applied in both stages of the process. However, it is also possible to apply the catalyst in a fluidized or expanded bed.

非常に適当な実施態様は、完全にまたは実質的に液オ目
の転化すべき熱分解ガソリンを水素含有気体と並流的に
固定触媒床を通して流下させるものである。
A very suitable embodiment is one in which the pyrolysis gasoline to be completely or substantially liquid-occurred is allowed to flow cocurrently with the hydrogen-containing gas through a fixed catalyst bed.

しばしばこれら床はそれらの入口において、供給原料の
均一な分配を助長するために、即ち触媒床を通してのヂ
ャンネリングを防きまたは減少させるために、反応に不
活性な拐料て覆われる。該不活性物は反応域のかなりの
部分、例えば反応域容積の15ないし20%までまたは
それ以上を占めるであろうから、それらの使用は反応器
Gこ対しておよび供給原料の所望の水素化にいかなる有
意な方式でも貢献しない該不活性物のコスInこ対↓て
の両方て水素化プロセスの資本支出を増大させる0 第1段階の触媒が供給原料を触媒床にわたって分配する
機能を引継ぐ場合には、不活性材料層の使用は本方法の
第1段階においては避けることができる。この機能を行
なうためGこは第1段階の触媒は好ましくは、最も小さ
い寸法が、2 mmより大きいペレット、球、環または
他の三次元物体の形の粒子からなる。一般に、!鴎より
小さい寸法の触媒粒子の床はより容易に閉塞する傾向が
あり、そして供給原料を触媒の初期接触層にわたって分
配するのにあまり効果的でなく、一方39mmより大き
い寸法を有する粒子の使用は有意に低い活性を有する触
媒に帰着する。
Often these beds are coated at their inlets with a reaction-inert material to promote uniform distribution of the feedstock, ie, to prevent or reduce channeling through the catalyst bed. Since the inerts will occupy a significant portion of the reaction zone, e.g. up to 15 to 20% or more of the reaction zone volume, their use will affect reactor G and the desired hydrogenation of the feedstock. The cost of inerts that do not contribute in any significant way to the capital expenditure of the hydrogenation process both increase the capital expenditure of the hydrogenation process when the first stage catalyst takes over the function of distributing the feedstock over the catalyst bed. In this case, the use of an inert material layer can be avoided in the first step of the method. To perform this function, the first stage catalyst preferably consists of particles in the form of pellets, spheres, rings or other three-dimensional objects whose smallest dimension is larger than 2 mm. in general,! Beds of catalyst particles with dimensions smaller than 39 mm tend to clog more easily and are less effective at distributing feedstock over the initial contact layer of catalyst, while the use of particles with dimensions larger than 39 mm Resulting in a catalyst with significantly lower activity.

特に好ましい第1段階の触媒は3−.23 mmの直径
を有する球状粒子からなる。高い摩耗強度を有する球状
粒子の使用は他の形状の触媒粒子の使用に比へて、触媒
床にわたっての改善された供給原料の流れ分配およびま
た低減された圧力低下を生ずる。ここで使用する用語″
球状”は本当の丸い形状の粒子および完全に丸い形状に
合格しない概して長球状の粒子の両方を指す。これら粒
子の製造手順は当該技術分野で知られている。
A particularly preferred first stage catalyst is 3-. Consists of spherical particles with a diameter of 23 mm. The use of spherical particles with high abrasion strength results in improved feedstock flow distribution across the catalyst bed and also reduced pressure drop compared to the use of catalyst particles of other shapes. Terms used here″
"Spheroidal" refers to both true round shaped particles and generally prolate spheroidal particles that do not pass the perfectly round shape. Procedures for making these particles are known in the art.

第1段階の触媒床が実質的な高さく直立反応器中で7.
5mまたはそれ以上でありうる)を有する場合またはこ
の触媒床」二に第!の触媒粒子層が置かれる場合には、
第1段階の触媒粒子は圧潰抵抗性であるのがイf利であ
る。好ましくは第1段階の触媒は/ −’l MPaN
最も好ましくは/、 5−3 MPaの体積圧潰強度を
有する。
7. The first stage catalyst bed is substantially high in an upright reactor.
5m or more) or this catalyst bed' Second! When a layer of catalyst particles is placed,
It is advantageous that the first stage catalyst particles are crush resistant. Preferably the first stage catalyst is /-'l MPaN
Most preferably it has a volume crushing strength of 5-3 MPa.

