JPS5910421B2 - Rare earth cobalt permanent magnet alloy - Google Patents

Rare earth cobalt permanent magnet alloy

Info

Publication number
JPS5910421B2
JPS5910421B2 JP51076175A JP7617576A JPS5910421B2 JP S5910421 B2 JPS5910421 B2 JP S5910421B2 JP 51076175 A JP51076175 A JP 51076175A JP 7617576 A JP7617576 A JP 7617576A JP S5910421 B2 JPS5910421 B2 JP S5910421B2
Authority
JP
Japan
Prior art keywords
permanent magnet
less
rare earth
component
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51076175A
Other languages
Japanese (ja)
Other versions
JPS531625A (en
Inventor
伸夫 今泉
和夫 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP51076175A priority Critical patent/JPS5910421B2/en
Publication of JPS531625A publication Critical patent/JPS531625A/en
Publication of JPS5910421B2 publication Critical patent/JPS5910421B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は希土類金属(R=5m、Yの混合物)と3d遷
移金属(T=C0、Fe、Cuの混合物)から構成され
るR2T17系金属間化合物を主成分とする永久磁石合
金において、実用最小限の保磁力を維持させながら構成
物質中の非磁性Cu成分を、従来の上記構成物からなる
永久磁石合金よりも減することによつて、高残留磁束密
度を保有せしめることを特徴とした永久磁石合金に関す
るものである。
Detailed Description of the Invention The present invention is based on an R2T17 intermetallic compound composed of a rare earth metal (a mixture of R=5m and Y) and a 3d transition metal (a mixture of T=C0, Fe, and Cu). A permanent magnet alloy has a high residual magnetic flux density by reducing the non-magnetic Cu component in the constituent materials compared to conventional permanent magnet alloys made of the above components while maintaining the minimum practical coercive force. The present invention relates to a permanent magnet alloy characterized by the following characteristics:

従来よl!)RCo6及びR2C017系金属間化合物
の中間物において、Co成分またはCo、Feの複合成
分を部分的にCuで置換したR(C0、Fe、Cu)z
(Z=5.0〜8.5)の組成物がすぐれた永久磁石材
料となることは知られている。
Conventional! ) In intermediates of RCo6 and R2C017-based intermetallic compounds, R(C0, Fe, Cu)z in which the Co component or the composite component of Co and Fe is partially replaced with Cu.
It is known that a composition of (Z=5.0 to 8.5) is an excellent permanent magnet material.

そこで本発明者等は上記組成合金をその後調査した結果
、Cu成分が原子比率で10.5%未満の低Cu濃度組
成合金においても保磁力の減少は伴なうが、実用上充分
な保磁力の範囲内(3〜5に0e)で残留磁束密度の増
加に寄与することを見い出した。従来より永久磁石の応
用例において、永久磁石単体で使用されることは比較的
少なく、通常は磁石本体と電磁軟鉄等を使用した継鉄と
によつて磁気回路を構成し、永久磁石の発生する磁束を
有効に利用する方式が採られている。
Therefore, the present inventors subsequently investigated the above-mentioned composition alloys and found that even in low Cu concentration composition alloys in which the Cu component is less than 10.5% in atomic ratio, the coercive force is still sufficient for practical use, although the coercive force is reduced. It has been found that within the range of 3 to 5 (0e) contributes to an increase in residual magnetic flux density. Traditionally, in applications of permanent magnets, permanent magnets are rarely used alone; usually, a magnetic circuit is constructed of the magnet body and a yoke made of electromagnetic soft iron, etc., and the permanent magnet is generated. A method is adopted that makes effective use of magnetic flux.

