JPS60128968A - Suction heating mechanism for internal-combustion engine - Google Patents

Suction heating mechanism for internal-combustion engine

Info

Publication number
JPS60128968A
JPS60128968A JP58236765A JP23676583A JPS60128968A JP S60128968 A JPS60128968 A JP S60128968A JP 58236765 A JP58236765 A JP 58236765A JP 23676583 A JP23676583 A JP 23676583A JP S60128968 A JPS60128968 A JP S60128968A
Authority
JP
Japan
Prior art keywords
intake air
cooling water
air heating
passage
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236765A
Other languages
Japanese (ja)
Inventor
Junichi Yokoyama
淳一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58236765A priority Critical patent/JPS60128968A/en
Publication of JPS60128968A publication Critical patent/JPS60128968A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/10Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot liquids, e.g. lubricants or cooling water
    • F02M31/107Controlled or manual switching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve fuel consumption considerably while preventing knocking, in an internal-combustion engine for heating intake air while utilizing engine cooling liquid under high temperature condition, by feeding low temperature cooling liquid in place of high temperature cooling liquid to intake air heating section under heavy load region after warming of engine. CONSTITUTION:Under low cooling water temperature, a heat-sensitive valve (not shown) is closed to function the diaphragm unit in control valve device 14 only when the suction negative pressure from negative pressure source will reach to setting level thus to communicate between the ports 16, 17 while to block the port 18. Cooling water of relatively high temperature at the inlet path 4 side of a radiator 5 is fed abundantly through cooling water path 11 for heating intake air to the suction pipe (intake heating section) 3. Upon reaching of cooling water temperature to setting level to open the heat-sensitive valve thus to enter into heavy load region, the ports 17, 18 of a controller 14 are communicated while the port 16 is blocked to feed cooling water of relatively low temperature through a radiator 13 to said section 3.

Description

【発明の詳細な説明】 (技術分野) この発明は、内燃機関の吸気加熱装置の改良に関する。[Detailed description of the invention] (Technical field) The present invention relates to an improvement in an intake air heating device for an internal combustion engine.

(背景並びに従来技術) 最近の自動車用内燃機関においては、大量の排気還流、
点火時期の遅角等の排気対策によって、逆に燃焼が不安
定化し運転性、燃費を損うという不都合が生じているた
め、その改善が要望されている。
(Background and prior art) In modern automobile internal combustion engines, a large amount of exhaust gas recirculation,
Emission countermeasures such as retarding the ignition timing have resulted in the inconvenience of destabilizing combustion and impairing drivability and fuel efficiency, so improvements are desired.

その一手段として、排気熱や機関冷却温水を利用するな
どして吸気を加熱し、燃料の気化特性を促進して燃焼の
改善をはかるようにした装置が種々提案されている。
As one means of achieving this, various devices have been proposed that heat intake air using exhaust heat or engine cooling hot water to promote the vaporization characteristics of fuel and improve combustion.

従来、この吸気加熱装置として、例えば機関冷却水(温
水)を利用したものであるが、第1図に示すようなもの
がある(実公昭53−9786号公報参照)。
Conventionally, this intake air heating device utilizes, for example, engine cooling water (warm water), and there is a device as shown in FIG. 1 (see Japanese Utility Model Publication No. 53-9786).

これは、機関冷却水をシリンダブロック1からシリンダ
ヘッド2へ流し、該シリンダヘッド2からは吸気加熱用
に吸気管3へとそれぞれ形成した各ウォータジャケット
を介して送り込む一万、ラジェータ入口通路4を介して
機関前方に設けられたラジェータ5に通し、このラジェ
ータ5で冷却された冷却水が、冷却水路9を介して導か
れた吸気加熱用の冷却水(吸気との熱交換により冷却さ
れている)と共に、ラジェータ出口通路6から該通路6
の途中に介装されたウォータポンプ7によって再びシリ
ンダブロック1に循環されることによって、機関の冷却
が行なわれる一万、この時の熱交換によって温度上昇し
た冷却水が吸気管3へ送られて吸気を加熱する。
This allows engine cooling water to flow from the cylinder block 1 to the cylinder head 2, and from the cylinder head 2 to the intake pipe 3 for heating intake air via water jackets formed respectively, and a radiator inlet passage 4. The cooling water cooled by the radiator 5 is passed through the radiator 5 provided at the front of the engine, and the cooling water for heating the intake air (cooled by heat exchange with the intake air) is guided through the cooling water channel 9. ) from the radiator outlet passage 6 to said passage 6
The engine is cooled by being circulated again to the cylinder block 1 by the water pump 7 installed in the middle of the engine. Heats the intake air.

上記ラジェータ入口通路4の途中にはサーモスタット8
が介装され、ラジェータ5に流れる水量を冷却水温度に
応じて制御している。つまり、冷却水温度が設定温度(
80℃〜90℃)以下の時はサーモスタット8が全閉と
なり、これによってシリンダヘッド2から流れ出た冷却
水はラジェータ5で冷却されずに吸気管3側へと導かれ
、冷却水路9あるいはバイパス通路1°0を通ってすべ
てラジェータ出口通路6に流れ込むのである。
A thermostat 8 is installed in the middle of the radiator inlet passage 4.
is installed to control the amount of water flowing into the radiator 5 according to the cooling water temperature. In other words, the cooling water temperature is the set temperature (
When the temperature is below 80°C to 90°C, the thermostat 8 is fully closed, and as a result, the cooling water flowing out of the cylinder head 2 is guided to the intake pipe 3 side without being cooled by the radiator 5, and is routed to the cooling water channel 9 or the bypass passage. 1°0 and all flows into the radiator outlet passage 6.