第2段階の触媒は好ましくは直径/−5mmおよび体積
圧潰強度0乙−3MPaの押出物からなる。
The second stage catalyst preferably consists of extrudates with a diameter of -5 mm and a volume crushing strength of 0-3 MPa.

接触水素化の両方の段階で用いられる水素は純粋でもま
たは水素含有気体の形でもよい。用いられる気体は好ま
しくはjo容N%より多い水素を含有すべきである。非
常に適当なのは例えばカンリンフラクションの接触リホ
ーミングまたはスチームリホーミングで得られる水素含
有気体、および水素と軽質炭化水素の混合物である。水
素含有気体の過剰分は有利には、事によるとそこから不
所望の成分をあらかじめ除去した後、一方または両方の
段階に再循環する。
The hydrogen used in both stages of the catalytic hydrogenation may be pure or in the form of a hydrogen-containing gas. The gas used should preferably contain more than 10% hydrogen by volume. Very suitable are, for example, hydrogen-containing gases obtained by catalytic reforming or steam reforming of the canlin fraction, and mixtures of hydrogen and light hydrocarbons. The excess hydrogen-containing gas is advantageously recycled to one or both stages, possibly after previously removing undesired constituents therefrom.

接触水素化は両方の段階で同しても異なってもよい次の
条件で実施するのが非常に適当である:!;0−300
°C好ましくはJO−/30″C(7)範囲の温度−,
10−100絶対バール好ましくは20−ざ0絶対バー
ルの範囲の全圧;S−ど0絶対バール好ましくは10−
30絶対バールの範囲の水素分圧: 30−10OON
I純水素/kgガソリン供給原料好ましくは100−1
0OONI/kg供給原料の範囲の水素供給率;毎時触
媒1あたり0./−10kgカッリン供給原料好ましく
は毎時触媒lあたり0.3−3kgガソリン供給原料の
範囲の空間速度。
It is very suitable to carry out the catalytic hydrogenation under the following conditions which may be the same or different in both stages:! ;0-300
°C Preferably a temperature in the range of JO-/30″C (7)-,
Total pressure in the range 10-100 bar absolute, preferably 20-0 bar absolute; S-0 bar absolute, preferably 10-0 bar absolute
Hydrogen partial pressure in the range 30 bar absolute: 30-10OON
I pure hydrogen/kg gasoline feedstock preferably 100-1
Hydrogen feed rate in the range of 0OONI/kg feedstock; 0.00000000 per catalyst per hour. /-10 kg gasoline feedstock, preferably in the range of 0.3-3 kg gasoline feedstock per liter of catalyst per hour.

/ 30 ’Cを超える反応温度は、供給原料中のオレ
フィン型化合物の重合の増大を避けるためには、あまり
好ましくない。ジエンのモノオレフィンへの水素化は強
い発熱反応である。反応器温度を好ましい範囲内に保持
するために、液体生成物を再循環して熱分解カッリン供
給原料と混合するのが好ましい。第1段階に再循環され
る液体生成物と第1段階への熱分解ガソリン供給原料の
重量比は適当には0.5−.20、特に/−70である
Reaction temperatures above /30'C are less preferred in order to avoid increased polymerization of olefin-type compounds in the feedstock. Hydrogenation of dienes to monoolefins is a strongly exothermic reaction. In order to maintain the reactor temperature within a preferred range, the liquid product is preferably recycled and mixed with the pyrolyzed kalin feedstock. The weight ratio of liquid product recycled to the first stage and pyrolysis gasoline feed to the first stage is suitably 0.5-. 20, especially /-70.

本発明による2段階法の第!段階は、第1段階が実施さ
れる反応域から離れた反応域で実施してもよい;好まし
くは第1および第2段階の触媒の両方を単一の反応域中
に交互に置く。
Part 2 of the two-step method according to the present invention! The stages may be carried out in a reaction zone separate from the reaction zone in which the first stage is carried out; preferably both the first and second stage catalysts are alternated in a single reaction zone.

本発明を次の実施例により更に説明する。The invention is further illustrated by the following examples.

