JPH02125910A - Cooling water flow control device for internal combustion engine - Google Patents
Cooling water flow control device for internal combustion engineInfo
- Publication number
- JPH02125910A JPH02125910A JP27804988A JP27804988A JPH02125910A JP H02125910 A JPH02125910 A JP H02125910A JP 27804988 A JP27804988 A JP 27804988A JP 27804988 A JP27804988 A JP 27804988A JP H02125910 A JPH02125910 A JP H02125910A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- engine
- temperature
- water temperature
- flow control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000498 cooling water Substances 0.000 title claims abstract description 59
- 238000002485 combustion reaction Methods 0.000 title claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 230000005855 radiation Effects 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 7
- 238000012937 correction Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 238000001816 cooling Methods 0.000 abstract description 3
- 239000000446 fuel Substances 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 2
- 238000005352 clarification Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000010792 warming Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 101100311260 Caenorhabditis elegans sti-1 gene Proteins 0.000 description 1
- 101000661807 Homo sapiens Suppressor of tumorigenicity 14 protein Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2023/00—Signal processing; Details thereof
- F01P2023/08—Microprocessor; Microcomputer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/13—Ambient temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2025/00—Measuring
- F01P2025/08—Temperature
- F01P2025/32—Engine outcoming fluid temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/167—Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
〈産業−にの利用分野〉
本発明は、機関の冷却水の流量を制御するための流量制
御弁を有する内燃機関の冷却水流量制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] <Industrial Field of Application> The present invention relates to a cooling water flow rate control device for an internal combustion engine having a flow rate control valve for controlling the flow rate of engine cooling water.
〈従来の技術〉
一般に自動車用エンジンに於ては、エンジン内のウォー
タジャケットとラジェータとを連通ずる冷却水通路のエ
ンジン側出口部または人口部にサーモスタットを設けて
おり、暖機運転中にはラジェータに冷却水が流れないよ
うにして暖機を促進させるべく、サーモスタットにより
冷却水通路を閉じ、暖機後にはオーバヒートを防止する
べく、冷却水をラジェータに流して循環させるように冷
却水通路を開くようにしている。このサーモスタットに
は、感温部材としてサーモワックスを用いており、その
サーモワックスの膨脂収縮により弁体を作動させている
が、概ね開閉の2位置制御しかできず、高精度な制御が
困難である。<Prior art> Generally, in an automobile engine, a thermostat is provided at the engine side outlet or intake section of the cooling water passage that communicates the water jacket and radiator in the engine. The thermostat closes the cooling water passage to prevent cooling water from flowing to the radiator and promote warm-up, and after warming up, the cooling water passage is opened to circulate the cooling water through the radiator to prevent overheating. That's what I do. This thermostat uses thermowax as a temperature-sensitive member, and the valve body is operated by the expansion and contraction of the thermowax, but it can only be controlled in two positions, open and closed, making it difficult to control with high precision. be.
ところで、軽負荷時には熱損失の軽減と排気の浄化を促
進するためにラジェータへの循環水量を比較的少なくし
、高負荷時には吸気光てん効率を向−lニさせるために
ラジェータへの循環水量を比較的多くすると良く、運転
状態に応じて冷却水の循環量を変化さることが望ましい
。例えば、特開昭59−226225号公報には、負圧
駆動型の流量制御弁と、制御弁とは別個に設けた水温セ
ンサとを用い、運転状態としてのエンジン回転数及び吸
気負圧により目標水温をデータマツプから呼び出して、
その目標水温と上記水温センサにより検出した冷却水温
度とを一致させるように弁開度をフィードバック制御す
るようにしたものが開示されている。By the way, when the load is light, the amount of water circulating to the radiator is kept relatively small to reduce heat loss and purify the exhaust gas, and when the load is high, the amount of water circulating to the radiator is reduced to improve the intake efficiency. It is preferable to use a relatively large amount of cooling water, and it is desirable to change the circulating amount of cooling water depending on the operating condition. For example, Japanese Patent Application Laid-Open No. 59-226225 uses a negative pressure driven flow rate control valve and a water temperature sensor provided separately from the control valve to set a target value based on the engine speed and intake negative pressure as operating conditions. Recall the water temperature from the data map,
A system has been disclosed in which the valve opening degree is feedback-controlled so that the target water temperature matches the cooling water temperature detected by the water temperature sensor.
しかしながら、」1記構造によると、冷却水のエンジン
入口部に水温センサが設けられており、エンジン内の冷
却水の最大温度を管理することが難しく、運転状態の変
化による冷却水温度の変化に対して最適な制御を行うこ
とが困難である。また、外気温度に関係なく制御するた
め外気温度の違いに対して精度良く制御することができ
ないばかりでなく、フィードバック制御を行っているこ
とから、例えば空調装置としてのヒータコアに冷却水が
流れた際には、その温度変化に対して応答遅れを生じる
虞れがある。However, according to the structure described in item 1, a water temperature sensor is installed at the engine inlet of the cooling water, making it difficult to control the maximum temperature of the cooling water inside the engine, and it is difficult to control the maximum temperature of the cooling water in the engine due to changes in the cooling water temperature due to changes in operating conditions. Therefore, it is difficult to perform optimal control. In addition, since the control is performed regardless of the outside temperature, it is not possible to accurately control for differences in outside temperature, and since feedback control is performed, for example, when cooling water flows into the heater core of an air conditioner, There is a risk that a response delay may occur due to temperature changes.