ところが、このような従来の吸気加熱装置にあっては、
機関暖機中の燃費改善のため、吸気管3等のウォータジ
ャケット(吸気加熱部)の通路面積を拡大するなどして
、多量の冷却水を吸気管3に導き吸入空気または混合気
を加熱しようとすると、機関暖機終了附近から暖機完了
後にかけての機関低中速高負荷域では逆に、加熱用の冷
却水流量が多過ぎてしまい(吸気管3に導かれる冷却水
流量を制御していないため)加熱し過ぎとなって、ノッ
キングが発生し易くなる。
However, in such conventional intake air heating devices,
In order to improve fuel efficiency while the engine is warming up, try increasing the passage area of the water jacket (intake air heating section) in the intake pipe 3, etc., and guide a large amount of cooling water to the intake pipe 3 to heat the intake air or air-fuel mixture. If this is the case, the flow rate of cooling water for heating will be too large in the engine low-medium-speed and high-load region from near the end of engine warm-up to after engine warm-up is completed (controlling the flow rate of cooling water led to the intake pipe 3) If the engine is not heated properly, it may overheat and cause knocking.

このノッキングを回避するため点火時期を遅らせればト
ルク低下をきたすことから、実際には上述した吸−気加
熱部を暖機途中で要求される吸気加熱度合いより低い加
熱容量に設定せざるを得なく、これによって機関暖機中
における燃料気化促進による燃費改善効果が不十分にな
るという問題点があった。
If the ignition timing is delayed to avoid this knocking, the torque will decrease, so in reality, the intake air heating section described above must be set to a heating capacity lower than the degree of intake air heating required during warm-up. This poses a problem in that the effect of improving fuel efficiency by promoting fuel vaporization during engine warm-up becomes insufficient.

(発明の目的) この発明は、このような従来の問題点に着目してなされ
たもので、機関暖機終了附近からの高負荷域のノッキン
グを防止しつつ機関暖機途中の吸−気加熱をより一層強
化して大巾な燃費向上がはがれる吸気加熱装置を提供す
ることを目的とする。
(Purpose of the Invention) The present invention has been made by focusing on such conventional problems, and it is possible to prevent knocking in the high load range from near the end of engine warm-up, and to improve intake air heating during engine warm-up. The purpose of the present invention is to provide an intake air heating device that can significantly improve fuel efficiency by further strengthening the fuel efficiency.

(発明の構成並びに作用) 上記目的を達成するために、この発明では上述したよう
な吸気加熱システムを有する液冷式の内燃機関において
、ラジェータ上流から分岐して吸気加熱部に至る第1の
吸気加熱用冷却液通路の途中に、当該通路の冷却液より
低温の冷却液が流れる第2の吸気加熱用冷却液通路を合
流し、この合流部に、すくなくとも機関暖機後の高負荷
域には、吸気加熱部側に対して第1の吸気加熱用冷却液
通路は遮断する一方第2の吸気加熱用冷却液通路は連通
するように冷却液通路を切換制御する制御弁装置を設け
るように構成され−る。
(Structure and operation of the invention) In order to achieve the above object, the present invention provides a liquid-cooled internal combustion engine having an intake air heating system as described above, in which a first intake air branched from upstream of a radiator and led to an intake air heating section is provided. In the middle of the heating coolant passage, a second intake air heating coolant passage, in which a coolant having a lower temperature than that of the coolant in the passage flows, joins, and at least in the high load area after the engine warms up, a second intake air heating coolant passage is added. , a control valve device is provided to switch and control the coolant passage so that the first intake air heating coolant passage is cut off from the intake air heating unit side, while the second intake air heating coolant passage is communicated with the intake air heating unit side. It is done.

これによれば、機関暖機後の高負荷域には、機関を冷却
して昇温された第1の吸気加熱用冷却液通路の冷却液に
代って、より低温の第2の吸気加熱用冷却液通路の冷却
液が吸気加熱部に送られることになる。
According to this, in a high load range after the engine warms up, the coolant in the first intake air heating coolant passage, which has been heated by cooling the engine, is replaced by a second intake air heater at a lower temperature. The coolant in the coolant passage is sent to the intake air heating section.

このため、例えば吸気加熱部の容量等を暖機中に十分な
吸気加熱度合いが得られるように大きく設定した場合に
おいても、上述した暖機後の機関高負荷域に高温の冷却
液が多量に流れてしまうということはなく、加熱し過ぎ
によるノッキングの発生が回避される。
For this reason, even if the capacity of the intake air heating section is set large enough to obtain a sufficient degree of intake air heating during warm-up, for example, a large amount of high-temperature coolant will remain in the high-load region of the engine after warm-up. There is no flow, and the occurrence of knocking due to overheating is avoided.