■ 直立管状反応器に、担体アルミナ上にNiOとして計算
してニッケル70%W(触媒全体を基準にして)を含む
25蛯の押出物の形の第2段階の触媒29’lrn”を
充填し、この固定床の上に、担体アルミナ」二にNiO
として計算してニッケル2.5%w(触媒全体を基準に
して)を含む平均直径If fnm、 、表面積230
m’/9および体積圧潰強度/、 7 MPa以上の第
1段階の触媒球の高さ3 cmの層(9,rCm3)を
置いた。触媒をまず水素で375 ’Cて2j時間処理
し、次に水素の存在下にDMDSで割った直留ナフサ(
ナフサ中!; OOppmwの硫黄)て100°Cて7
時間予備硫化した。
■ A standpipe reactor is charged with 29'lrn'' of the second stage catalyst in the form of 25 lrn extrudates containing 70% W (based on the total catalyst) of nickel calculated as NiO on a support alumina. , on top of this fixed bed, a support alumina' second NiO
Average diameter If fnm, containing nickel 2.5% w (based on the entire catalyst) calculated as , surface area 230
m'/9 and volume crushing strength/, a 3 cm high layer (9, rCm3) of first stage catalyst spheres of more than 7 MPa was placed. The catalyst was first treated with hydrogen at 375'C for 2j hours and then treated with straight run naphtha (DMDS) in the presence of hydrogen.
In naphtha! ;OOppmw sulfur) at 100°C7
Presulfided for an hour.

30−130°Cの沸点範囲を有する熱分解ガソリン供
給原料を反応器からの液体生成物と/:5の重量比で混
合した。25%Wのジエンおよび、2り%Wのモノオレ
フィンを含有するこの混合物を予熱し、go”cの温度
およびヴO絶対バールのH2分圧で反応器に入れた。こ
の供給原料を6kg供給供給原料物/1第1および第2
段階を合せた触媒/時の空間速度で300 Nl水素/
kg供給原料混合物と併流的に触媒床にわたって下方へ
導l/また。この実験中反応器系(こおいて圧力降下の
増大(まみられな力)つた。このプロセスをそれぞれ7
0日および60日操業後、液体生成物はどちらの場合心
こも0. / 3%wのジエンおよび、2.2!;%W
のモノオレフィンを含有し、これはジエンの選択的水素
化を、第1および7′または第2段階の触媒を頻繁(こ
取替える必要なしに安定な操業で実施しうろことを示す
A pyrolysis gasoline feedstock having a boiling point range of 30-130°C was mixed with the liquid product from the reactor in a weight ratio of /:5. This mixture, containing 25% W diene and 2% W monoolefin, was preheated and placed in the reactor at a temperature of go'c and a H2 partial pressure of VO absolute bar. 6 kg of this feed was fed. Feed materials/1 1st and 2nd
300 Nl hydrogen/hour space velocity of staged catalyst/hour
kg feed mixture and co-currently directed downwardly across the catalyst bed. During this experiment, the reactor system (where the pressure drop was increased) was applied.
After 0 and 60 days of operation, the liquid product in both cases was below zero. / 3%w diene and 2.2! ;%W
of monoolefins, indicating that the selective hydrogenation of dienes may be carried out in stable operation without the need for frequent replacement of the first and 7' or second stage catalysts.

比較例 比較のため、第1段階の触媒を二゛ンケルを含有しない
アルミナ球で置替えたこと以外Gよ」二言己手11@を
繰返した。この実験中反応器系における圧)J降下はか
なり増大した。上記例Gこおけるのと同じ操業期間(そ
れぞれ70日、60日)後、反応器力)らの液体生成物
はジエンをそれぞれ0/乙、027%w1モノオレフイ
ンをそれぞれ、22乙1.2.2.9%W含有した。こ
れらの結果は本発明Gこよる実施例(こ示されたものに
比べて不満足である。
Comparative Example For comparison, steps 11 and 11 were repeated except that the catalyst in the first stage was replaced with alumina spheres that did not contain nickel. During this experiment the pressure drop in the reactor system increased considerably. After the same operating period (70 days and 60 days, respectively) as in Example G above, the liquid products of the reactor were 0/20% diene, 0.2% w1 monoolefin, 22% 1.2% respectively. Contained 2.9% W. These results are unsatisfactory compared to the embodiments shown in this invention.