この場合、永久磁石単体による自己減磁は緩和されるた
め、実際の応用分野では目的に応じた磁気回路を構成す
ることで磁石本体の保有する保磁力を補つている。希土
類コバルト系永久磁石は開発当初より高保磁力磁石とし
て発展し現在に至つているが、応用面。から推察したと
き必要以上に高い保磁性があるため組込み後の着磁が困
難となサ、アルニコ系磁石の残留磁束密度(12〜13
KG)と比較したとき20〜30%低い値しか得られな
い。このため応用分野に限界が予想される。本発明者等
は上述せる希土類コバルト系永久磁石合金の限界に対し
、先にSmより高い飽和磁束密度を示すYによV)Sm
の一部を置換し磁束密度の増大化を得た(特願昭51−
27797号)。
In this case, the self-demagnetization caused by a single permanent magnet is alleviated, so in actual application fields, the coercive force of the magnet body is supplemented by configuring a magnetic circuit according to the purpose. Rare-earth cobalt-based permanent magnets have developed as high coercive force magnets since their initial development and have continued to this day, but they have limited application. It is estimated from the above that the residual magnetic flux density of alnico magnets (12 to 13
KG), only 20-30% lower values are obtained. For this reason, limitations are expected in the field of application. The present inventors solved the above-mentioned limitations of rare earth cobalt-based permanent magnet alloys by first using Y, which has a higher saturation magnetic flux density than Sm.
By replacing a part of the magnetic flux density, an increase in magnetic flux density was obtained.
No. 27797).

しかし、該特許出願にかかる発明の要旨は高い磁束密度
と同時に高エネルギー積をも保有させることに依存して
おわ、実際の応用分野における磁石動作点(パーミアン
ス係数)から考慮したとき5に0e以上の保磁力を誘起
させるため、保磁力増加に寄与する性質を示すCu成分
の10.5原子%以上の含有量が必要であつた。しかし
実用上の磁石動作点(例えば小型精密モーターではパー
ミアンス係数−B/H=2〜4)から考慮すれば3〜5
に0eの保磁力が確保されていれば自己減磁に対して充
分保護される。本発明の要旨は上述の理由から3〜5K
0eの保磁力を確保しつつ、よ)高い磁束密度を発生さ
せるべく構成物質中のCu成分を必要最小限まで減じ、
残留磁束密度の向上化を達成することにあり、各構成物
の許容範囲が原子比率でY:0.2〜5.0f)未満、
Sm:6.7〜12.2%未満、Fe:0.4〜12.
4%未満、Cu:8.0〜10.5%未満、CO:64
.8〜80.0%未満の範囲内の組成分量であるとき本
発明を最も効果的に実現化できる。
However, the gist of the invention according to the patent application depends on having a high energy product at the same time as a high magnetic flux density, and when considered from the magnet operating point (permeance coefficient) in the actual application field, In order to induce the above coercive force, a content of 10.5 atomic % or more of the Cu component, which exhibits properties contributing to an increase in coercive force, was required. However, considering the practical magnet operating point (for example, in a small precision motor, the permeance coefficient -B/H = 2 to 4), it is 3 to 5.
If a coercive force of 0e is ensured, sufficient protection is provided against self-demagnetization. The gist of the present invention is 3 to 5K for the reasons mentioned above.
In order to generate a high magnetic flux density while ensuring a coercive force of 0e, the Cu component in the constituent materials was reduced to the necessary minimum.
The purpose is to improve the residual magnetic flux density, and the permissible range of each component is less than 0.2 to 5.0 f) in terms of atomic ratio.
Sm: 6.7 to less than 12.2%, Fe: 0.4 to 12.
Less than 4%, Cu: 8.0 to less than 10.5%, CO: 64
.. The present invention can be most effectively realized when the composition amount is within the range of 8 to less than 80.0%.