(実施例) 以下、この発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図及び第3図はこの発明の第1実施例を示す概略構
成及び要部詳細断面図である。
FIGS. 2 and 3 are a schematic configuration and a detailed cross-sectional view of essential parts showing a first embodiment of the present invention.

図に示すように、ラジェータ入口通路4から分岐して吸
気管3の吸気加熱部に至る第1の吸気加熱用冷却水通路
11の途中に、当該通路11の冷却水より低温の冷却水
が流れる機関外設の第2の吸気加熱用冷却水通路12の
下流側端部が合流接続される。
As shown in the figure, cooling water at a lower temperature than the cooling water in the passage 11 flows in the middle of the first intake air heating cooling water passage 11 that branches from the radiator inlet passage 4 and reaches the intake air heating section of the intake pipe 3. The downstream ends of the second intake air heating cooling water passage 12 installed outside the engine are connected together.

つまり、上記第2の吸気加熱用冷却水通路12は、その
上流側端部がウォータポンプ7下流のラジェータ出口通
路6から分岐されると共に、その途中にはサブラジェー
タ13が介設されるのである。
That is, the second intake air heating cooling water passage 12 has its upstream end branched from the radiator outlet passage 6 downstream of the water pump 7, and the sub-radiator 13 is interposed in the middle thereof. .

尚、ウォータポンプ7出口温度が比較的低いシステムに
あっては、上記サブラジェータ13社特に必要としない
。また、サブラジェータ13下流の配管に冷却フィンを
付けて対処しても良い。
Incidentally, in a system where the water pump 7 outlet temperature is relatively low, the above 13 subradiators are not particularly required. Alternatively, cooling fins may be attached to the piping downstream of the subradiator 13 to cope with the problem.

そして、上記合流部に、すくなくとも機関暖機後の高負
荷域には、吸気管3(吸気加熱部)側に対して第1の吸
気加熱用冷却水通路11Fi迩断する一方第2の吸気加
熱用冷却水通路12は連通するように冷却水通路を切換
制御する制御弁装置14が設けられる。
At least in the high load region after warm-up of the engine, a first intake air heating cooling water passage 11Fi is connected to the intake pipe 3 (intake air heating section) side at the merging section, while a second intake air heating A control valve device 14 is provided to switch and control the cooling water passages so that the cooling water passages 12 are in communication with each other.

この制御弁装置14は、弁ハウジング15内を図中上下
に移動して三つのボート16〜18′t−各々連通遮断
する略筒状の二つの弁体19,20と、この二つの弁体
19,20t−一体的に結合するロッド21が連結され
るアクチュエータとしてのダイヤフラム装置22とから
構成される。
This control valve device 14 includes two substantially cylindrical valve bodies 19 and 20 that move up and down in the figure in a valve housing 15 to cut off communication between three boats 16 to 18't, and these two valve bodies. 19, 20t - a diaphragm device 22 as an actuator to which a rod 21 that is integrally connected is connected.

上述した三つのボートのうち、まずボート16にはラジ
ェータ入口通路4側の第1の吸気加熱用冷却水通路11
が接続し、次にボート17には吸気管3側の第1の吸気
加熱用冷却水通路11が接続し、最後にボート18には
第2の吸気加熱用冷却水通路12が接続される。
Among the three boats mentioned above, the boat 16 has the first intake air heating cooling water passage 11 on the radiator inlet passage 4 side.
Next, the first intake air heating cooling water passage 11 on the side of the intake pipe 3 is connected to the boat 17, and finally the second intake air heating cooling water passage 12 is connected to the boat 18.

上記ダイヤフラム装置22Fi、上述したロッド21と
一体動するダイヤフラム23により画成された圧力室2
4が、圧力信号通路25を介して図外の絞り弁下流の吸
気通路と連通され、機関の吸入負圧に応動する。
A pressure chamber 2 defined by the diaphragm device 22Fi and the diaphragm 23 that moves together with the rod 21 described above.
4 is communicated with an intake passage downstream of a throttle valve (not shown) via a pressure signal passage 25, and responds to the intake negative pressure of the engine.

そして、上記圧力室24に導かれる吸入負圧が高イト、
タイヤフラム23がリターンスプリング26カに抗して
図中上方に移動し、これと一体のpラド21及び弁体1
9,20も同方向に移動してボート16及び17が弁ハ
ウジング15を介して連通する一方ボ−)1gが弁体2
oにより遮断される。
When the suction negative pressure led to the pressure chamber 24 is high,
The tire flam 23 moves upward in the figure against the return spring 26, and the prad 21 and valve body 1 integrated therewith
9 and 20 also move in the same direction so that the boats 16 and 17 communicate with each other through the valve housing 15, while the boat 1g is connected to the valve body 2.
o is blocked.

一方、吸入負圧が弱まると、ダイヤプラム23は今度は
リターンスプリング26カにより図中下方に移動し、こ
れと一体のロッド21及び弁体19゜20も同方向に移
動して今度は逆にボート16が弁体19により遮断され
る一方、ボート17と18とが弁ハウジング15i介し
て連通するようになっている。同、図中27は大気圧室
を示す。
On the other hand, when the suction negative pressure weakens, the diaphragm 23 is moved downward in the figure by the return spring 26, and the rod 21 and valve body 19°20, which are integral with it, also move in the same direction, and now in the opposite direction. While the boat 16 is blocked by the valve body 19, the boats 17 and 18 communicate with each other via the valve housing 15i. 27 in the figure indicates an atmospheric pressure chamber.