〈発明が解決しようとする課題〉
このような従来技術の問題点に鑑み、本発明の主な目的
は、機関の運転状態に応じて常に最適な制御が可能な内
燃機関の冷却水流量制御装置を提供することにある。<Problems to be Solved by the Invention> In view of the problems of the prior art, the main object of the present invention is to provide a cooling water flow rate control device for an internal combustion engine that can always perform optimal control according to the operating state of the engine. Our goal is to provide the following.
[発明の構成]
〈課題を解決するための手段〉
このような目的は、本発明によれば、機関とラジェータ
とを連通ずる冷却水通路中に介装された流量制御弁と、
冷却水の前記機関の出口部の温度を検出する手段と、前
記機関の運転状態を検出する手段と、外気温度を検出す
る手段と、前記運転状態の検出結果に基づいて目標水温
を設定する手段と、前記冷却水温度と前記目標水温との
偏差に基づいて補正放熱量を設定する手段と、前記補正
放熱量を達成するべく前記各検出手段による検出結果に
基づいて前記流量制御弁の開度を制御する手段とを有す
ることを特徴とする内燃機関の冷却水流量制御装置を提
供することにより達成される。[Structure of the Invention] <Means for Solving the Problems> According to the present invention, the present invention provides a flow control valve interposed in a cooling water passage that communicates an engine and a radiator;
means for detecting the temperature of the cooling water at the outlet of the engine; means for detecting the operating state of the engine; means for detecting outside air temperature; and means for setting a target water temperature based on the detection result of the operating state. and means for setting a corrected amount of heat radiation based on the deviation between the cooling water temperature and the target water temperature, and an opening degree of the flow rate control valve based on the detection result by each of the detection means in order to achieve the corrected amount of heat radiation. This is achieved by providing a cooling water flow rate control device for an internal combustion engine characterized by having means for controlling.
特に、前記補正放熱量設定手段が、前記補正放熱量に前
記冷却水を熱源とする空調装置の作動状態が与える影響
を補償する手段を有すると良い。In particular, it is preferable that the corrected heat radiation amount setting means includes means for compensating for the influence of the operating state of the air conditioner using the cooling water as a heat source on the corrected heat radiation amount.
〈作用〉
このようにすれば、機関の運転状態の変化に応じて補正
放熱量を算出して、その補正放熱量を達成するべく流量
制御弁の開度を制御することができ、冷却水の循環量を
運転状態の変化に応じてフィードフォワード制御するこ
とができる。また、空調装置が作動した場合の補正放熱
量に対する影響を補償することにより、空調装置の作動
により制御の応答遅れが生じることがない。<Operation> In this way, it is possible to calculate the corrected heat radiation amount according to changes in the operating state of the engine, and control the opening degree of the flow control valve to achieve the corrected heat radiation amount. The amount of circulation can be feedforward controlled according to changes in operating conditions. Further, by compensating for the influence on the corrected heat radiation amount when the air conditioner is activated, a delay in control response due to the operation of the air conditioner does not occur.
〈実施例〉
以下、本発明の好適実施例を添付の図面について詳しく
説明する。<Embodiments> Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第1図は、本発明が適用されたエンジンの冷却水流量制
御装置を模式的に示す全体図であり、エンジン1に設け
られたウォーターポンプ2の吸込通路10とラジェータ
3の下部とが、人口側通路4及び流量制御弁5を介して
互いに連通している。FIG. 1 is an overall view schematically showing a cooling water flow rate control device for an engine to which the present invention is applied. They communicate with each other via a side passage 4 and a flow control valve 5.
エンジン1内には、ウォータポンプ2により吐出される
冷却水をエンジン1の各部に通すためのウォータジャケ
ット7が郭成されており、ウォータジャケット7とラジ
ェータ3の上部とが出口側通路6を介して互いに連通し
ている。A water jacket 7 is formed in the engine 1 to allow the cooling water discharged by the water pump 2 to pass through each part of the engine 1. The water jacket 7 and the upper part of the radiator 3 are connected through an outlet passage 6. are connected to each other.