代理人の氏名  川原1)−穂Agent's name: Kawahara 1) - Ho

Claims (1)

【特許請求の範囲】 (])熱分解ガソリン中のジエンの選択的水素化方法に
おいて、熱分解ガソリンを2つの引続く段階で高められ
た温度および圧力で支持された触媒の存在下に水素と接
触させ、第1段階の触媒は触媒全体を基準にして/−5
%Wの/またはそれ以上の元素周期表第g族からの金属
を含み、そして第2段階の触媒は触媒全体を基準にして
3−410%Wの/またはそれ以上の第g族からの金属
を含むことからなる前記選択的水素化方法。 (2)第7および第2段階の触媒が両方共、第g族金属
としてニッケルを含む特許請求の範囲第1項記載の方法
。 (3)第1および第2段階の触媒が両方共、支持体とし
てシリカ含量が0−6%Wのアルミナを含む特許請求の
範囲第1または2項記載の方法。 (4)第1段階の触媒が/ −11MPaの体積圧潰強
度を有する特許請求の範囲第1ないし3項のいずれか記
載の方法。 (5)第1段階の触媒が、最も小さい寸法が2−30m
mである粒子からなる特許請求の範囲第1ないしt項の
いずれか記載の方法。 (6)該粒子が球状である特許請求の範囲第S項記載の
方法。 (7)  第1および第2段階の触媒の両方を単一の反
応域中に交互に置く特許請求の範囲第1ないし6項のい
ずれか記載の方法。 (8)  両方の段階において、温度が30−300°
Cの範囲、全圧が10−100絶対ノ(−ルの範囲、水
素分圧が3−g0絶対バールの範囲、水素供給率が供給
原料kgあたり!;0−7000 N+の範囲、そして
空間速度か毎時触媒1あたり供給原料0/−10kgの
範囲である特許請求の範囲第1ないし7項のいずれか記
載の方法。
[Claims] (]) A process for the selective hydrogenation of dienes in pyrolysis gasoline, in which the pyrolysis gasoline is reacted with hydrogen in the presence of a supported catalyst at elevated temperature and pressure in two successive stages. The first stage catalyst is /-5 based on the entire catalyst.
%W of metals from Group G of the Periodic Table of the Elements, and the second stage catalyst contains 3-410%W of metals from Group G, based on the total catalyst. The selective hydrogenation method comprising: 2. The method of claim 1, wherein both the seventh and second stage catalysts contain nickel as the Group G metal. 3. A process as claimed in claim 1 or 2, in which both the first and second stage catalysts contain alumina with a silica content of 0-6% W as support. (4) The method according to any one of claims 1 to 3, wherein the first stage catalyst has a volumetric crushing strength of /-11 MPa. (5) The smallest dimension of the first stage catalyst is 2-30m
The method according to any one of claims 1 to t, comprising particles of m. (6) The method according to claim S, wherein the particles are spherical. (7) A process according to any one of claims 1 to 6, in which both the first and second stage catalysts are placed alternately in a single reaction zone. (8) In both stages, the temperature is 30-300°
C range, total pressure in the range 10-100 absolute bar, hydrogen partial pressure in the range 3-g0 bar absolute, hydrogen feed rate in the range 0-7000 N+ per kg feedstock, and space velocity in the range 0-7000 N+. 8. A process according to any one of claims 1 to 7, wherein the range is 0/-10 kg of feedstock per catalyst per hour.
JP58219632A 1982-11-26 1983-11-24 A method for selective hydrogenation of dienes in pyrolysis gasoline. Expired - Lifetime JPH0631331B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB08233746A GB2131043B (en) 1982-11-26 1982-11-26 Selective hydrogenation of dienes in pyrolysis gasoline
GB8233746 1982-11-26

Publications (2)

Publication Number Publication Date
JPS59105083A true JPS59105083A (en) 1984-06-18
JPH0631331B2 JPH0631331B2 (en) 1994-04-27

Family

ID=10534541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219632A Expired - Lifetime JPH0631331B2 (en) 1982-11-26 1983-11-24 A method for selective hydrogenation of dienes in pyrolysis gasoline.

Country Status (11)

Country Link
JP (1) JPH0631331B2 (en)
KR (1) KR910004883B1 (en)
AU (1) AU559246B2 (en)
BE (1) BE898299A (en)
CA (1) CA1216311A (en)
DE (1) DE3342521A1 (en)
FR (1) FR2536759B1 (en)
GB (1) GB2131043B (en)
IT (1) IT1168974B (en)
NL (1) NL8303740A (en)
ZA (1) ZA838762B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19608241A1 (en) * 1996-03-04 1997-09-18 Basf Ag Process for the selective hydrogenation of dienes
US7153807B2 (en) 2003-03-04 2006-12-26 Exxon Mobil Chemical Patents Inc. Catalysts for selective hydrogenation of alkynes and alkadienes
US7038097B2 (en) * 2003-03-04 2006-05-02 Exxonmobil Chemical Patents Inc. Dual bed process using two different catalysts for selective hydrogenation of acetylene and dienes
CN101081998B (en) * 2006-05-31 2010-05-12 中国石油化工股份有限公司 Hydrogenation method for C4 distillation cut
CN102803443B (en) 2009-06-11 2015-02-11 国际壳牌研究有限公司 A process for the selective hydrogenation and hydrodesulferization of a pyrolysis gasoline feedstock
CN112691671A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 Nickel catalyst and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458708A (en) * 1977-10-19 1979-05-11 Lummus Co Hydrogenation treatment of heat decomposed gasoline