更に、上述した圧力信号通路25の途中には、その前後
差圧が一定値以上の時のへ該通路25を導通するチェッ
クパルプ28が設けられると共に、該チェックパルプ2
8をバイパスするバイパス通路29が設けられ、このバ
イパス通路29に機関冷却水温度を検知して該温度が所
定値以上の時に上記通路29を常開制御するパンメタル
タイプの感温弁30が設けられる。
Furthermore, a check pulp 28 is provided in the middle of the pressure signal passage 25, which conducts the passage 25 when the differential pressure across the passage is equal to or higher than a certain value.
A bypass passage 29 is provided to bypass the engine cooling water, and a pan-metal type temperature-sensitive valve 30 is provided in the bypass passage 29 to detect the temperature of the engine cooling water and control the passage 29 to be normally open when the temperature is above a predetermined value. It will be done.

伺、上記チェックパルプ28は板バネ31.ラバーパル
プ32及び複数の小孔33などからなり、また感温弁a
OFi負圧ポート34,35t一連通、遮断するバイメ
タル36及び板バネ37などからなる通常のものが使用
される。
The above check pulp 28 is connected to the leaf spring 31. It consists of a rubber pulp 32 and a plurality of small holes 33, and also has a temperature-sensitive valve a.
A normal one consisting of a bimetal 36 and a leaf spring 37 that connect and disconnect the OFi negative pressure ports 34 and 35t is used.

その他の構成は第1図と同様なので、第1図と同一部材
には同一符号を付して詳しい説明は省略する。
The rest of the structure is the same as in FIG. 1, so the same members as in FIG. 1 are given the same reference numerals and detailed explanations will be omitted.

このような構成のため、機関暖機、中で冷却水温が低い
時には、第3図における感温弁30のバイメタル36は
図の位置にあり、負圧ポート34゜35間(つまりバイ
パス通路29)は遮断されている。
Due to this configuration, when the engine is warmed up and the cooling water temperature is low, the bimetal 36 of the temperature-sensitive valve 30 in FIG. is blocked.

このため、負圧源の吸入負圧が設定値以上の時のみ、チ
ェックパルプ28のラバーパルプ32が右側に反り返り
小孔33を通して強い負圧が圧力信号通路25を通って
ダイヤフラム装置22の圧力室24に導かれる。
Therefore, only when the suction negative pressure of the negative pressure source is higher than the set value, the rubber pulp 32 of the check pulp 28 is bent to the right, and strong negative pressure is transmitted through the small hole 33 and through the pressure signal passage 25 to the pressure chamber of the diaphragm device 22. Guided by 24.

これにより、前述したようにダイヤフラム23とロッド
21を介して一体動する弁体19.20が図中上方に移
動してボート16と17を連通ずる一方ポート18′f
:遮断する。
As a result, the valve bodies 19 and 20, which move integrally through the diaphragm 23 and the rod 21, move upward in the figure as described above, communicating the boats 16 and 17, and the one port 18'f
:Cut off.

この結果、第2図における吸気管3(吸気加熱部)側の
第1の吸気加熱用冷却水通路11に対してラジェータ入
口通路4側の第1の吸気加熱用冷却水通路11のみが連
通され、吸気加熱部には常に機関を冷却して熱せられた
(換言すれば熱交換された)冷却温水が多量に供給され
る(予め、このように吸気加熱部の容量等が設定されて
いる)ことから、吸気加熱による燃料の霧化が促進され
て当該部分負荷域の燃費が改善される。
As a result, only the first intake air heating cooling water passage 11 on the radiator inlet passage 4 side is in communication with the first intake air heating cooling water passage 11 on the intake pipe 3 (intake air heating section) side in FIG. , A large amount of cooling hot water that has been heated by cooling the engine (in other words, heat exchanged) is always supplied to the intake air heating section (the capacity of the intake air heating section is set in advance in this way). Therefore, fuel atomization due to intake air heating is promoted and fuel efficiency in the partial load range is improved.

次に、機関冷却水温が第3図における感温弁3゜のバイ
メタル36の設定温度を越すと、バイメタル36は板バ
ネ37に打ち勝って反転し、負圧ポー)34.35間は
常に導通される。
Next, when the engine cooling water temperature exceeds the set temperature of the bimetal 36 of the temperature-sensitive valve 3° in FIG. Ru.

これにより、ダイヤプラム装置22の圧力家々には、チ
ェックバルブ28に関係なく圧力信号通路25及びバイ
パス通路29t−介して吸入負圧に応じた負圧が導かれ
る。
As a result, a negative pressure corresponding to the suction negative pressure is introduced to the pressure chambers of the diaphragm device 22 through the pressure signal passage 25 and the bypass passage 29t, regardless of the check valve 28.