また、ウォータジャケラl−7は、バイパス通路8を介
して流量制御弁5に通じており、人口側通路4を閉じる
向きに流量制御弁5が作動した際には、ウォータジャケ
ット7内の冷却水が、図の想像線により示される矢印の
ようにバイパス通路8を介して循環可能なようにされて
いると共に、流量制御弁5により入口側通路4を全開状
態にした際には、バイパス通路8が全閉状態になり、図
の実線により示される矢印のように循環する。なお、ウ
ォータジャケット7内の冷却水は、暖房用のヒータコア
9を介しても循環するようにされており、ヒータ或いは
ニアコンディショナを作動させた時には、ウォータジャ
ケット7内の冷却水が、図の破線の矢印のようにヒータ
コア9内を流れることとなる。The water jacket l-7 also communicates with the flow rate control valve 5 via the bypass passage 8, and when the flow rate control valve 5 operates in the direction of closing the artificial side passage 4, the water jacket 7 is cooled. Water is allowed to circulate through the bypass passage 8 as shown by the arrow shown by the imaginary line in the figure, and when the inlet passage 4 is fully opened by the flow rate control valve 5, the bypass passage 8 becomes fully closed and circulates as shown by the arrow shown by the solid line in the figure. Note that the cooling water in the water jacket 7 is also circulated through the heater core 9 for heating, and when the heater or near conditioner is operated, the cooling water in the water jacket 7 is circulated as shown in the figure. It flows inside the heater core 9 as shown by the broken line arrow.
流量制御弁5は、第2図に良く示されるようにに、人口
側通路4と吸込通路10との間に設けられた弁室14と
、前記したように人口側通路4とバイパス通路8との開
閉状態を互いに相反する状態にし得る弁体11と、その
弁体11を直線的に往復動させるための直動型ステッピ
ングモータ12とからなる。即ち、ステッピングモータ
12の駆動シャフト16の先端に弁体11が固設されて
いると共に、駆動シャフト16の基部に形成されたねじ
部とロータ13の内ねじ部とが互いに螺合しており、ロ
ータ13が正逆転することにより駆動シャフト16が軸
線方向に往復動するようにされている。なお、ステッピ
ングモータ12は、高トルクが得られる所謂ハイブリッ
ド型からなる。As clearly shown in FIG. 2, the flow control valve 5 includes a valve chamber 14 provided between the artificial side passage 4 and the suction passage 10, and a valve chamber 14 provided between the artificial side passage 4 and the bypass passage 8 as described above. The valve body 11 is comprised of a valve body 11 that can be set to opposite opening and closing states, and a direct-acting stepping motor 12 for linearly reciprocating the valve body 11. That is, the valve body 11 is fixed to the tip of the drive shaft 16 of the stepping motor 12, and the threaded portion formed at the base of the drive shaft 16 and the internal threaded portion of the rotor 13 are screwed together. As the rotor 13 rotates forward and backward, the drive shaft 16 reciprocates in the axial direction. Note that the stepping motor 12 is of a so-called hybrid type that can obtain high torque.
また弁体11には、第2図の想像線により示されるよう
に入口側通路4を全開にした状態に於て、ラジェータ3
側の内圧が異常に高まった際の異常圧力を逃し得る(=
J勢力をもって閉弁方向にばね付勢された副弁体15が
設けられている。即ち、副弁体15のばね付勢力以上に
ラジェータ3側の内圧が高まった際には副弁体15が開
弁するため、入口側通路4内の冷却水を弁体11内を介
して吸込通路10側に流すことができる。The valve body 11 also includes a radiator 3 when the inlet passage 4 is fully opened, as shown by the imaginary line in FIG.
Abnormal pressure can be released when the internal pressure on the side increases abnormally (=
A sub-valve body 15 is provided which is spring biased in the valve closing direction with J force. That is, when the internal pressure on the radiator 3 side increases beyond the spring biasing force of the sub-valve body 15, the sub-valve body 15 opens, so that the cooling water in the inlet side passage 4 is sucked through the valve body 11. It can flow to the passage 10 side.
前記したステッピングモータ12は第1図に示されるよ
うに制御装置17からの出力信号により駆動されるが、
本装置にあっては、入口側通路4の全開状態を流量制御
弁5の初期状態としており、例えばイグニッションをオ
ンした際に人口側通路4を全開にする向きに弁体11を
移動させるべく、ステッピングモータ12を回転させる
。ステッピングモータ12の後端部には例えばリミット
スイッチ型の位置センサ18が設けられており、駆動シ
ャフト16の後端が位置センサ18に衝当した際にその
信号を制御装置17に送り、弁体11の初期位置とする
ようにされている。The stepping motor 12 described above is driven by an output signal from the control device 17 as shown in FIG.
In this device, the fully open state of the inlet side passage 4 is the initial state of the flow rate control valve 5, and for example, when the ignition is turned on, the valve body 11 is moved in a direction to fully open the artificial side passage 4. The stepping motor 12 is rotated. For example, a limit switch type position sensor 18 is provided at the rear end of the stepping motor 12, and when the rear end of the drive shaft 16 hits the position sensor 18, a signal is sent to the control device 17, and the valve body is activated. The initial position is 11.
