JPS59104482A - Manufacture of rapidly-cooled thin strip of silicon steel excellent in iron loss property - Google Patents

Manufacture of rapidly-cooled thin strip of silicon steel excellent in iron loss property

Info

Publication number
JPS59104482A
JPS59104482A JP57214379A JP21437982A JPS59104482A JP S59104482 A JPS59104482 A JP S59104482A JP 57214379 A JP57214379 A JP 57214379A JP 21437982 A JP21437982 A JP 21437982A JP S59104482 A JPS59104482 A JP S59104482A
Authority
JP
Japan
Prior art keywords
annealing
rapidly
silicon steel
thin strip
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57214379A
Other languages
Japanese (ja)
Inventor
「しし」戸 浩
Hiroshi Shishido
Takahiro Suga
菅 孝宏
Isao Ito
伊藤 庸
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57214379A priority Critical patent/JPS59104482A/en
Publication of JPS59104482A publication Critical patent/JPS59104482A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching

Abstract

PURPOSE:To obtain the titled rapidly-cooled thin strip of silicon steel improved in an iron loss property, by applying the aqueous slurry of an annealing parting agent prepd. by compounding hydrous siliceous mineral powder in Al2O3 powder to the surface of a rapidly-cooled thin strip of silicon steel, coiling the coated strip, and then coil annealing it. CONSTITUTION:Molten steel containing 4.0-8.0wt% Si is rapidly solidified by continuously supplying it onto a cooling body. The aqueous slurry of a mixture prepd. by compounding 5-50% hydrous silicate mineral powder such as serpentine in Al2O3 powder is applied as an annealing parting agent onto the surface of said rapidly-cooled thin strip. Thereafter, the coated strip is dried with heat, coiled and finally finish annealed at 1,100-1,300 deg.C. By this method, the burning of Al2O3 particles is practically eliminated, so that the exfoliation of the annealing parting agent after annealing is facilitated. Consequently, the rapidly-cooled thin strip of silicon steel improved in an iron loss property is obtained.

Description

【発明の詳細な説明】 この発明は、鉄損特性の優れたけい素鋼急冷薄帯の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon steel quenched ribbon having excellent iron loss characteristics.

従来、電力用トランスや配電用柱上トランスあるいは回
転機やランプバラストなどの鉄心素材として・は、軟磁
気特性に優れかつ使い易い点が多いことから、いわゆる
けい素鋼板が過去3/4世紀以上の長きにわたって広く
使用されてきた。
Traditionally, so-called silicon steel sheets have been used as iron core materials for power transformers, power distribution pole transformers, rotating machines, lamp ballasts, etc. for more than three-quarters of a century because they have excellent soft magnetic properties and are easy to use. It has been widely used for a long time.

しかしながらかようなけい素鋼板は、その製造工程がき
わめて複雑なため、近代的技術をもってしてもその製造
はかなり難しく、尖鋭化した技術が必要とされ、加えて
その製造コストは他の鋼種に比べて高《つく不利があっ
た。
However, the manufacturing process for such silicon steel sheets is extremely complicated, so even with modern technology, it is quite difficult to manufacture, requiring sophisticated technology, and in addition, the manufacturing cost is higher than that of other steel types. There was a disadvantage in comparison.

ところで最近、金属溶湯を、円孔状またはスリット状ノ
ズルから、冷却面が高速で更新移動する冷却体たとえば
ローラなどの表面に連続して供給し、急冷凝固させるこ
とにより、金属溶湯から直接に金属薄帯を製造する方法
が開発された。
By the way, recently, molten metal is continuously supplied from a circular hole-shaped or slit-shaped nozzle to the surface of a cooling body, such as a roller, whose cooling surface is updated at high speed, and the molten metal is rapidly solidified. A method for manufacturing ribbons has been developed.

かような急冷薄帯製造法の利用により、従来、脆性が大
きいために冷間圧延が難しく、従って工業的規模での製
造は事実上不可能とされた、Slを4重量%(以下単に
%で示す)程度以上含有する高けい素鋼についても、容
易に薄帯とすることができるようになり、現在ではS1
含有量6.5%を中心とする高けい素鋼電磁薄帯が実際
に製造されている。しかもこの製造法では、繁雑な圧延
工程をすべて省略できるので、製造に要するエネルギー
および製造コストを大幅に低減できる大きな利点がある
By using such a quenched ribbon manufacturing method, 4% by weight of Sl (hereinafter simply referred to as % High-silicon steel containing more than a certain degree (shown by ) can now be easily made into ribbon, and currently
High-silicon steel electromagnetic ribbons with a content of 6.5% are actually manufactured. Moreover, this manufacturing method has the great advantage of being able to significantly reduce the energy required for manufacturing and the manufacturing cost, since all complicated rolling steps can be omitted.