このため、吸入負圧が弱まる機関高負荷域には圧力室2
4内の負圧も弱まることがら、前述したようにダイヤフ
ラム23とロッド21を介して一体動する弁体19,2
0が図中下方に移動してポー)16t−遮断する一方ボ
ート17と18とを連通ずる。
For this reason, the pressure chamber 2 is
As the negative pressure inside 4 also weakens, the valve bodies 19 and 2, which move integrally through the diaphragm 23 and the rod 21, as described above.
0 moves downward in the figure to cut off port 16t- while allowing communication between boats 17 and 18.

この結果、吸気管3側の第1の吸気加熱用冷却水通路1
1に対して、今度は第2の吸気加熱用冷却水通路12の
みが連通され、吸気加熱部にはサブラジェータ13で冷
やされた比較的低温の冷却水が供給されることから、吸
気加熱部を冷却してノッキングの発生を防止し、当該運
転域の出方向上がはかられる。
As a result, the first intake air heating cooling water passage 1 on the intake pipe 3 side
1, only the second intake air heating cooling water passage 12 is communicated this time, and relatively low temperature cooling water cooled by the subradiator 13 is supplied to the intake air heating section. The engine is cooled to prevent knocking, and the direction of exit from the relevant operating range is measured.

換言すれば、当該運転域にも従来例のようにラジェータ
5上流から分岐した第1の吸気加熱用冷却水通路11を
流れる高温の冷却水が吸気加熱部に多量に供給されて、
吸気加熱し過ぎによりノッキングが発生するのが未然に
回避されるのである。
In other words, even in the operating range, a large amount of high-temperature cooling water flowing through the first intake air heating cooling water passage 11 branched from the upstream side of the radiator 5 is supplied to the intake air heating section, as in the conventional example.
This prevents knocking from occurring due to excessive heating of the intake air.

次に、第4図はこの発明の第2実施例を示す要部詳細断
面図である。
Next, FIG. 4 is a detailed sectional view of a main part showing a second embodiment of the present invention.

これは、第3図における制御弁装置14に、バイパス通
路29に設けたバイメタルタイプの感温弁30に代えて
同じく冷却水温度に応動するワックスタイプの感温弁4
0を一体的に組み付け、ロッド21の下降限界位置を冷
却水温度に応じて規制してより細かな制御を可能にした
例である。
In the control valve device 14 shown in FIG. 3, a wax type temperature sensing valve 4 which also responds to the cooling water temperature is used instead of the bimetal type temperature sensing valve 30 provided in the bypass passage 29.
This is an example in which the lowering limit position of the rod 21 is regulated in accordance with the cooling water temperature to enable more detailed control.

即ち、感温弁40の冷却水通路41を通過する冷却水温
が低い時は、ワックス42が収縮しているため、ビス)
y43、ガイド44は一体的にスプリング45に押圧さ
れ図の位置にある。このため、ロッド21及び弁体19
,20は圧力室24の負圧値にかかわらず図の位置にあ
り、ボート16と17を連通して吸気管3を加熱する。
That is, when the temperature of the cooling water passing through the cooling water passage 41 of the temperature-sensitive valve 40 is low, the wax 42 is contracted, so the screws)
y43, the guide 44 is integrally pressed by the spring 45 and is in the position shown in the figure. Therefore, the rod 21 and the valve body 19
, 20 are in the position shown in the figure regardless of the negative pressure value of the pressure chamber 24, and communicate the boats 16 and 17 to heat the intake pipe 3.

次に、上述した冷却水温が上昇していくとワックス42
は除々に膨張し始めピストン43、ガイド44は下降し
始める。このため、ロッド21及び弁体19,20は、
圧力室24に導かれる負圧値が小さい時(つまり、高負
荷域)には、ガイド44で規制される位置まで下降可能
となり、ボート16の開口面積を縮少する一方ボート1
8の開口面積全増大し、吸気管3に導く冷却水温を低く
制御し始めノッキングの発生を防止するのである。
Next, as the cooling water temperature mentioned above rises, the wax 42
gradually begins to expand, and the piston 43 and guide 44 begin to descend. Therefore, the rod 21 and the valve bodies 19, 20 are
When the negative pressure value introduced into the pressure chamber 24 is small (that is, in a high load region), it becomes possible to descend to the position regulated by the guide 44, reducing the opening area of the boat 16 while
The total opening area of the intake pipe 8 is increased, and the temperature of the cooling water introduced into the intake pipe 3 is controlled to be low, thereby preventing the occurrence of knocking.

更に、第5図及び第6図はこの発明の第3実施例を示す
概略構成及び要部詳細断面図である。
Further, FIGS. 5 and 6 are schematic configurations and detailed cross-sectional views of essential parts showing a third embodiment of the present invention.

これは、第2図における第2の吸気加熱用冷却水通路1
2の上流側端部を吸気加熱後の戻り水路である冷却水路
9の途中から分岐すると共に、この通路12にサブラジ
ェータ13に加えて電動ポンプ50を介設し、当該通路
12を主冷却系から完全に独立した例である。
This is the second intake air heating cooling water passage 1 in FIG.
The upstream end of the cooling water passage 2 is branched from the middle of the cooling water passage 9 which is a return water passage after heating the intake air, and an electric pump 50 is interposed in this passage 12 in addition to a subradiator 13, and the passage 12 is connected to the main cooling system. This is a completely independent example.