また、ウォータジャケット7の出口側通路4に臨む出口
部には、冷却水温度を検出するための水温センサ19が
設けられ、外気温度として例えば吸気温度を検出するた
めの吸気温センサ20、及びエンジン1の運転状態を検
出するべく吸気負圧を検出する負圧センサ21が図示さ
れない吸気管にそれぞれ設けられていると共に、同様に
運転状態を検出するべくエンジン回転数を検出する公知
形式の回転センサ22がエンジン1に設けられており、
それぞれ制御装置17に検出信号を送るようにされてい
る。また、制御装置17には、図示されないヒータまた
はニアコンディショナをオンすることによりヒータコア
9に冷却水が流れたことを検出する信号が入力されるよ
うになっている。Further, a water temperature sensor 19 for detecting the cooling water temperature is provided at the outlet portion of the water jacket 7 facing the outlet side passage 4, an intake temperature sensor 20 for detecting the intake air temperature as the outside air temperature, and an engine A negative pressure sensor 21 that detects intake negative pressure to detect the operating state of 1 is provided in each intake pipe (not shown), and a rotation sensor of a known type that detects the engine rotation speed to similarly detect the operating state. 22 is provided in the engine 1,
A detection signal is sent to the control device 17, respectively. Further, a signal is input to the control device 17 to detect that cooling water has flowed into the heater core 9 by turning on a heater or a near conditioner (not shown).
第3図は、制御装置17に於て行なわれる処理のプログ
ラムの流れを示すもので、先ずST1に於て、弁体11
の初期位置からの移動量に応じたステッピングモータ1
2の現在のステップ数Sを読み込んだ後、ST2に於て
、回転センサ22によるエンジン回転数Ne及び負圧セ
ンサ21による吸気負圧pbを読み込み、更にST3に
於て、吸気温センサ20による外気温度Ta及び水温セ
ンサ19による冷却水温度Twを読み込む。次にST4
に於て、ST2で読み込んだエンジン回転数Ne及び吸
気負圧pbに基づいて、第4図に示されるパターンにて
記憶されたデータから目標水温Toのルックアップを行
なう。そしてST5に於て、ST3で読み込んだ冷却水
温度TwとST4で呼び出した目標水温Toとを比較し
、T w <Toである暖機中ならばST6に進み、S
T6に於て温度の偏差t1を、
tl−To−Tw
により算出する。次のST7に於て、その偏差t1に応
じた補正放熱量Qを、第5図に示される関数曲線に基づ
いて求めるルックアップを行なう。FIG. 3 shows the flow of the processing program performed by the control device 17. First, in ST1, the valve body 11 is
Stepping motor 1 according to the amount of movement from the initial position of
After reading the current step number S of 2, in ST2, the engine rotation speed Ne detected by the rotation sensor 22 and the intake negative pressure pb detected by the negative pressure sensor 21 are read, and further in ST3, the outside air temperature detected by the intake temperature sensor 20 is read. The temperature Ta and the cooling water temperature Tw measured by the water temperature sensor 19 are read. Next ST4
In step ST2, the target water temperature To is looked up from the data stored in the pattern shown in FIG. 4, based on the engine speed Ne and intake negative pressure pb read in ST2. Then, in ST5, the cooling water temperature Tw read in ST3 is compared with the target water temperature To called out in ST4, and if T w < To, the temperature is being warmed up, the process proceeds to ST6, and S
At T6, the temperature deviation t1 is calculated by tl-To-Tw. In the next step ST7, a lookup is performed to determine the corrected heat radiation amount Q corresponding to the deviation t1 based on the function curve shown in FIG.
更にST8に於て、ヒータまたはニアコンディショナが
オンされてヒータコア9に冷却水が流れていると判断し
た場合には、ST9に進み、ヒータコア9による必要放
熱量に応じて予め記憶されている補正放熱量Qhを呼び
出して、STI 1に進む。なおST8に於て、ヒータ
またはエアコンディショナがオフであると判断した場合
には、5T10に進み、補正放熱量Qhを0にして、5
T11に進む。5TIIに於て、Sr7で呼び出した補
正放熱量Qと、Sr1または5TIOで呼び出した補正
放熱量Qhとに基づいて、弁体11の閉方向への移動量
に応じた補正ステップ数ΔSを次式により算出する。Further, in ST8, if it is determined that the heater or near conditioner is turned on and cooling water is flowing to the heater core 9, the process proceeds to ST9, and a pre-stored correction is made according to the required amount of heat dissipation by the heater core 9. Call up the heat radiation amount Qh and proceed to STI 1. Note that if it is determined in ST8 that the heater or air conditioner is off, the process proceeds to 5T10, sets the corrected heat radiation amount Qh to 0, and
Proceed to T11. In 5TII, based on the corrected heat radiation amount Q called in Sr7 and the corrected heat radiation amount Qh called in Sr1 or 5TIO, the number of correction steps ΔS according to the amount of movement of the valve body 11 in the closing direction is calculated using the following formula. Calculated by
ΔS=K (Qh Q)/Ne (Tw−Ta)なお
上記式は、エンジン1の冷却水への放熱量が冷却水の循
環水量に比例することに基づくと共に、循環水量がエン
ジン回転数に比例するとして導き出したものであり、式
中のKは、補正放熱量に応じた冷却水の循環水量を確保
するために、流量制御弁5の開度に応じた弁体11の移
動量をステップ数に換算するための係数である。ΔS=K (Qh Q)/Ne (Tw-Ta) The above formula is based on the fact that the amount of heat released to the cooling water of the engine 1 is proportional to the amount of circulating water in the cooling water, and the amount of circulating water is proportional to the engine speed. K in the formula is the amount of movement of the valve body 11 according to the opening degree of the flow control valve 5 in order to ensure the amount of circulating cooling water according to the corrected heat radiation amount. This is a coefficient for converting into .
