JPS59103921A - Temperature controller of cooling fluid in internal- combustion engine - Google Patents

Temperature controller of cooling fluid in internal- combustion engine

Info

Publication number
JPS59103921A
JPS59103921A JP21359982A JP21359982A JPS59103921A JP S59103921 A JPS59103921 A JP S59103921A JP 21359982 A JP21359982 A JP 21359982A JP 21359982 A JP21359982 A JP 21359982A JP S59103921 A JPS59103921 A JP S59103921A
Authority
JP
Japan
Prior art keywords
thermostat
valve opening
water
diaphragm
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21359982A
Other languages
Japanese (ja)
Other versions
JPS6347886B2 (en
Inventor
Shinichi Nanun
南雲 慎一
Yoshifumi Hase
長谷 好文
Fumio Jitsuzawa
実沢 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21359982A priority Critical patent/JPS59103921A/en
Priority to US06/557,884 priority patent/US4560104A/en
Publication of JPS59103921A publication Critical patent/JPS59103921A/en
Publication of JPS6347886B2 publication Critical patent/JPS6347886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/022Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/06Using intake pressure as actuating fluid

Abstract

PURPOSE:To control a thermostat to set a low temperature of cooling fluid in the range of high speed of an engine, by sensing the delivery pressure of a water pump so as to drive the thermostat in the valve opening direction, when a valve opening temperature of the thermostat is switched ''high'' under a low load while ''low'' under a high load. CONSTITUTION:The shaft 3B of a thermostat 2 supported between a water outlet 16 and an outlet housing 17 is adapted to a control piece 4 mounted on a diaphragm 6, and a valve opening temperature is switched in accordance with a load caused by the intake negative pressure introduced into a negative pressure chamber 7. Further, a diaphragm 18 is secured to the control piece 4, so that the pump delivery pressure is introduced into a water pressure chamber 19 above the diaphragm 18 through passages 21C, 21B, 21A. Accordingly, if an engine comes to be operated in the range of high speed, the pump delivery pressure increases to lower the control piece 4, causing the thermostat 2 to be driven in the valve opening direction.

Description

【発明の詳細な説明】 この発明は、内燃機関の冷却液温度制御装置に関する。[Detailed description of the invention] The present invention relates to a coolant temperature control device for an internal combustion engine.

一般に、自動車用内燃機関等においては、燃費の向上や
HCを低減する排気浄化及び出力向上のために、機関の
冷却液温度を負荷状態に応じて制御し、低負荷時には高
冷却液温度、高負荷時には低冷却液温度に設定されるこ
とが望ましいとされている。
In general, in internal combustion engines for automobiles, the engine coolant temperature is controlled according to the load condition in order to improve fuel efficiency, purify exhaust gas to reduce HC, and increase output. It is said that it is desirable to set the coolant temperature to a low level during load.

従来、この種の冷却液温度制御装置としては、例えば第
1図に示すようなものがある(実開昭54−14272
2号公報参照、)。
Conventionally, as this type of coolant temperature control device, there is, for example, the one shown in Fig.
(See Publication No. 2).

これは、まず機関本体に設けられた機関冷却液通路の一
部であるラジェータ入口通路1の途中に、ワックスタイ
プのサーモスタット2が介装され、冷却液温度に応じて
ラジェータ(図示せず)に流れる冷却液量をコントロー
ルしている。
First, a wax-type thermostat 2 is installed in the middle of a radiator inlet passage 1, which is a part of the engine coolant passage provided in the engine body. Controls the amount of coolant flowing.

そして、上記サーモスタット2の熱応動部材3(特にワ
ークスケース3A内のワックスと一体動するシャン)3
B)に対向するようにして制御片4が設けられる。
Then, the thermally responsive member 3 of the thermostat 2 (particularly the shank that moves integrally with the wax in the works case 3A) 3
A control piece 4 is provided so as to face B).