そのために、制御弁装置14には、吸気加熱部に第2の
吸気加熱用冷却水通路12内の冷却水が循環する時に冷
却水路9を遮断するもう一つの弁体51がロッド21に
結合される。図中52.53が冷却水路9の各々の端部
が接続されるボートである。更に、ダイヤプラム装置2
2の大気圧室27には、上述した電動ポンプ50の駆動
スイッチを構成する可動接点54がダイヤフラム23側
に位置して、また固定接点55がケーシング側に位置し
て設けられる。従って電動ポンプ50は、ダイヤフラム
23が後述する機関吸材後において最下降した時に作動
する。
To this end, the control valve device 14 includes another valve body 51 coupled to the rod 21 that shuts off the cooling water passage 9 when the cooling water in the second intake air heating cooling water passage 12 circulates in the intake air heating section. Ru. In the figure, 52 and 53 are boats to which each end of the cooling water channel 9 is connected. Furthermore, the diaphragm device 2
In the atmospheric pressure chamber 27 of No. 2, a movable contact 54 constituting a drive switch for the electric pump 50 described above is located on the diaphragm 23 side, and a fixed contact 55 is provided on the casing side. Therefore, the electric pump 50 operates when the diaphragm 23 is lowered to the lowest level after the engine absorbs material, which will be described later.

また、本実施例では圧力信号通路25の途中に。Further, in this embodiment, in the middle of the pressure signal path 25.

チェックバルブ28と直列に、機関冷却水温度を検知し
て該温度が所定値以上の時に上記通路25を大気に解放
するバイメタルタイプの感温切換弁56が設けられる。
A bimetal type temperature-sensitive switching valve 56 is provided in series with the check valve 28 to detect the temperature of the engine cooling water and to open the passage 25 to the atmosphere when the temperature exceeds a predetermined value.

この感温切換弁56はバイメタル57、該バイメタル5
7にシャフト全弁して連動するバルブ58、該バルブ5
84C開閉される大気口59及び板バネ60などからな
る通常のものが使用される。
This temperature-sensitive switching valve 56 includes a bimetal 57 and a bimetal 5
7, a valve 58 which is interlocked with all shaft valves, and the valve 5
A normal one consisting of an air vent 59 that opens and closes 84C, a leaf spring 60, etc. is used.

従って、本実施例では機関暖機後は、圧力室スが負荷状
態を問わず強制的に大気に解放されるため、ロッド21
及び弁体19,20が最下降して、前述したように吸気
加熱部には第2の吸気加熱用冷却水通路12の低温の冷
却水が供給される。勿論、この時弁体51により冷却水
路9が遮断されると共に、大気圧室27における駆動ス
イッチ(可動接点54及び固定接点55)がONして電
動ポンプ50が作動する。
Therefore, in this embodiment, after the engine warms up, the pressure chamber S is forcibly released to the atmosphere regardless of the load condition, so the rod 21
Then, the valve bodies 19 and 20 are lowered to the lowest position, and the low-temperature cooling water from the second intake air heating cooling water passage 12 is supplied to the intake air heating section as described above. Of course, at this time, the cooling water channel 9 is shut off by the valve body 51, and the drive switch (movable contact 54 and fixed contact 55) in the atmospheric pressure chamber 27 is turned on to operate the electric pump 50.

最後に、第7図はこの発明の第4実施例を示す要部詳細
断面図である。
Finally, FIG. 7 is a detailed sectional view of a main part showing a fourth embodiment of the present invention.

これは、第6図における制御弁装置14の圧力室24t
−単にチェックバルブ28t−介装しただけの圧力信号
通路2,5t−介して図外の絞如弁下流の吸気通路に連
通させる一方、上記圧力室24を必要に応じて大気に開
放するダイヤプラム式の大気開放弁61をダイヤフラム
装置22の上部に一体的に組み込み、この大気開放弁6
1の圧力室62を、その途中に上記圧力信号通路25に
介装したチェックパルプ28と同一構造のもう一つのチ
ェックパルプ28′と、第3図における感温弁30とを
並列に備えた圧力信号通路67t−介して、上述した圧
力室24と同様に絞り弁下流の吸気通路に連通させて第
6図と同様の作用効果を得るようにした例である。伺、
本実施例では上記圧力信号通路67がもう−りの圧力信
号通路25のチェックバルブ28上流から分岐され九例
が示されている。
This corresponds to the pressure chamber 24t of the control valve device 14 in FIG.
- A diaphragm that communicates with the intake passage downstream of the throttle valve (not shown) through the check valve 28t and the pressure signal passages 2 and 5t that are simply installed, while opening the pressure chamber 24 to the atmosphere as necessary. A type atmosphere release valve 61 is integrally incorporated into the upper part of the diaphragm device 22, and this atmosphere release valve 6
1 pressure chamber 62, another check pulp 28' having the same structure as the check pulp 28 interposed in the pressure signal passage 25 in the middle thereof, and a temperature-sensitive valve 30 in FIG. 3 are provided in parallel. This is an example in which the signal passage 67t is communicated with the intake passage downstream of the throttle valve in the same manner as the pressure chamber 24 described above to obtain the same effect as in FIG. 6. Visit,
In this embodiment, nine examples are shown in which the pressure signal passage 67 is branched from the other pressure signal passage 25 upstream of the check valve 28.

即ち、機関暖機後において冷却水温が上昇し感温弁30
が開弁すると、大気解放弁61の圧力室62には、チェ
ックパルプ28′に関係なく圧力信号通路67を介して
吸入負圧に応じた負圧値が作用する。
That is, after the engine warms up, the cooling water temperature rises and the temperature sensing valve 30
When the valve is opened, a negative pressure value corresponding to the suction negative pressure acts on the pressure chamber 62 of the atmosphere release valve 61 via the pressure signal passage 67 regardless of the check pulp 28'.

このため、上記負圧値が高負荷域などにおいて弱まると
、ダイヤフラム63がスプリング64力により図中下方
に移動され、上記ダイヤ7ラム63と一体動する弁体6
5も下降する。
Therefore, when the negative pressure value weakens in a high load range, the diaphragm 63 is moved downward in the figure by the force of the spring 64, and the valve body 63 moves integrally with the diaphragm 63.
5 also descends.

これにより、チェックパルプ28によって強負圧がロッ
クされていたダイヤフラム装置22の圧力室24が大気
解放弁61の大気室66と連通して大気に解放される。
As a result, the pressure chamber 24 of the diaphragm device 22, whose strong negative pressure was locked by the check pulp 28, communicates with the atmospheric chamber 66 of the atmospheric release valve 61 and is released to the atmosphere.

この結果、ロッド21及び弁体19,20等が最下降し
、前述した4うに吸気加熱部には第2の吸気加熱用冷却
水通路12内の冷却水が供給されて、当該運転斌のノッ
キングの発生が防止されるのである。
As a result, the rod 21, valve bodies 19, 20, etc. are lowered to the lowest position, and the cooling water in the second intake air heating cooling water passage 12 is supplied to the above-mentioned four intake air heating parts, thereby preventing knocking during the operation. This prevents the occurrence of

一方、暖機中の部分負荷域では、上述した二つの圧力室
62.24には共に強負圧が作用してロッド21及び弁
体19,20等が上昇位置に規制され、吸気加熱部には
第1の吸気加熱用冷却水通路11円の冷却水が供給され
て吸気加熱が行なわれる。
On the other hand, in the partial load region during warm-up, strong negative pressure acts on the two pressure chambers 62, 24 mentioned above, and the rod 21, valve bodies 19, 20, etc. are restricted to the raised position, and the intake air heating section is Cooling water of 11 yen is supplied to the first intake air heating cooling water passage to heat the intake air.

(発明の効果) 以上説明したようにこの発明によれば、ラジェータ上流
から分岐して吸気加熱部に至る第1の吸気加熱用冷却液
通路の途中に、当該通路の冷却液より低温の冷却液が流
れる第2の吸気加熱用冷却液通路を合流し、この合流部
に、すくなくとも機関暖機後の高負荷域には、吸気加熱
部側に対して第1の吸気加熱用冷却液通路は遮断する一
方第2の吸気加熱用冷却液通路は連通するように冷却液
通路を切換制御する制御弁装置を設けるようにしたので
、機関暖機終了附近からの高負荷域のノッキングを防止
しつつ機関暖機途中の吸気加熱をより一層強化して大巾
な燃費向上がはかれるといつ効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, a coolant having a lower temperature than the coolant in the first intake air heating coolant passage that branches from the upstream side of the radiator and reaches the intake air heating part is provided in the middle of the first intake air heating coolant passage. flows into the second intake air heating coolant passage, and the first intake air heating coolant passage is cut off from the intake air heating section side at least in the high load region after warming up the engine. On the other hand, we installed a control valve device that switches and controls the coolant passage so that the second intake air heating coolant passage communicates with the second intake air heating coolant passage, thereby preventing engine knocking in the high load range near the end of engine warm-up. The effect can be achieved by further strengthening intake air heating during warm-up and significantly improving fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の概略構成図、第2図はこの発明の第1
実施例の概略構成図、第3図はその要部詳細断面図、第
4図はこの発明の第2実施例の要部詳細断面図、第5図
゛は同じく第3実施例の概略構成図、第6図はその要部
詳細断面図、第7図はこの発明の第4実施例の要部詳細
断面図である。 1・・・シリンダブロック、2・・・シリンダヘッド、
3・・・吸気管、5・・・ラジェータ、7・・・ウォー
タポンプ、11・・・第一の吸気加熱用冷却液通路、1
2・・・第一の吸気加熱用冷却液通路、13・・・サブ
ラジェータ、14・・・制御弁装置。 特許出願人 日産自動車株式会社 第1図 q 第2図
Figure 1 is a schematic diagram of the conventional example, and Figure 2 is the first diagram of the present invention.
3 is a detailed sectional view of the main part thereof, FIG. 4 is a detailed sectional view of the main part of the second embodiment of the present invention, and FIG. 5 is a schematic diagram of the third embodiment. , FIG. 6 is a detailed sectional view of the main part thereof, and FIG. 7 is a detailed sectional view of the main part of the fourth embodiment of the present invention. 1... Cylinder block, 2... Cylinder head,
3... Intake pipe, 5... Radiator, 7... Water pump, 11... First intake air heating coolant passage, 1
2... First cooling liquid passage for heating intake air, 13... Subradiator, 14... Control valve device. Patent applicant Nissan Motor Co., Ltd. Figure 1 q Figure 2