次に本発明の永久磁石合金の成分限定理由について説明
する。以下の百分率は原子比率を表すものとする。希土
類成分と3d遷移金属成分比はR2T,7系金属間化合
物を形成すべき範囲内(11.7〜12.4(:F6)
でYの飽和磁束密度の向上及びYの過剰包含による保磁
力低下を生じない範囲から決定され、効果的な数値はY
:0.2〜5.0%未満、Sm:6.7〜12.2%未
満と限定される。同様なBr,Hcの関係を示すFe成
分は0.4〜12.4%未満で最も効果的に作用する。
Cu成分は保磁性によシ規制されるが、必要最小限(〜
3K0e)の保磁力を維持する8.0(F6まで減少で
きる。一方10.5f)以上では本発明の意義が損われ
るため10.5%未満の必要がある。残部はCOによつ
て包含される。以上の組成調整によつて保磁力(Hc=
3〜5.5K0e)の保磁力を有し、残留磁束密度Br
を容易に10〜11KGの範囲に増大化できることを見
い出した。
Next, the reason for limiting the components of the permanent magnet alloy of the present invention will be explained. The following percentages shall represent atomic ratios. The rare earth component and 3d transition metal component ratio is within the range that should form an R2T, 7-based intermetallic compound (11.7 to 12.4 (:F6)
The effective value is determined from the range that does not increase the saturation magnetic flux density of Y and decrease the coercive force due to excessive inclusion of Y.
: 0.2 to less than 5.0%, Sm: limited to 6.7 to less than 12.2%. The Fe component, which shows a similar relationship between Br and Hc, works most effectively when it is less than 0.4 to 12.4%.
The Cu component is regulated by coercivity, but it should be kept to the necessary minimum (~
It can be reduced to 8.0 (F6) to maintain the coercive force of 3K0e).On the other hand, if it exceeds 10.5f, the meaning of the present invention is lost, so it needs to be less than 10.5%. The remainder is covered by CO. By adjusting the composition above, coercive force (Hc=
It has a coercive force of 3 to 5.5K0e) and a residual magnetic flux density Br.
It has been found that the weight can be easily increased to a range of 10 to 11 kg.

本発明による永久磁石合金の一般的な製造工程は、各成
分元素を秤量し溶解、粉砕、磁場成形、焼結、溶体化、
焼鈍から構成される。以下、本発明を実施例によつて詳
述する。実施例−1 Sm0.9Y0.1(COO.9−XFeO.lOCu
x)7゜2の組成式でXをパラメーターとし表−1に示
す7種類の合金をAr中でアーク溶解し、水冷銅鋳型中
でインゴツトを作製した。
The general manufacturing process of the permanent magnet alloy according to the present invention includes weighing each component element, melting, crushing, magnetic field forming, sintering, solution treatment,
Consists of annealing. Hereinafter, the present invention will be explained in detail with reference to Examples. Example-1 Sm0.9Y0.1(COO.9-XFeO.lOCu
x) With a compositional formula of 7°2 and X as a parameter, seven types of alloys shown in Table 1 were arc melted in Ar, and ingots were produced in a water-cooled copper mold.

表−1(原子パーセント) このインゴツトを約20μm粒径まで粉砕し、約10K
0eの磁界中で加圧成形した。
Table 1 (atomic percent) This ingot was crushed to a particle size of approximately 20 μm, and
Pressure molding was performed in a magnetic field of 0e.

次に成形体を10−5mmH9程度の真空中で1210
℃、1時間焼結し、平均10℃/秒の割合で室温まで急
冷した。この焼結体に800℃、30分間の再加熱を施
し、室温まで炉冷した。このようにして得た焼結合金の
磁気特性を測定したところ、第1図に示すように保磁力
がX=0.12で最大となシ、X=0.10以下で急速
な減少を示した。一方残留磁化はCu成分にしたがつて
増大し、X=0.09ではBr=11KGであつた。
Next, the molded body was placed in a vacuum of about 10-5 mmH9 at 1210°C.
℃ for 1 hour, and then rapidly cooled to room temperature at an average rate of 10° C./sec. This sintered body was reheated at 800° C. for 30 minutes, and then cooled in a furnace to room temperature. When the magnetic properties of the sintered alloy thus obtained were measured, as shown in Figure 1, the coercive force was maximum at X = 0.12 and rapidly decreased below X = 0.10. Ta. On the other hand, the residual magnetization increased as the Cu content increased, and when X=0.09, Br=11KG.

これら保磁力、残留磁化の兼合いから最大エネルギー積
はX=0.11〜0.12すなわちCu成分が約10%
のとき最大値を示すことがわかつた。実施例−2 Sm:10.9%,Y:1.3f),Fe:8.0%,
Cu:10.0%,CO:69.8%から構成する合金
を実施例−1と同様にしてインゴツトを得た。
From the combination of coercive force and residual magnetization, the maximum energy product is X = 0.11 to 0.12, that is, the Cu component is approximately 10%
It was found that the maximum value was obtained when . Example-2 Sm: 10.9%, Y: 1.3f), Fe: 8.0%,
An ingot was obtained from an alloy consisting of Cu: 10.0% and CO: 69.8% in the same manner as in Example-1.