この制御片4は、サーモスタット2の開弁温度を決定す
る上記シャフト3Bの最大上昇位置を規制するもので、
外股の機関の負荷に応動するダイヤフラム装置5に連動
されて、その規制位置つまυ上記シャフト3Bとの当接
位置が可変となるようになっている。
This control piece 4 regulates the maximum rising position of the shaft 3B that determines the valve opening temperature of the thermostat 2.
Interlocked with a diaphragm device 5 that responds to the load of the outer engine, its regulation position or contact position with the shaft 3B is variable.

上記ダイヤスラム装置5は、上述した制御片4が連結さ
れたダイヤフラム6によシ負圧室7と大気室8とに分割
され、大気室8は開孔9を介して常時大気圧に保持され
る一方、負圧室7には負圧通路10を介して機関の吸入
負圧が導入されるに共にダイヤフラム(リターン)スジ
4Jyグ11が介装される。
The diaphragm device 5 is divided into a negative pressure chamber 7 and an atmospheric chamber 8 by a diaphragm 6 to which the control piece 4 described above is connected, and the atmospheric chamber 8 is constantly maintained at atmospheric pressure through an opening 9. On the other hand, engine suction negative pressure is introduced into the negative pressure chamber 7 through a negative pressure passage 10, and a diaphragm (return) line 4Jy is interposed therein.

尚、上記負圧通路1oの途中には負圧遅延弁12が設け
られる。
Note that a negative pressure delay valve 12 is provided in the middle of the negative pressure passage 1o.

このように桐成されるため、機関の高負荷時には、負圧
室7に導入される吸入負圧が小さいために、ダイヤフラ
ム6がダイヤフラムスプリング11力によシ第1図中下
方に移動され、これと一体の制御片4が丁度第1図に示
したような位置におかれる。この時の制御片4と上述し
fcシシャト3Bとの位置関係は第2図に示すように間
隙(al t−有している。
Because of this configuration, when the engine is under high load, the suction negative pressure introduced into the negative pressure chamber 7 is small, so the diaphragm 6 is moved downward in FIG. 1 by the force of the diaphragm spring 11. A control piece 4 integrated therewith is placed in a position exactly as shown in FIG. At this time, the positional relationship between the control piece 4 and the above-mentioned fc switch 3B has a gap as shown in FIG.

今この状態で冷却液温が上昇すると熱応動部材3のワッ
クスケース3A内のワックスが膨張しシャフト3Bを押
し上げる。
When the coolant temperature rises in this state, the wax in the wax case 3A of the thermally responsive member 3 expands and pushes up the shaft 3B.

そして、シャフト3Bが第2図で示す寸法(a)だけ上
昇すると、シャン)3Bは制御片4に当接し、これ以上
シャフト3Bが上昇できず弁バネ13に抗して弁体14
を弁座15から引き離【7てサーモスタット2t−開弁
する。
When the shaft 3B rises by the dimension (a) shown in FIG.
Pull away from the valve seat 15 and open the thermostat 2t.

この際、上記間隙(ロ))は機関の特性に応じて、例え
ば高負荷時はサーモスタット2が70℃で開弁するとし
た場合は、冷却液温が70Cとなったときにシャン)3
Bが制御片4に接するように設定すれば良い。
At this time, the above-mentioned gap (b)) is determined depending on the characteristics of the engine. For example, if thermostat 2 opens at 70°C during high load, the gap (b) will open when the coolant temperature reaches 70°C.
It is sufficient to set it so that B is in contact with the control piece 4.

一方、低負荷時には、逆に吸入負圧が増大するために、
ダイヤフラム6がダイヤフラムスプリング11力に抗し
て第1図中上方に移動さit、こhと一体の制御片4も
シャン)3Bとの間で第3図に示したような間隙伽)全
形成する位置まで上方へ引き上げられる。勿論、上記間
隙寸法(b)は(b) > (a)の関係にある。
On the other hand, when the load is low, the suction negative pressure increases, so
When the diaphragm 6 moves upward in FIG. 1 against the force of the diaphragm spring 11, the control piece 4 (integrated with it) also forms a gap as shown in FIG. 3 between it and the control piece 3B. It will be pulled upward to the position where it will be. Of course, the gap size (b) has the relationship (b) > (a).

従って、サーモスタット2が開弁するには高負荷時よシ
もシャフト3Bがさらに土動せねはならず、その開弁温
度が高くなる。
Therefore, in order for the thermostat 2 to open, the shaft 3B must not move further even under high load, and the valve opening temperature increases.

この際、上記間隙(b)も低負荷時の開弁温度を例えば
95℃とした場合は、その温度に達したときに、シャン
)3Bが制御片4に接するように機関に応じて任意に設
定すれば良い。
At this time, if the valve opening temperature at low load is set to 95°C, the above gap (b) can be set arbitrarily according to the engine so that the shunt 3B comes into contact with the control piece 4 when that temperature is reached. Just set it.

尚、以上のサーモスタット2のリフト特性を示したのが
第4図で、図中実線は高負荷時のリフト特性、破線は低
負荷時のリフト特性を示し、A。
Incidentally, FIG. 4 shows the lift characteristics of the thermostat 2 described above. In the figure, the solid line shows the lift characteristics at high loads, and the broken line shows the lift characteristics at low loads.

E点はそれぞれ高負荷、低負荷時にシャン)3Bが制御
片4に当接する点を示し、B、D点はダイヤフラムスプ
リング11が完全に縮みきった状態を示し、B−0間、
C−D間はワックスの膨張力のみで弁体14が動くこと
を示す。
Point E indicates the point where the diaphragm spring 11 comes into contact with the control piece 4 during high load and low load, respectively, points B and D indicate the state where the diaphragm spring 11 is completely compressed, and between B-0,
Between C and D, the valve body 14 moves only by the expansion force of the wax.

このようにして、冷却液の最大設定温度が機関の負荷状
態に応じて可変制御されるのである。
In this way, the maximum set temperature of the coolant is variably controlled depending on the load condition of the engine.

ところが、このような従来の冷却液温度制御装置にあっ
ては、上述したラジェータ内へ流す冷却液流量を制御す
るサーモスタット2がラジェータ入口通路1の途中に設
けられ、ウォータポンプの吐出圧がサーモスタット2に
対してその弁体14を閉じる方向に作用するようになっ
ていたため、機関の回転数が高くなるに伴ってウォータ
ポンプの回転数も高くなシその吐出圧が上昇すると、第
4図に示したB、D点(ダイヤフラムスプリング11が
完全に縮みきった状態になる時期)がよシ高温側に移動
することになる。
However, in such a conventional coolant temperature control device, the thermostat 2 that controls the flow rate of the coolant flowing into the radiator is provided in the middle of the radiator inlet passage 1, and the discharge pressure of the water pump is controlled by the thermostat 2. As the engine speed increases, the water pump speed also increases, and as the discharge pressure increases, as shown in FIG. Points B and D (when the diaphragm spring 11 is completely compressed) will move to a higher temperature side.

従って、同一負荷でも機関高回転域はど冷却液温が高め
に制御される。
Therefore, even with the same load, the coolant temperature is controlled to be higher in the high engine speed range.

ところで、冷却液温度を高めることによる燃費向上や排
気浄化の効果は、低回転域はど大きく高回転域になると
ほとんど無くなってしまうことが不発明者等の実験によ
り判明した。また高回転域はど機関の耐熱性が悪化する
ことは自明である。
By the way, it has been found through experiments by the inventors that the effect of improving fuel efficiency and purifying exhaust gas by increasing the temperature of the coolant is large in the low rotation range, but almost disappears in the high rotation range. It is also obvious that the heat resistance of any engine deteriorates in the high rotation range.

これらを考え合わせると、従来例の場合には、回転数の
高い運転領域では燃費向上や排気浄化の効果がないのに
耐熱性を悪化させていたという問題点があった。
Taking these factors into consideration, the conventional example had a problem in that heat resistance deteriorated in the high-speed operating range without improving fuel efficiency or purifying exhaust gas.

そこで、この発明は上述したような冷却液温度制御装置
において、ウォータボンデの吐出圧を感知してサーモス
タット全開弁方向に駆動する手段を設け、機関の高回転
域では低冷却液温度に制御することによシ、上記問題点
を解決することを目的とする。
Therefore, the present invention provides the above-mentioned coolant temperature control device with a means for sensing the discharge pressure of the water bonder and driving the thermostat in the direction of fully opening the valve, so that the coolant temperature is controlled to be low in the high speed range of the engine. The purpose is to solve the above problems.

以下、この発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第5図に示すように、まず機関本体のウォータアウトレ
ット16とウオーlアウトルットハウヅング17とでラ
ジェータ入口通路1が形成され、この通路1の途中にサ
ーモスタット2が介装されると共に、該サーモスタット
2の熱応動部材3(シャフト3B)に対向するようにし
て、機関の負荷状態に応動するダイヤフラム装R5によ
り駆動される制御片4が設けられる。
As shown in FIG. 5, first, a radiator inlet passage 1 is formed by a water outlet 16 and a water outlet housing 17 of the engine body, and a thermostat 2 is interposed in the middle of this passage 1. A control piece 4 is provided opposite the thermally responsive member 3 (shaft 3B) of the thermostat 2 and is driven by a diaphragm R5 that responds to the load condition of the engine.

ここまでの構成は従前と同様であるが、不実施例では更
に上述した制御片4に、ウォータボンデの吐出圧Kl知
してサーモスタット全開弁方向に、駆動する子役として
のもう一つのダイヤフラム18が固定され、大気宇8の
下方に位f’t して水圧室19が形成される。
The configuration up to this point is the same as before, but in the non-embodiment, the above-mentioned control piece 4 is further provided with another diaphragm 18 as a child actor that detects the discharge pressure Kl of the water bonder and drives the thermostat in the direction of fully opening the valve. A hydraulic chamber 19 is formed below the atmospheric chamber 8.

上記大気宇8と水圧室19とは、制御片4の上端部に嵌
装した、ダイヤフラム18より小径のベロフラム20を
介して隔絶される。
The atmospheric chamber 8 and the hydraulic chamber 19 are separated from each other by a bellows 20 having a smaller diameter than the diaphragm 18 and fitted to the upper end of the control piece 4 .

そして、上記水圧室19は、大便室8、ウォータアウト
レットハウソング17及びウォータアウトレット16等
の壁面内部を貫通する通路21A〜21Cを介して、サ
ーモスタット2上流のラジェータ入口通路1に連通され
、該ラジェータ入口〕(fl路1に作用するウォータボ
ンデの吐出圧が導かれるようになっている。
The water pressure chamber 19 is communicated with the radiator inlet passage 1 upstream of the thermostat 2 via passages 21A to 21C penetrating the interior of the walls of the toilet chamber 8, water outlet hose 17, water outlet 16, etc. Inlet] (The discharge pressure of the water bonder acting on fl path 1 is introduced.

尚、図中22はウォータアウトレット16から分岐し、
ラジェータ(図示せず)全バイパスしてウォータボンデ
の吸込側に連通されるバイパス通路である。
In addition, 22 in the figure branches from the water outlet 16,
This is a bypass passage that completely bypasses the radiator (not shown) and communicates with the suction side of the water bonder.

その他の414成は第1図と同様なので第1図と同一部
材には同一符号を付して詳しい説明は省略する。
Since the other 414 components are the same as those in FIG. 1, the same members as in FIG. 1 are given the same reference numerals and detailed explanations will be omitted.

このような構成のため、今機関が低回転域でウォータポ
ンプの吐出圧もさほど扁くない時は、該吐出圧が通路2
1A〜21 C’、!−介して作用する水圧室19の圧
力も小さいので、制御片4はダイヤフラム装置5によシ
機関の負荷に応動し、従来例と同様に低負荷時の高吸入
負圧時に高温制御、高負荷時の低吸入負圧時に低温制御
となるように切換制御される。
Because of this configuration, when the engine is in a low rotation range and the water pump discharge pressure is not so low, the discharge pressure is lower than the passage 2.
1A~21C',! - Since the pressure in the water pressure chamber 19 that acts through the diaphragm device 5 is also small, the control piece 4 responds to the load of the engine by the diaphragm device 5, and as in the conventional example, high temperature control is performed during high suction negative pressure at low load. Switching control is performed so that low temperature control is performed when the suction negative pressure is low.

一方、機関が高回転域に移行し、これに伴なってウォー
タポンプの吐出圧が上昇すると、該吐出圧が導かれる水
圧室19の圧力も上労し、該圧力が作用するダイヤフラ
ム18の力によって制御片4は図中下方に強く付勢され
ることになる。
On the other hand, when the engine shifts to a high rotation range and the discharge pressure of the water pump increases accordingly, the pressure in the water pressure chamber 19 to which this discharge pressure is introduced increases, and the force of the diaphragm 18 on which this pressure acts increases. As a result, the control piece 4 is strongly urged downward in the figure.

従って、今水圧室19に作用するウォータボンデの吐出
圧が所定値を越えると、(幾関低負荷時において負圧室
7に大きな負圧が作用したとしても、該負圧力に打ち勝
って制御片4を図中下方に引き下げられるように、上述
した各ダイヤフラム6及び18の受圧面積等を設定すれ
ば、機関低負荷時ではあっても高回転域になるとサーモ
スタット2の開弁温度が下げられ、冷却ti温全低温側
に制御できる8 この結果、機1夕1の耐熱性を悪化することなく効果的
に燃費向上や排気浄化がはかれる。
Therefore, if the discharge pressure of the water bonder currently acting on the water pressure chamber 19 exceeds a predetermined value (even if a large negative pressure acts on the negative pressure chamber 7 at low load), the negative pressure will be overcome and the control will be activated. If the pressure-receiving area of each diaphragm 6 and 18 described above is set so that the pressure-receiving area of each diaphragm 6 and 18 is set so that the diaphragm 4 can be pulled downward in the figure, the valve opening temperature of the thermostat 2 will be lowered in the high rotation range even when the engine is under low load. The cooling temperature can be controlled to a completely low temperature side.8 As a result, fuel efficiency can be effectively improved and exhaust gas purification can be achieved without deteriorating the heat resistance of the machine.

次に、第6図はこの発明の他の実施例を示すものである
Next, FIG. 6 shows another embodiment of the present invention.

これは、第5図と同様の技術思想から水圧室19を設け
る代わシに、サーモスタット2及び制御片4をラジェー
タ入口通路1からウメータポンデ23上流のラジェータ
出口通路・24に変更して設置すると共に、サーモスタ
ット2の弁体14に刻してウォータボンデ23の吐出圧
(厳密にはウォータポンプ23の吐出側と吸込側の差圧
からウォータポンプ23の吐出部からラソエータ27を
経てサーモスタット2の弁体14に至るまでの抵抗を差
し引いた圧力)が開弁方向に作用するように弁体14の
向きを設定するようにした例である。また、弁体14が
閉じている駅1合でも、機関本体25内の冷却液温をサ
ーモスタット2の熱応動部材3に正しく伝えるために、
バイパス通路26がラジェータ入口通路1と熱応動部材
3近くのラジェータ出口通路24間に設けられる。
This is based on the same technical concept as shown in FIG. 5, and instead of providing the water pressure chamber 19, the thermostat 2 and the control piece 4 are changed from the radiator inlet passage 1 to the radiator outlet passage 24 upstream of the meter pond 23 and installed. The discharge pressure of the water bonder 23 (strictly speaking, from the differential pressure between the discharge side and the suction side of the water pump 23, from the discharge part of the water pump 23 via the lassoator 27 to the valve body 14 of the thermostat 2) This is an example in which the orientation of the valve body 14 is set so that the pressure obtained by subtracting the resistance up to this point acts in the valve opening direction. In addition, even at station 1 when the valve body 14 is closed, in order to correctly transmit the coolant temperature in the engine body 25 to the thermally responsive member 3 of the thermostat 2,
A bypass passage 26 is provided between the radiator inlet passage 1 and the radiator outlet passage 24 near the thermally responsive member 3.

これによれば、低負荷時にダイヤフラム装置5の負圧室
7に作用する負圧が大きくなって制御片4が図中下方(
高温側)に引き下げられても、当該負圧だけでダイヤス
ラムスプリング11が完全に縮みきらない範囲では、払
関回転が上昇すると、これに伴なってウォータボンデ2
3の吐出圧も上昇し、該吐出圧がサーモスタット2の弁
体14に作用するため弁体14の開度が大きくなシ、結
0局、第5図と同様に低負荷時ではあっても・高回転域
になると冷却液温は低温側に制御される。
According to this, when the load is low, the negative pressure acting on the negative pressure chamber 7 of the diaphragm device 5 increases, and the control piece 4 moves downward in the figure (
Even if the diamond slam spring 11 is pulled down to the high temperature side, the negative pressure alone does not completely compress the diamond slam spring 11, and as the separation rotation increases, the water bond 2
The discharge pressure of thermostat 2 also increases, and this discharge pressure acts on the valve body 14 of the thermostat 2, so the opening degree of the valve body 14 becomes large. - In the high rotation range, the coolant temperature is controlled to the low temperature side.

以上説明したようにこの発明によれば、サーモスタット
の開弁温度を、負荷状態に応動する制御片ケ介して、低
負荷時はど高めるようにした冷却液温度制御装置におい
て、ウォータボンデの吐出圧をサーモスタットに対して
その開弁温度を低める方向に作用させ、機関の高回転域
では低冷却液温I用に制御するようにしたので、高回転
域で機関の耐熱性を悪化させることなく低中回転域で効
果的に燃費向上や排気浄化がはかれるという効果が得ら
れる。
As explained above, according to the present invention, in a coolant temperature control device in which the valve opening temperature of a thermostat is increased during low load through a control piece that responds to the load condition, the discharge pressure of the water bonder is is applied to the thermostat in a direction to lower its valve opening temperature, and the engine is controlled for a low coolant temperature I in the high speed range of the engine. The effect of effectively improving fuel efficiency and purifying exhaust gas in the medium rotation range can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2図及び第3図はその異な
った作動状態を示す各々の要部拡大断面図、第4図は同
じくそのリフト特性図、第5図はこの発明の実施例の断
面図、第6図はこの発明の他の実施例の一部切欠き側面
図である。 1・・・ラジェータ入口通路、2・・・サーモスタット
、3・・・熱応動部材、4・・・制御片、5・・・ダイ
ヤフラム装置、10・・・負圧通路、14・・・弁体、
18・・・ダイへ−フラム、19・・・水圧室、21A
〜21C・・・通路、23・・・ウォータポンプ、24
・・・ラジェータ出口通路。 特許出入白人  日産自動車株式会社 第1図
Fig. 1 is a sectional view of the conventional example, Figs. 2 and 3 are enlarged sectional views of the main parts showing different operating states, Fig. 4 is a lift characteristic diagram thereof, and Fig. 5 is a diagram of the present invention. FIG. 6 is a partially cutaway side view of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Radiator inlet passage, 2...Thermostat, 3...Thermal response member, 4...Control piece, 5...Diaphragm device, 10...Negative pressure passage, 14...Valve body ,
18... To die - flam, 19... Water pressure chamber, 21A
~21C...Passage, 23...Water pump, 24
...Radiator exit passage. Patent Transfer and Export Nissan Motor Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 1、 機関の冷却液通路に介装されラソエータ内へ流す
冷却液流量全制御するサーモスタットの熱応動部材に、
機関の負荷状態に応じて位置決めされる制御片を対設し
、サーモスタットの開弁温度が低負荷時には高く、高負
荷時には低くなるように切換制御する冷却液温度制御装
置において、ウォータボンデの吐出圧を感知してサーモ
スタットヲ開弁方向に駆動する駆動手段を設けたことを
特徴とする内燃機関の冷却液温度制御装置。 2、上記駆動手段として、制御片を駆動するダイヤフラ
ム装置にもう一つのグイヤフジムを設け、制御片を低温
(jl、11に付勢するようにウォータボンデの吐出圧
が導かれる水圧室を形成したことを4’¥徴とする%杵
請求の範囲第1項記載の内燃1機関の冷却液温度制御装
置。 3、上記駆動手段として、サーモスタット及び制御片を
ウォータポンプ上流のラジェータ出口通路に設けると共
に、ウォータボンデの吐出圧がサーモスタットの弁体に
対して開弁方向に作用するように該弁体の向きを設定し
たことを特徴とする特許請求の範囲第1項記載の内燃機
関の冷却液温度制御装置。
[Claims] 1. A thermally responsive member of a thermostat that is installed in the coolant passage of the engine and controls the entire flow rate of the coolant flowing into the lassoator,
In a coolant temperature control device, the valve opening temperature of the thermostat is switched so that it is high at low loads and low at high loads, with control pieces positioned in opposition to each other depending on the load condition of the engine. 1. A coolant temperature control device for an internal combustion engine, comprising a drive means for sensing the temperature and driving the thermostat in the valve opening direction. 2. As the driving means, another Gouillafujim is provided in the diaphragm device that drives the control piece, and a water pressure chamber is formed through which the discharge pressure of the water bonder is guided so as to bias the control piece to a low temperature (jl, 11). A coolant temperature control device for an internal combustion engine according to claim 1, in which 4' is 4'. Coolant temperature control for an internal combustion engine according to claim 1, characterized in that the direction of the valve body of the thermostat is set so that the discharge pressure of the water bonder acts on the valve body of the thermostat in the valve opening direction. Device.
JP21359982A 1982-12-06 1982-12-06 Temperature controller of cooling fluid in internal- combustion engine Granted JPS59103921A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21359982A JPS59103921A (en) 1982-12-06 1982-12-06 Temperature controller of cooling fluid in internal- combustion engine
US06/557,884 US4560104A (en) 1982-12-06 1983-12-05 Coolant temperature control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21359982A JPS59103921A (en) 1982-12-06 1982-12-06 Temperature controller of cooling fluid in internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS59103921A true JPS59103921A (en) 1984-06-15
JPS6347886B2 JPS6347886B2 (en) 1988-09-26

Family

ID=16641853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21359982A Granted JPS59103921A (en) 1982-12-06 1982-12-06 Temperature controller of cooling fluid in internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS59103921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7040833B2 (en) 2001-10-29 2006-05-09 Musashi Seimitsu Kogyo Kabushiki Kaisha Ball joint

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186508B2 (en) 2018-11-09 2021-11-30 Seinen Inc. Water treating agent and kit and methods for producing and using
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7040833B2 (en) 2001-10-29 2006-05-09 Musashi Seimitsu Kogyo Kabushiki Kaisha Ball joint
US7260878B2 (en) 2001-10-29 2007-08-28 Usashi Seimitsu Kogyo Kabushiki Ball joint

Also Published As

Publication number Publication date
JPS6347886B2 (en) 1988-09-26

Similar Documents

Publication Publication Date Title
US4437311A (en) Apparatus for controlling the flow of exhaust gas in an internal combustion engine with a turbocharger and a catalytic converter
JPS59103921A (en) Temperature controller of cooling fluid in internal- combustion engine
JP3570059B2 (en) Engine cooling system
JP3859880B2 (en) Exhaust gas recirculation device
JPH0751897B2 (en) Control device for turbocharger
US5317994A (en) Engine cooling system and thermostat therefor
JPS61215417A (en) Cooling system of vehicle
JP3428007B2 (en) Temperature sensing response valve
JP3713720B2 (en) Intake air temperature control device for internal combustion engine for vehicle
JP2001317656A (en) Thermostat
JPH0727371Y2 (en) Completely enclosed cooling water circulation system for internal combustion engine
JPS62282110A (en) Control device for hydraulic-device type cooling fan
JPH0329547Y2 (en)
JPS5918127Y2 (en) Engine idle speed control device
JPS6350530B2 (en)
JPS60128968A (en) Suction heating mechanism for internal-combustion engine
JPH0124342Y2 (en)
JPS63268924A (en) Intake device for engine
JPH05272344A (en) Engine exhaust controller
JPH05125947A (en) Intake control device of internal combustion engine
JPS6321719Y2 (en)
JPS6027806Y2 (en) Hot water passage device for vehicle engines with hot water type autochoke
KR200153654Y1 (en) Apparatus of coolant inflow
JPS59103922A (en) Temperature controller of cooling fluid in internal- combustion engine
JPS58106125A (en) Control method of cooling fluid temperature in internal-combustion engine