Claims (1)

【特許請求の範囲】[Claims] 機関冷却液を冷却するラジェータを備えると共に、この
ラジェータ上流から分岐した冷却液を吸入空気または混
合気を加熱する吸気加熱部に導く液冷式の内燃機関にお
いて、上記ラジェータ上流から分岐して吸気加熱部に至
る第1の吸気加熱用冷却液通路の途中に、当該通路の冷
却液より低温の冷却液が流れる第2の吸気加熱用冷却液
通路を合流し、この合流部に、すくなくとも機関暖機後
の高負荷域には、吸気加熱部側に対して第1の吸気加熱
用冷却液通路は遮断する一万第2の吸気加熱用冷却液通
路は連通するように冷却液通路を切換制御する制御弁装
置を設けたことを特徴とする内燃機関の吸気加熱装置。
In a liquid-cooled internal combustion engine that is equipped with a radiator that cools engine coolant and that directs the coolant branched from upstream of the radiator to an intake air heating section that heats intake air or air-fuel mixture, the engine coolant is branched from upstream of the radiator to heat the intake air. In the middle of the first intake air heating coolant passage leading to the first intake air heating coolant passage, a second intake air heating coolant passage through which a coolant having a lower temperature than that of the coolant in the passage flows is joined, and at least the engine warming-up passage is connected to the second intake air heating coolant passage. In the later high load range, the first intake air heating coolant passage is shut off from the intake air heating section side, and the second intake air heating coolant passage is connected to the intake air heating section side by switching control. An intake air heating device for an internal combustion engine, characterized in that it is provided with a control valve device.
JP58236765A 1983-12-15 1983-12-15 Suction heating mechanism for internal-combustion engine Pending JPS60128968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236765A JPS60128968A (en) 1983-12-15 1983-12-15 Suction heating mechanism for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236765A JPS60128968A (en) 1983-12-15 1983-12-15 Suction heating mechanism for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60128968A true JPS60128968A (en) 1985-07-10

Family

ID=17005456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236765A Pending JPS60128968A (en) 1983-12-15 1983-12-15 Suction heating mechanism for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60128968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293154U (en) * 1985-12-03 1987-06-13
FR2797660A1 (en) * 1999-08-19 2001-02-23 Peugeot Citroen Automobiles Sa Air reheater for motor vehicle internal combustion engine intake air has engine coolant to air heat exchanger adjacent to air filter
KR100354364B1 (en) * 1999-12-07 2002-09-28 현대자동차주식회사 Intake temperature control device of engine
CN114893291A (en) * 2022-05-09 2022-08-12 中国铁建重工集团股份有限公司 Air inlet heating device and heating method for diesel generating set

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293154U (en) * 1985-12-03 1987-06-13
JPH0437258Y2 (en) * 1985-12-03 1992-09-02
FR2797660A1 (en) * 1999-08-19 2001-02-23 Peugeot Citroen Automobiles Sa Air reheater for motor vehicle internal combustion engine intake air has engine coolant to air heat exchanger adjacent to air filter
KR100354364B1 (en) * 1999-12-07 2002-09-28 현대자동차주식회사 Intake temperature control device of engine
CN114893291A (en) * 2022-05-09 2022-08-12 中国铁建重工集团股份有限公司 Air inlet heating device and heating method for diesel generating set
CN114893291B (en) * 2022-05-09 2023-08-08 中国铁建重工集团股份有限公司 Air inlet heating device and heating method for diesel generator set

Similar Documents

Publication Publication Date Title
US7263954B2 (en) Internal combustion engine coolant flow
US4288031A (en) Thermostatic control valve
KR102398887B1 (en) Cooling system for vehicles and thereof controlled method
JP2003328753A (en) Electronically controlled thermostat
US6343573B1 (en) Thermostat device
JP3185581B2 (en) Internal combustion engine cooling system
JPS60128968A (en) Suction heating mechanism for internal-combustion engine
US10436102B2 (en) Cooling system for vehicles and control method thereof
JPS5968545A (en) Accelerating device of warm-up for internal-combustion engine
JPH02125910A (en) Cooling water flow control device for internal combustion engine
GB2286039A (en) Engine cooling system
JP3104538B2 (en) Internal combustion engine cooling system
JP2006105105A (en) Engine cooling device
JP4492240B2 (en) Engine cooling system
JP3928936B2 (en) Thermostat device
JPH0571341A (en) Cooling device of engine
JP2002097952A (en) Exhaust manifold device for vehicle
JPS6344932B2 (en)
US11047279B2 (en) Warm-up device
JP2647483B2 (en) Engine coolant temperature control device
JPS64573B2 (en)
JP2005214075A (en) Cooling device of internal combustion engine
JPS5915662A (en) Heating controller of engine suction system
JP2566660Y2 (en) Water-cooled engine
JPS6344931B2 (en)