このインゴツトを約10μm粒径まで粉砕し、実施例−
1と同様の熱処理を施した。この焼結合金の磁気特性を
測定したところ下記の値を得た。以上に詳述したように
本発明の永久磁石合金は成分元素中非磁性成分であるC
uの量を従来組成よりも減することによる高残留磁束密
度を示すR2Tl7系金属間化合物を主体とした永久磁
石合金を提供するものである。
This ingot was crushed to a particle size of approximately 10 μm, and Example-
The same heat treatment as in 1 was performed. When the magnetic properties of this sintered alloy were measured, the following values were obtained. As detailed above, the permanent magnet alloy of the present invention has C as a non-magnetic component among the component elements.
The present invention provides a permanent magnet alloy mainly composed of R2Tl7 intermetallic compounds that exhibits high residual magnetic flux density by reducing the amount of u compared to conventional compositions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSmO.,YO.l(COO.9−XFeO.
lOCux)72のXに対する磁石特性の変化を示し、
第2図は、実施例−2の試料のヒステリシス曲線を示す
Figure 1 shows SmO. ,YO. l(COO.9-XFeO.
1OCux) 72 with respect to X,
FIG. 2 shows the hysteresis curve of the sample of Example-2.

Claims (1)

【特許請求の範囲】[Claims] 1 原子比率で希土類成分(SmとYからなる)11.
7〜12.4%未満、Fe:0.4〜12.4%未満、
Cu:8.0〜10.5%未満、Co:64.8〜80
.0%未満の範囲内の組成分量を有し、希土類成分のう
ちYが、0.2〜5.0%未満、Smが6.7〜12.
2%未満であることを特徴とする永久磁石合金。
1 Rare earth component (consisting of Sm and Y) in atomic ratio 11.
7 to less than 12.4%, Fe: 0.4 to less than 12.4%,
Cu: 8.0 to less than 10.5%, Co: 64.8 to 80
.. It has a composition amount within a range of less than 0%, and among the rare earth components, Y is 0.2 to less than 5.0%, and Sm is 6.7 to 12.0%.
Permanent magnetic alloy characterized in that it contains less than 2%.
JP51076175A 1976-06-28 1976-06-28 Rare earth cobalt permanent magnet alloy Expired JPS5910421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51076175A JPS5910421B2 (en) 1976-06-28 1976-06-28 Rare earth cobalt permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51076175A JPS5910421B2 (en) 1976-06-28 1976-06-28 Rare earth cobalt permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS531625A JPS531625A (en) 1978-01-09
JPS5910421B2 true JPS5910421B2 (en) 1984-03-08

Family

ID=13597751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51076175A Expired JPS5910421B2 (en) 1976-06-28 1976-06-28 Rare earth cobalt permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS5910421B2 (en)

Also Published As

Publication number Publication date
JPS531625A (en) 1978-01-09

Similar Documents

Publication Publication Date Title
JPH0510806B2 (en)
JPH0374012B2 (en)
JPH0510807B2 (en)
JPH0319296B2 (en)
US5589009A (en) RE-Fe-B magnets and manufacturing method for the same
JPH0316761B2 (en)
JP2774372B2 (en) Permanent magnet powder
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPH04268051A (en) R-fe-co-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JPS59132105A (en) Permanent magnet
JPH04268050A (en) R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JPH0146575B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPS609104A (en) Permanent magnet
JPS5910421B2 (en) Rare earth cobalt permanent magnet alloy
JPH0536495B2 (en)
JPH0146574B2 (en)
JPS59219453A (en) Permanent magnet material and its production
JPH0316763B2 (en)
JPS63241142A (en) Ferromagnetic alloy
JPH0536494B2 (en)
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JPH0475303B2 (en)
JPH08181010A (en) Rare earth sintered magnet
JPS5921943B2 (en) Rare earth cobalt permanent magnet alloy