かくして得られたけい素鋼急冷薄帯は、急冷したままの
状態でも使用することができるけれども、用途によって
は磁気特性がまた十分とはいい難い場合があり、このよ
うなときには通常1100〜1350℃程度の温度範囲
において焼鈍処理を施すことによって磁気特性の改善が
図られる。
Although the silicon steel ribbon thus obtained can be used in the quenched state, the magnetic properties may not be sufficient depending on the application, and in such cases it is usually heated at 1100 to 1350°C. Magnetic properties can be improved by performing annealing treatment in a temperature range of about 100%.

この焼鈍処理は具体的には、急冷凝固後の薄帯表面に、
焼鈍分離剤を塗布してコイルに巻取ったのち、バッチ炉
などによって高温での仕上焼鈍を行うしくみとされる。
Specifically, this annealing treatment is performed on the surface of the ribbon after rapid solidification.
After applying an annealing separator and winding it into a coil, it is finished annealed at a high temperature in a batch furnace or the like.

かような高温での仕上焼鈍は、表面エネルギーを主な粒
界駆動力として三次再結晶を起させるものであり、三次
再結晶焼鈍完了後、直ちに冷却し分離剤を除去して、製
品板としてもよいし、用途によってはさらに絶縁被膜を
被成する場合もある。
Finish annealing at such high temperatures causes tertiary recrystallization using surface energy as the main grain boundary driving force, and after the completion of tertiary recrystallization annealing, it is immediately cooled, the separating agent is removed, and the product sheet is processed. However, depending on the application, an insulating film may be further formed.

ところで上記した如き焼鈍分離剤としては、従来主に酸
化アルミニウム粉末が用いられてきた。
By the way, aluminum oxide powder has conventionally been mainly used as the annealing separator as described above.

この酸化アルミニウム粉末は、1000℃程度の温度で
焼鈍を施す場合の分離剤としては優れたものであるが、
この発明で対象とするような1850℃にも及ぶ高温で
の焼鈍においては、酸化アルミニウム粒子が鋼板表面に
焼付いてしまい、その後の分離剤除去工程においても満
足のいく程度に除去することができない場合が多かった
。そしてこの焼付き現象を詳しく調べてみると、鋼板表
面に酸化アルミニウム粒子がめり込んでいる場合がしば
しば観餠された。かような焼付きが生じる理由について
はまだ明確には解明されていないが、後で詳述するよう
に、酸化アルミニウムは不活性で熱伝導性が悪いことか
ら膨張や収縮を起こすことがないために、コイル層間で
の雰囲気の流通が十分にはできないためと考えられる。
This aluminum oxide powder is excellent as a separating agent when annealing is performed at a temperature of about 1000°C, but
During annealing at temperatures as high as 1850°C, which is the subject of this invention, aluminum oxide particles are baked onto the surface of the steel sheet and cannot be removed to a satisfactory extent in the subsequent separation agent removal process. There were many. When we investigated this seizure phenomenon in detail, we often found that aluminum oxide particles were embedded in the surface of the steel sheet. The reason why such seizure occurs has not yet been clearly elucidated, but as will be explained in detail later, aluminum oxide is inert and has poor thermal conductivity, so it does not expand or contract. This is thought to be because the atmosphere cannot be sufficiently circulated between the coil layers.

このような焼付きによって鋼板表面に微粒子が残留する
ことは、鋼板の磁気特性を著しく劣化させるだけでな・
く、その後に絶縁被膜を被成させる場合には、大きな阻
害要因になっていたのである。
The residual fine particles on the surface of the steel sheet due to such seizure not only significantly deteriorate the magnetic properties of the steel sheet.
This was a major impediment to the subsequent formation of an insulating film.