そして、5TI2に於て補正後のステップ数Sを算出し
、5T13に於て補正ステップ数68分だけステッピン
グモータ12を回転させる。Then, in 5TI2, the number of steps S after correction is calculated, and in 5T13, the stepping motor 12 is rotated by the corrected number of steps, 68.
ところで、Sr5に於て、目標水温Toよりも冷却水温
度Twが高い場合には、5T14に進み、ST14に於
て、冷却水の上限水温T1に対する高低を比較し、低い
場合には5T15に進む。この5T15に於て、温度の
偏差t2を、t 2=Tw−T。By the way, in Sr5, if the cooling water temperature Tw is higher than the target water temperature To, proceed to 5T14, and in ST14, compare the height of the cooling water with respect to the upper limit water temperature T1, and if it is lower, proceed to 5T15. . In this 5T15, the temperature deviation t2 is t2=Tw-T.
により算出し、次のs’r16に於て、その偏差t2に
応じた補正放熱量Qを、第6図に示される関数曲線に基
づいて求めるルックアップを行なう。In the next s'r16, a lookup is performed to determine the corrected heat radiation amount Q according to the deviation t2 based on the function curve shown in FIG.
そしてSr1に進み、以後前記と同様の処理を行なう。Then, the process advances to Sr1, and the same processing as described above is performed thereafter.
また5T14に於て、」1限水温T1よりも冷却水温度
Twが高い場合には5TI7に進み、5T17に於てス
テップ数Sを0としてがら5T13に進み、人口側通路
4を全開にするべく弁体11を初期位置に向けて移動さ
せるようにステッピングモータ12を回転する。In addition, in 5T14, if the cooling water temperature Tw is higher than the 1 limit water temperature T1, the process proceeds to 5TI7, and in 5T17, the step number S is set to 0, and the process proceeds to 5T13, in order to fully open the artificial passageway 4. The stepping motor 12 is rotated to move the valve body 11 toward the initial position.
なお、本実施例に於ては、Sr4に於て呼び出す目標水
温Toを、第4図に示されるように高温域、中温域及び
低温域の3領域に区分けしており、エンジン回転数Ne
及び吸気負圧pbの両者の相対関係に応じた目標水温T
oを定めている。即ち、エンジン回転数Neが高いほど
目標水温Toを低くし、かつ高負荷になるほど目標水温
Toが低くなるようにしており、高回転または高負荷状
態の運転時にはSr5から5T14に進み易くして、冷
却能力を高めるようにしている。In this embodiment, the target water temperature To called at Sr4 is divided into three regions, high temperature range, medium temperature range, and low temperature range, as shown in FIG.
and the target water temperature T according to the relative relationship between the two
o. That is, the higher the engine speed Ne is, the lower the target water temperature To is, and the higher the load is, the lower the target water temperature To is, so that it is easy to progress from Sr5 to 5T14 during high speed or high load operation. We are trying to increase the cooling capacity.
また、Sr7に於て呼び出す補正放熱量Qを、第5図に
示されるように偏差t1が大きくなるにつれて減少させ
、所定値具−にになると負の補正量となる関数曲線によ
り導き出すようにしている。In addition, the corrected heat radiation amount Q called in Sr7 is decreased as the deviation t1 increases, as shown in FIG. 5, and is derived from a function curve that becomes a negative correction amount when the deviation t1 becomes larger. There is.
これにより、例えば冷間時に始動する場合には、冷却水
をラジェータ3に流さないようにして素早く暖めること
が望ましいため、人口側通路4を閉じる向きに弁体11
を移動させる必要がある。即ち、冷間時には冷却水温度
Twが低いため温度偏差t1が大きくなって、上記補正
放熱量Qが負の値になり、ΔSが正の値となるため、ス
テップ数Sを増やして弁体11を閉じる向きに駆動する
。With this, for example, when starting in a cold state, it is desirable to prevent the cooling water from flowing into the radiator 3 and quickly warm it up.
need to be moved. That is, when the cooling water is cold, the temperature deviation t1 becomes large because the cooling water temperature Tw is low, and the corrected heat radiation amount Q becomes a negative value, and ΔS becomes a positive value. Therefore, the number of steps S is increased and the valve body 11 Drive in the closing direction.
これに対して暖間時に始動する場合には、冷却水がある
程度暖まっているため水温の−L昇曲線がオーバシュー
トしないようにするべく、冷却水をうジエータ3に流す
ようにすると良い。従って、暖間時には冷却水温度Tw
が高いため温度偏差t1が小さくなって、上記補正放熱
量Qが正の値になり、ΔSが負の値となるため、ステッ
プ数Sを減らして、弁体11を開く向きに駆動する。On the other hand, when the engine is started when the engine is warm, the cooling water is already warmed to some extent, so it is preferable to allow the cooling water to flow through the radiator 3 in order to prevent the -L rising curve of the water temperature from overshooting. Therefore, during warm weather, the cooling water temperature Tw
Since the temperature difference t1 is high, the temperature deviation t1 becomes small, the corrected heat radiation amount Q becomes a positive value, and ΔS becomes a negative value, so the number of steps S is reduced and the valve body 11 is driven in the opening direction.