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB942493A (en) * 1961-05-10 1963-11-20 British Petroleum Co Improvements relating to the hydrogenation of petroleum hydrocarbons
US3388056A (en) * 1966-08-19 1968-06-11 Exxon Research Engineering Co Process for the hydrogenation of steam cracked naphtha
NL161807C (en) * 1969-03-03 1980-08-15 Shell Int Research PROCESS FOR THE EXTRACTION OF AROMATIC HYDROCARBONS FROM PYROLYSIS PETROL.
GB1346778A (en) * 1971-02-11 1974-02-13 British Petroleum Co Selective hydrogenation of gasolines
GB1380962A (en) * 1972-01-19 1975-01-22 British Petroleum Co Selective hydrogenation of unsaturated gasolines
FR2410038A1 (en) * 1977-11-29 1979-06-22 Inst Francais Du Petrole SELECTIVE HYDROGENATION PROCESS OF GASOLINES CONTAINING BOTH GUM-GENERATING COMPOUNDS AND UNDESIRABLE SULFUR COMPOUNDS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458708A (en) * 1977-10-19 1979-05-11 Lummus Co Hydrogenation treatment of heat decomposed gasoline

Also Published As

Publication number Publication date
IT1168974B (en) 1987-05-20
FR2536759B1 (en) 1990-02-09
ZA838762B (en) 1984-07-25
CA1216311A (en) 1987-01-06
KR840007433A (en) 1984-12-07
NL8303740A (en) 1984-06-18
AU2165383A (en) 1984-05-31
IT8323879A0 (en) 1983-11-24
JPH0631331B2 (en) 1994-04-27
DE3342521A1 (en) 1984-05-30
KR910004883B1 (en) 1991-07-15
FR2536759A1 (en) 1984-06-01
GB2131043A (en) 1984-06-13
BE898299A (en) 1984-05-24
AU559246B2 (en) 1987-03-05
GB2131043B (en) 1986-09-10

Similar Documents

Publication Publication Date Title
JP4181876B2 (en) Fischer-Tropsch wax reforming process using split feed hydrocracking / hydrotreating
JP3522797B2 (en) Method for producing hydrocarbon fuel
AU746447B2 (en) Fischer-tropsch processes and catalysts using fluorided supports
EP0127220B1 (en) Catalyst preparation
KR101439574B1 (en) Multi-zone process for the production of xylene compounds
JP5462789B2 (en) Multi-zone process for the production of diesel fuel and aromatic compounds
US4693991A (en) Hydrotreating catalyst composition
US2587987A (en) Selective hydrodesulfurization process
JP2000516664A (en) A method for high olefin yield from heavy feeds
EP0174696B1 (en) Process for the preparation of hydrocarbons
EP0159759B1 (en) Process for the preparation of hydrocarbons
CN101016479B (en) Method of selective hydrogenation using a catalyst with controlled porosity
EP1511825A1 (en) A process for the hydroprocessing of heavy hydrocarbon feeds using at least two reactors
US20080146855A1 (en) Selective Hydrogenation Process Using Layered Catalyst Composition
US4686238A (en) Process for the preparation of hydrocarbons
JP2933636B2 (en) Catalyst and method for hydrodealkylation of alkyl aromatic compounds
JPH0321694A (en) Manufacture of hydrocarbons
US3702291A (en) Process for selectively hydrogenating petroleum cuts of the gasoline range in several steps
JPS59105083A (en) Selective hydrogenation for diene in pyrolized gasoline
US3505206A (en) Process for the hydroconversion of hydrocarbons and the regeneration of the fouled catalyst
JPH0633364B2 (en) Method for catalytic hydrorefining of hydrocarbon oil
JPS6027712B2 (en) Hydrocarbon conversion method
CA1090772A (en) Hydrogenation of polycyclic aromatic hydrocarbons and catalyst therefor
JPS60123591A (en) Manufacture of gaseous olefin and monocyclic aromatic hydrocarbon
KR800000355B1 (en) Hydrocarbon conversion catalytic composite