この発明は、上記の問題を有利に解決するもので、けい
素鋼急冷薄帯の高温での最終仕上焼鈍時における焼鈍分
離剤として、酸化アルミニウム粉末中に結晶水を含むけ
い酸塩鉱石粉末を適量添加配合したものを用いることに
よって、焼鈍時における酸化アルミニウム粒子の焼付き
が効果的に防止できると同時に、分離剤のはく離除去を
きわめて容易に行うことができ、ひいては磁気特性の改
善にも役立つとの新規知見に立脚する。
The present invention advantageously solves the above problems by using silicate ore powder containing water of crystallization in aluminum oxide powder as an annealing separator during final annealing of silicon steel quenched ribbon at high temperatures. By adding and blending the appropriate amount, it is possible to effectively prevent seizure of aluminum oxide particles during annealing, and at the same time, it is extremely easy to peel off and remove the separating agent, which in turn helps improve magnetic properties. Based on new knowledge.

すなわちこの発明は、Si : 4.0〜8.0%を含
有する溶鋼を、冷却面が高速で更新移動する冷却体上に
連続して供給し、急冷凝固させて薄帯化したのち、得ら
れた急冷薄帯の表面に、焼鈍分離剤として酸化アルミニ
ウム粉末中に含水げい酸塩鉱物の粉末を5〜50%の範
囲で添加配合した混合物の水スラリーを塗布し、ついで
加熱乾燥してからコイルに巻取ったのち、1100〜1
350℃の温度範囲で最終仕上焼鈍を施すことを特徴と
する特許 たけい素鋼急冷薄帯の製造方法である。
That is, this invention continuously supplies molten steel containing 4.0 to 8.0% Si onto a cooling body whose cooling surface is updated and moves at high speed, rapidly solidifies it into a thin ribbon, and then A water slurry of a mixture of aluminum oxide powder and hydrated silicate mineral powder added in a range of 5 to 50% as an annealing separator is applied to the surface of the quenched ribbon, and then heated and dried. After winding it into a coil,
This is a patented method for producing rapidly solidified silicon steel ribbon, which is characterized by final annealing in a temperature range of 350°C.

この発明において焼鈍分離剤の構成成分である含水けい
酸塩鉱物としては、蛇紋岩、滑石、ベントナイト、カオ
リン、酸性白土および活性白土などが有利に適合し、そ
の粒径は酸化アルミニウム粉末も含めて1〜10μm程
度が好適である。
In this invention, serpentinite, talc, bentonite, kaolin, acid clay, activated clay, and the like are advantageously suitable as the hydrous silicate minerals that are the constituent components of the annealing separator, and their particle sizes include aluminum oxide powder. Approximately 1 to 10 μm is suitable.

以下この発明を具体的に説明する。This invention will be specifically explained below.

まずこの発明では、Slを4.0〜8.0%の範囲で含
有させるが、これはSi含有童が4.0%未満であると
所期した磁気特性が得られず、一方8.0%を超えると
磁束密度の低下が著しいからである。
First, in this invention, Sl is contained in a range of 4.0 to 8.0%, but if the Si content is less than 4.0%, the desired magnetic properties cannot be obtained; %, the magnetic flux density decreases significantly.

またこの発明では、上記したSlの他、磁気特性改善威
容として、Mn 、 CoおよびN1、さらには粒成長
抑制成分として、S 、 Se r Te 、 Sb 
Further, in this invention, in addition to the above-mentioned Sl, Mn, Co, and N1 are added to improve magnetic properties, and S, SerTe, and Sb are added as grain growth suppressing components.
.

Sn 、 As 、 Mo 、 Ta r Ti 、 
Zr 、 V 、 NbおよびAI?などを少量含有さ
せることができる。
Sn, As, Mo, TarTi,
Zr, V, Nb and AI? etc. can be contained in small amounts.

さて所定の成分組成に調整した溶鋼を、急冷凝固させて
薄帯化するが、この薄帯化に当っては、単、ロール法、
双ロール法および回転ドラム法など従来公知の方法いず
れもが使用でき、厚−ll.50〜500μ−rnm度
の急冷薄帯とする。
Now, the molten steel adjusted to a predetermined composition is rapidly solidified to form a thin ribbon.
Any conventionally known method such as the twin roll method or the rotating drum method can be used, and thickness -ll. It is made into a quenched ribbon at a temperature of 50 to 500 μ-rnm.

ついで磁気特性改善のため高温仕上焼鈍を施すが、この
ときの焼鈍分離剤として、酸化アルミニウム粉末中に前
掲した含水けい酸塩鉱物の粉末を5〜50%添加配合し
た混合物を水スラリーにして用いるわけである。
Next, high-temperature finishing annealing is performed to improve the magnetic properties, and as an annealing separation agent at this time, a water slurry of a mixture of 5 to 50% of the above-mentioned hydrated silicate mineral powder added to aluminum oxide powder is used. That's why.