また、5T16に於て呼び出す補正放熱量Qを、第6図
に示されるように、温度偏差t2が大きくなるにつれて
増加するようにしている。この場合にはエンジン1が暖
機後の状態にあり、冷却水をラジェータ3に大量に流し
て冷却する必要がある。Further, the corrected heat radiation amount Q called at 5T16 is set to increase as the temperature deviation t2 increases, as shown in FIG. In this case, the engine 1 is in a warmed-up state, and it is necessary to cool the engine by flowing a large amount of cooling water into the radiator 3.
従って、冷却水温度Twが高くなるにつれて温度偏差t
2が大きくなるため、補正放熱量Qが大きくなり、全開
位置に向けて弁体11を駆動することとなる。Therefore, as the cooling water temperature Tw becomes higher, the temperature deviation t
2 becomes larger, the corrected heat radiation amount Q becomes larger, and the valve body 11 is driven toward the fully open position.
このように、冷却水温度の高低に応じて、低水温である
暖機状態のときには暖機を促進する制御を行い、暖機後
でありかつ高水温の場合にはラジェータに流す冷却水が
最大となるように制御している。また、暖機後の通常の
温度範囲である場合に於て、負荷の大きさに応じた適切
な放熱を行うように制御するため、熱損失の軽減及び排
気の浄化を向」二し得ると共に、エンジンの運転状態に
応じた必要放熱量を基準として所謂フィードフォワード
制御を行うため、フィードバック制御による制御遅れが
ない。また、サーモスタットを用いるものに対して制御
弁の取付は自由度が大きく、その設計が容易であるばか
りでなく、ステッピングモータ12を用いることにより
弁体11を高精度に位置制御できるため、半開状態に於
ける流量の制御を極めて精度良くかつ容易に行うことが
できる。In this way, depending on the level of the cooling water temperature, when the water temperature is low and the water temperature is warm up, control is performed to promote warming up, and when the water temperature is high after warming up, the cooling water flowing to the radiator is controlled to the maximum level. It is controlled so that In addition, when the temperature is within the normal temperature range after warming up, it is controlled to perform appropriate heat radiation according to the size of the load, so it is possible to reduce heat loss and purify the exhaust gas. Since so-called feedforward control is performed based on the required amount of heat radiation depending on the operating state of the engine, there is no control delay due to feedback control. In addition, the control valve has a greater degree of freedom in installation than one that uses a thermostat, and is not only easy to design, but also uses the stepping motor 12 to control the position of the valve body 11 with high precision, so that it can be placed in a half-open state. The flow rate can be controlled very accurately and easily.
また、系全体の応答性がそれほど早くないと共にハンチ
ングを防止するためにも、比較的長いサイクルタイムを
もって制御を行えば充分であり、例えば他の制御装置の
CPUを用いることも可能である。なお、エンジンコン
トロール装置に冷却水温度、吸気温度、及び吸気負圧用
の各センサを設けているエンジンについては、新に各セ
ンサを設ける必要がないため、部品コストの高騰を抑制
できるなどの効果もある。Furthermore, since the responsiveness of the entire system is not so fast and in order to prevent hunting, it is sufficient to perform control with a relatively long cycle time, and for example, it is also possible to use the CPU of another control device. Furthermore, for engines whose engine control devices are equipped with sensors for cooling water temperature, intake air temperature, and intake negative pressure, there is no need to install new sensors, which has the effect of suppressing the rise in parts costs. be.
[発明の効果コ
このように本発明によれば、冷却水の機関出口部の水温
と外気温とを検出することにより、機関の運転状態の変
化による補正放熱量を精度良く算出でき、その補正放熱
量を達成するべく流量制御弁の開度を制御するため、常
に最適な冷却効果が得られると共に、燃費及び排気の浄
化を向」ニすることができる。また、補正放熱量に対す
る空調装置の作動状態による影響を補償することにより
、空調装置が作動した際の温度変化に対する応答遅れを
防止できる等、その効果は極めて大である。[Effects of the Invention] As described above, according to the present invention, by detecting the water temperature of the cooling water at the engine outlet and the outside air temperature, it is possible to accurately calculate the corrected heat radiation amount due to changes in the engine operating status, and the correction Since the opening degree of the flow rate control valve is controlled to achieve the amount of heat dissipation, an optimum cooling effect can always be obtained, and fuel efficiency and exhaust gas purification can be improved. Further, by compensating for the influence of the operating state of the air conditioner on the corrected heat radiation amount, the effect is extremely large, such as preventing a delay in response to temperature changes when the air conditioner is activated.
第1図は、本発明が適用された冷却水流量制御装置の全
体を模式的に示す図である。
第2図は、本発明に基づく流量制御弁を示す要部拡大図
である。
第3図は、本発明に基づく流量制御装置のプログラムの
流れを示すフロー図である。
第4図は、第3図に示すSr1に於ける制御パターンの
一例を示す図である。
第5図は、第3図に示すSr7に於ける制御関数曲線の
一例を示す図である。
第6図は、第3図に示す5T16に於ける制御関数曲線
の一例を示す図である。
1・・・エンジン 2・・・ウォータポンプ3・
・・ラジェータ 4・・・人口側通路5・・・流量
制御弁 6・・・出口側通路7・・・ウォータジャ
ケット
8・・・バイパス通路 9・・・ヒータコア10・・
・吸込通路 11・・・弁体12・・・ステッピン
グモータFIG. 1 is a diagram schematically showing the entire cooling water flow rate control device to which the present invention is applied. FIG. 2 is an enlarged view of the main parts of the flow control valve according to the present invention. FIG. 3 is a flow diagram showing the flow of a program for a flow rate control device based on the present invention. FIG. 4 is a diagram showing an example of a control pattern in Sr1 shown in FIG. FIG. 5 is a diagram showing an example of a control function curve at Sr7 shown in FIG. FIG. 6 is a diagram showing an example of a control function curve in 5T16 shown in FIG. 3. 1...Engine 2...Water pump 3.
...Radiator 4...Passage side passage 5...Flow rate control valve 6...Outlet side passage 7...Water jacket 8...Bypass passage 9...Heater core 10...
・Suction passage 11...Valve body 12...Stepping motor
Claims (2)
装された流量制御弁と、冷却水の前記機関の出口部の温
度を検出する手段と、前記機関の運転状態を検出する手
段と、外気温度を検出する手段と、前記運転状態の検出
結果に基づいて目標水温を設定する手段と、前記冷却水
温度と前記目標水温との偏差に基づいて補正放熱量を設
定する手段と、前記補正放熱量を達成するべく前記各検
出手段による検出結果に基づいて前記流量制御弁の開度
を制御する手段とを有することを特徴とする内燃機関の
冷却水流量制御装置。(1) A flow control valve interposed in a cooling water passage communicating between the engine and the radiator, means for detecting the temperature of the cooling water at the outlet of the engine, and means for detecting the operating state of the engine. , means for detecting outside air temperature; means for setting a target water temperature based on the detection result of the operating state; and means for setting a corrected heat radiation amount based on the deviation between the cooling water temperature and the target water temperature; A cooling water flow rate control device for an internal combustion engine, comprising means for controlling the opening degree of the flow rate control valve based on the detection results by the respective detection means in order to achieve a corrected amount of heat radiation.
記冷却水を熱源とする空調装置の作動状態が与える影響
を補償する手段を有することを特徴とする請求項1に記
載の内燃機関の冷却水流量制御装置。(2) The internal combustion engine according to claim 1, wherein the corrected heat radiation amount setting means includes means for compensating for the influence of the operating state of the air conditioner using the cooling water as a heat source on the corrected heat radiation amount. cooling water flow control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63278049A JP2573870B2 (en) | 1988-11-02 | 1988-11-02 | Cooling water flow control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63278049A JP2573870B2 (en) | 1988-11-02 | 1988-11-02 | Cooling water flow control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02125910A true JPH02125910A (en) | 1990-05-14 |
JP2573870B2 JP2573870B2 (en) | 1997-01-22 |
Family
ID=17591942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63278049A Expired - Fee Related JP2573870B2 (en) | 1988-11-02 | 1988-11-02 | Cooling water flow control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2573870B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002303139A (en) * | 2000-10-02 | 2002-10-18 | Behr Thermot-Tronik Gmbh | Thermostat valve |
KR100361305B1 (en) * | 2000-11-30 | 2002-11-21 | 현대자동차주식회사 | Cooling water temperature control system of a car and Method thereof |
US6684826B2 (en) | 2001-07-25 | 2004-02-03 | Toyota Jidosha Kabushiki Kaisha | Engine cooling apparatus |
JP2005248903A (en) * | 2004-03-05 | 2005-09-15 | Mitsubishi Electric Corp | Cooling system control method of vehicle power source |
WO2006087489A1 (en) * | 2005-02-21 | 2006-08-24 | Peugeot Citroen Automobiles | System for reducing the quantity of diesel fuel in the lubricating oil of a motor vehicle diesel engine |
JP2011127614A (en) * | 2011-03-28 | 2011-06-30 | Toyota Motor Corp | Cooling water control device for internal combustion engine |
DE102013211333A1 (en) * | 2013-06-18 | 2014-12-18 | Bayerische Motoren Werke Aktiengesellschaft | Thermostatic rotary valve and cooling system |
JP2018155147A (en) * | 2017-03-16 | 2018-10-04 | トヨタ自動車株式会社 | Engine cooling system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59226225A (en) * | 1983-06-08 | 1984-12-19 | Nissan Motor Co Ltd | Apparatus for controlling temperature of cooling water in internal-combustion engine for automobile |