かような配合比になる焼鈍分離剤を用いることにより、
その後に1100〜1350℃もの高温で仕上焼鈍を行
ったとしても、酸化アルミニウム粒子の焼伺きはほぼ皆
無にすることができ、また焼鈍後のはく離除去も極めて
容易となるのであるが、その理由は次のように考えられ
る。
By using an annealing separator with such a mixing ratio,
Even if finish annealing is then performed at a high temperature of 1,100 to 1,350°C, there will be almost no burn-through of the aluminum oxide particles, and it is also extremely easy to remove flakes after annealing.The reason for this is that can be considered as follows.

すなわち焼鈍時における昇温中、400℃前後で含水け
い酸塩鉱物粉末中の水分は蒸発し始め、さらに高温にな
ると完全になくなってしまう。従ってコイル層間には間
隙が生じてコイル層間での雰囲気の流通が良くなる。す
ると鋼板表面が活性化する結果、酸化アルミニウム粉末
の焼付きは生じなくなる。
That is, during the temperature rise during annealing, the water in the hydrated silicate mineral powder begins to evaporate at around 400°C, and completely disappears when the temperature rises further. Therefore, gaps are created between the coil layers, which improves the circulation of atmosphere between the coil layers. As a result, the surface of the steel plate is activated, and the aluminum oxide powder no longer seizes.

しかしながら焼鈍分離剤中に占める含水けい酸塩鉱物粉
末の割合が、5%未満では仕上焼鈍時におけるコイル層
間間隙の形成が小さくて十分な雰囲気の流通が達成でき
ず、一方50%を超えて配合しても雰囲気の流通性がさ
ほど良好になるわけでもなくむしろ不経済となる。従っ
て含水けい酸塩鉱物粉末の配合量は5〜507oの範囲
とした。
However, if the proportion of hydrated silicate mineral powder in the annealing separator is less than 5%, the formation of gaps between the coil layers during final annealing is small and sufficient atmosphere circulation cannot be achieved; However, the circulation of the atmosphere will not be so good, and it will be rather uneconomical. Therefore, the blending amount of the water-containing silicate mineral powder was set in the range of 5 to 507°.

また仕上焼鈍温度が1100℃未満では三次再結晶を完
了させるのに長時間を要する不利があり、一方1850
℃を超えると鋼板の表面軟化が著しく甚しい場合には表
層が溶融するおそれかあ−るほか、装置にも無理を強い
るので、仕上焼鈍温度は1100〜1〜850℃の範囲
とした。
Furthermore, if the final annealing temperature is less than 1100°C, there is a disadvantage that it takes a long time to complete the tertiary recrystallization;
If the temperature exceeds .degree. C., there is a risk that the surface layer will melt if the surface softening of the steel sheet is severe, and it will also put stress on the equipment, so the final annealing temperature was set in the range of 1100 to 1 to 850.degree.

以下この発明の実施例について説明する。Examples of the present invention will be described below.

実施例 1〜2 Si : 6.5%を含有し残部実質的にFeの組成に
溶製した溶鋼を、双ロール法によって薄帯化し、板幅4
50mm、板厚11Oμmのけい素鋼急冷薄帯を作成し
た。この薄帯の表面は滑らかで金属光沢を呈していた。
Examples 1 to 2 Molten steel containing 6.5% Si and the remainder substantially Fe was formed into a thin strip by a twin roll method, and a strip having a width of 4
A silicon steel ribbon having a thickness of 50 mm and a thickness of 110 μm was prepared. The surface of this ribbon was smooth and had a metallic luster.

次にこの薄帯の表面に、焼鈍分離剤として、酸化アルミ
ニウム粉末(Ag2O3)のみ、酸化アルミニウム粉末
+20%蛇紋岩粉末(Ae2o8+ 20%3Mg0−
28iO□−2H20)および酸化アルミニウム粉末+
30%活性白土粉末(Ae208+80%Ag2s1.
o□o(oH’)2− llH2O)の三種をそれぞれ
水スラリーとしたものを塗布し、ついで加熱乾燥したの
ちコイルに巻取ってから、箱型焼鈍炉に入れて1150
℃、3時間の最終仕上焼鈍を施した。
Next, on the surface of this ribbon, aluminum oxide powder (Ag2O3) only, aluminum oxide powder + 20% serpentine powder (Ae2o8 + 20% 3Mg0-
28iO□-2H20) and aluminum oxide powder +
30% activated clay powder (Ae208+80%Ag2s1.
A water slurry of each of the three types o□o(oH')2-llH2O) was applied, then heated and dried, wound into a coil, and then placed in a box-type annealing furnace at 1150
A final annealing was performed at ℃ for 3 hours.

その後分離剤をはく離除去したが、この分離剤除去は容
易に行うことができ、Ag2O3の焼付けはほとんど生
じてなかった。
Thereafter, the separating agent was peeled off and removed, but this separating agent removal could be easily carried out and almost no burning of Ag2O3 occurred.

表1に得られた各げい素鋼薄帯の、1mm2当りの焼付
きAe203個数および鉄損特性W1%0について調べ
た結果を衣lにまとめて示す。
Table 1 summarizes the results of investigating the number of seizing Ae203 per 1 mm2 and iron loss characteristic W1%0 of each silicon steel ribbon obtained in Table 1.

表1 表1から明らかなように、この発明に従い得られたけい
素鋼薄帯は、従来’l mm2当り22個もあった焼付
きAe208粒子の個数を、1個以下に低減でき、しか
も鉄損特性が格段に向上する。
Table 1 As is clear from Table 1, the silicon steel ribbon obtained according to the present invention can reduce the number of seizing Ae208 particles, which was 22 per 1 mm2, to 1 or less, and moreover, Loss characteristics are significantly improved.

実施例 3〜4 Si : 6.7%、Mn : 0.5%を含有し残部
実質的にFeの組成に溶製lまた溶鋼を、双ロール法に
よって薄帯化し、板幅soOmm、板厚180μ77L
Iの高ゆい素鋼急冷薄帯を作成した。次にこの薄帯の表
面に焼鈍分離剤として、Ag2O3中に滑石(Mg a
 S 140’、。(OH)2)およびベントナイト粉
末をそれぞれ30%づつ添加して水スラリーとしたもの
を、単位面積1 m2当り15pの割合で塗布し、つい
で加熱乾燥したのちコイルに巻取ってから、箱焼鈍炉に
おいて1150℃、3時間の最終仕上焼鈍を施した。
Examples 3 to 4 Molten steel containing Si: 6.7%, Mn: 0.5% and the remainder substantially having a composition of Fe was formed into a thin strip by a twin roll method, and the plate width was soOmm and the plate thickness was 180μ77L
A quenched ribbon of high-yield steel of I was prepared. Next, on the surface of this ribbon, talc (Mga
S 140'. A water slurry made by adding (OH)2) and bentonite powder at 30% each was applied at a rate of 15p per unit area of 1 m2, then heated and dried, wound into a coil, and then placed in a box annealing furnace. Final annealing was performed at 1150°C for 3 hours.

その後の分離剤のはく離除去は容易に行うことができ、
得られた各薄帯の−1m1rL”当りのAe203粒子
の焼付き個数および鉄損特性W1815oは、表2に示
したとおりであった。
The subsequent peeling and removal of the separating agent can be easily carried out.
The number of Ae203 particles seized per -1mlrL'' and the iron loss characteristic W1815o of each of the obtained ribbons were as shown in Table 2.

表2 この発明に従う焼鈍分離剤を用いて得られたけい素鋼薄
帯とくに実施例8は、All!208粒子の焼付きが皆
無であり、その鉄損値は前掲衣1の従来例と比較して明
らかなように約翅近くまで低減できた。
Table 2 The silicon steel ribbons obtained using the annealing separator according to the present invention, especially in Example 8, are shown in All! There was no seizure of the 208 particles, and the iron loss value was clearly reduced to approximately that of a wing compared to the conventional example of Clothe 1 mentioned above.

以上述べたようにこの発明によれば、けい素鋼急冷薄帯
の高温での仕上焼鈍において、従来不可避とされた焼鈍
分離斉め焼付きをほぼ完全に防止でき、ひいては鉄損特
性の向上に役立つ。
As described above, according to the present invention, it is possible to almost completely prevent the annealing separation and simultaneous seizure, which was considered unavoidable in the past, during finish annealing of rapidly solidified silicon steel ribbon at high temperatures, and it is also possible to improve iron loss characteristics. Helpful.

Claims (1)

【特許請求の範囲】 LSi:4.0〜8.0重量%を含有する溶鋼を、冷却
面が高速で更新移動する冷却体上に連続して供゛給し、
急冷凝固させて薄帯化したのち、得られた急冷動帯の表
面に、焼鈍分離剤として、酸化アルミニウム粉末中に含
水けい酸塩鉱物の粉末を5〜50重量%の範囲で添加配
合した混合物の水スラリーを塗布し、ついで加熱乾燥し
てからコイルに巻取ったのち、1100〜1350℃の
温度範囲で最終仕上焼鈍を施すことを特徴とする特許 たけい素鋼急冷薄帯の製造方法。
[Claims] Molten steel containing LSi: 4.0 to 8.0% by weight is continuously supplied onto a cooling body whose cooling surface is updated and moved at high speed,
A mixture of aluminum oxide powder and hydrated silicate mineral powder added in an amount of 5 to 50% by weight as an annealing separator is added to the surface of the obtained quenched dynamic zone after quenching and solidifying it into a thin ribbon. A method for manufacturing a patented silicon steel quenched ribbon, characterized by applying a water slurry of 1,000 to 1,000 ℃, followed by heating and drying, winding into a coil, and final annealing in a temperature range of 1,100 to 1,350°C.
JP57214379A 1982-12-07 1982-12-07 Manufacture of rapidly-cooled thin strip of silicon steel excellent in iron loss property Pending JPS59104482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214379A JPS59104482A (en) 1982-12-07 1982-12-07 Manufacture of rapidly-cooled thin strip of silicon steel excellent in iron loss property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214379A JPS59104482A (en) 1982-12-07 1982-12-07 Manufacture of rapidly-cooled thin strip of silicon steel excellent in iron loss property

Publications (1)

Publication Number Publication Date
JPS59104482A true JPS59104482A (en) 1984-06-16

Family

ID=16654806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214379A Pending JPS59104482A (en) 1982-12-07 1982-12-07 Manufacture of rapidly-cooled thin strip of silicon steel excellent in iron loss property

Country Status (1)

Country Link
JP (1) JPS59104482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201806A (en) * 2013-04-08 2014-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589423A (en) * 1978-12-27 1980-07-07 Kawasaki Steel Corp Preparation of directional silicon steel plate without undercoating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589423A (en) * 1978-12-27 1980-07-07 Kawasaki Steel Corp Preparation of directional silicon steel plate without undercoating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201806A (en) * 2013-04-08 2014-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US10648083B2 (en) Pre-coating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet comprising same, and manufacturing method therefor
US3562011A (en) Insulating coating comprising an aqueous mixture of the reaction product of chromium nitrate and sodium chromate,phosphoric acid and colloidal silica and method of making the same
US4875947A (en) Method for producing grain-oriented electrical steel sheet having metallic luster and excellent punching property
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS59104482A (en) Manufacture of rapidly-cooled thin strip of silicon steel excellent in iron loss property
JP3276567B2 (en) Insulating coating agent having excellent coating characteristics and method for producing grain-oriented electrical steel sheet using the same
JPH07180064A (en) Production of grain-oriented silicon steel sheet excellent in film property and insulating film treating agent therfor
KR102009391B1 (en) Oriented electrical steel sheet formed insulation coating and forming method of insulation coating for oriented electrical steel sheet
JP4569281B2 (en) Annealing separator for grain-oriented electrical steel sheet, method for annealing grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
JPH0483823A (en) Production of grain-oriented silicon steel sheet excellent in magnetic flux density
EP1698706A1 (en) Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet
US1873659A (en) Process of treating silicon steel
JP3885257B2 (en) Method for producing grain-oriented electrical steel sheet
JPS5974222A (en) Production of non-directional electrical steel sheet having excellent electromagnetic characteristic
JPS58107417A (en) Method of making unidirectional silicon steel sheet excellent in iron loss
JP2895645B2 (en) Method of forming insulating coating on grain-oriented silicon steel sheet
KR20010048860A (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film
JP2757719B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and surface properties
JPS631372B2 (en)
JPS613839A (en) Manufacture of cold rolled nonoriented electromagnetic steel sheet
JPH08269560A (en) Production of grain-oriented silicon steel sheet without glass film and excellent in iron loss
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS5938327A (en) Manufacture of thin high-silicon steel strip having superior magnetic characteristic
JPH02107783A (en) Production of grain-oriented electrical steel sheet having superior suitability for blanking, superior magnetic characteristic and metallic luster
JPS5928559A (en) Quenched high silicon steel thin strip excellent in magnetic characteristics