JPS60166712A (en) * | 1984-02-09 | 1985-08-30 | Mazda Motor Corp | Cooling device of water-cooled engine |
JPS62237025A (en) * | 1986-04-07 | 1987-10-17 | Mazda Motor Corp | Cooling water controller for engine |
JPS62237023A (en) * | 1986-04-07 | 1987-10-17 | Mazda Motor Corp | Cooling water controller for engine |
JPS62237024A (en) * | 1986-04-07 | 1987-10-17 | Mazda Motor Corp | Cooling water controller for engine |
JPS62247114A (en) * | 1986-04-18 | 1987-10-28 | Toyota Motor Corp | Cooling water temperature control device for internal combustion engine |
JPS6387223U (en) * | 1986-11-28 | 1988-06-07 |
-
1988
- 1988-11-02 JP JP63278049A patent/JP2573870B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59226225A (en) * | 1983-06-08 | 1984-12-19 | Nissan Motor Co Ltd | Apparatus for controlling temperature of cooling water in internal-combustion engine for automobile |
JPS60166712A (en) * | 1984-02-09 | 1985-08-30 | Mazda Motor Corp | Cooling device of water-cooled engine |
JPS62237025A (en) * | 1986-04-07 | 1987-10-17 | Mazda Motor Corp | Cooling water controller for engine |
JPS62237023A (en) * | 1986-04-07 | 1987-10-17 | Mazda Motor Corp | Cooling water controller for engine |
JPS62237024A (en) * | 1986-04-07 | 1987-10-17 | Mazda Motor Corp | Cooling water controller for engine |
JPS62247114A (en) * | 1986-04-18 | 1987-10-28 | Toyota Motor Corp | Cooling water temperature control device for internal combustion engine |
JPS6387223U (en) * | 1986-11-28 | 1988-06-07 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002303139A (en) * | 2000-10-02 | 2002-10-18 | Behr Thermot-Tronik Gmbh | Thermostat valve |
KR100361305B1 (en) * | 2000-11-30 | 2002-11-21 | 현대자동차주식회사 | Cooling water temperature control system of a car and Method thereof |
US6684826B2 (en) | 2001-07-25 | 2004-02-03 | Toyota Jidosha Kabushiki Kaisha | Engine cooling apparatus |
JP2005248903A (en) * | 2004-03-05 | 2005-09-15 | Mitsubishi Electric Corp | Cooling system control method of vehicle power source |
WO2006087489A1 (en) * | 2005-02-21 | 2006-08-24 | Peugeot Citroen Automobiles | System for reducing the quantity of diesel fuel in the lubricating oil of a motor vehicle diesel engine |
FR2882397A1 (en) * | 2005-02-21 | 2006-08-25 | Peugeot Citroen Automobiles Sa | SYSTEM FOR REDUCING THE AMOUNT OF GASOLINE IN THE LUBRICATING OIL OF A DIESEL ENGINE OF A MOTOR VEHICLE |
JP2011127614A (en) * | 2011-03-28 | 2011-06-30 | Toyota Motor Corp | Cooling water control device for internal combustion engine |
DE102013211333A1 (en) * | 2013-06-18 | 2014-12-18 | Bayerische Motoren Werke Aktiengesellschaft | Thermostatic rotary valve and cooling system |
JP2018155147A (en) * | 2017-03-16 | 2018-10-04 | トヨタ自動車株式会社 | Engine cooling system |
Also Published As
Publication number | Publication date |
---|---|
JP2573870B2 (en) | 1997-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7128026B2 (en) | Method for controlling the heat in an automotive internal combustion engine | |
EP2333268B1 (en) | Cooling system for engine | |
US7011050B2 (en) | Control method of electronic control thermostat | |
US20030150406A1 (en) | Cooling system for internal combustion engine | |
JPH0259289B2 (en) | ||
JP4606683B2 (en) | Cooling method and apparatus for vehicle engine | |
KR20190045995A (en) | Cooling system for vehicles and thereof controlled method | |
JP4975153B2 (en) | Cooling device for internal combustion engine | |
JP2002155745A (en) | System and method for controlling coolant of internal combustion engine | |
JP4146372B2 (en) | Cooling system control method for vehicle power source | |
JP3379354B2 (en) | Exhaust gas recirculation control device for internal combustion engine with two-system cooling device | |
JPH02125910A (en) | Cooling water flow control device for internal combustion engine | |
US10436102B2 (en) | Cooling system for vehicles and control method thereof | |
CN114738099B (en) | Cooling device for turbocharged engine | |
JP2712720B2 (en) | Cooling method of internal combustion engine | |
JP2005188327A (en) | Vehicle cooling device | |
JPS5874824A (en) | Cooling device of engine | |
JP3122227B2 (en) | Engine cooling water temperature control method | |
JP3799803B2 (en) | Control device for cooling fan | |
JP2006105105A (en) | Engine cooling device | |
JPH1071839A (en) | Cooling water circuit for internal combustion engine | |
JP2006112344A (en) | Engine cooling system | |
US11624311B2 (en) | Engine cooling system | |
JP7444740B2 (en) | engine cooling system | |
WO2022202513A1 (en) | Cooling system for internal combustion engine, and cooling method for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |