JPS58106125A - Control method of cooling fluid temperature in internal-combustion engine - Google Patents

Control method of cooling fluid temperature in internal-combustion engine

Info

Publication number
JPS58106125A
JPS58106125A JP20255581A JP20255581A JPS58106125A JP S58106125 A JPS58106125 A JP S58106125A JP 20255581 A JP20255581 A JP 20255581A JP 20255581 A JP20255581 A JP 20255581A JP S58106125 A JPS58106125 A JP S58106125A
Authority
JP
Japan
Prior art keywords
coolant
bypass passage
temperature
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20255581A
Other languages
Japanese (ja)
Inventor
Shinichi Nanun
南雲 慎一
Fumio Jitsuzawa
実沢 文夫
Yoshifumi Hase
長谷 好文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20255581A priority Critical patent/JPS58106125A/en
Publication of JPS58106125A publication Critical patent/JPS58106125A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/06Using intake pressure as actuating fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/161Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps

Abstract

PURPOSE:To stop cooling fluid at a low load and hold the fluid to a high temperature range, by providing a control valve, closed at a high load while opened at the low load, in a bypass passage of small flow resistance bypassing cooling water from a delivery side to suction side of a water pump. CONSTITUTION:A bypass passage 40 of small flow resistance is connected to a delivery side 60a and suction side 60b of a water pump 6, and a bypass flow controller 50 is interposed in said bypass passage 40. The controller 50 is constituted by a diaphragm, dividing a unit into an upper chamber 501 introduced with suction negative pressure and bottom chamber 502 communicated to the atmosphere, and a valve 503 connected to said diaphragm, if negative pressure is intensified, the valve 503 is opened at a low load, and cooling fluid is circulated with the passage 40 of small flow resistance as the center almost not flowing into a cooling system reaching a radiator via a water jacket of an engine.

Description

【発明の詳細な説明】 本発明は、液冷式内燃機関における冷却液の温度制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the temperature of a coolant in a liquid-cooled internal combustion engine.

一般に液冷式内燃機関においては冷却系に設けられるサ
ーモスタットによって、冷却系を循環する冷却液の温度
が85℃前後の温度範囲となるような制御が行なわねて
いる。この温度範囲は排気ガス中のHC量の低減及び燃
費向上の点からすわば、より高いことが望ましい。しか
し、これが高いと、高負荷時に燃焼室壁温か必要以上に
上昇し混合気が加熱されて加速時などにノンキングが生
じ、また熱歪による耐久性が問題となる。従って、高負
荷時のノッキング防止及び熱歪による耐久性の点からす
れば低い方が望ましい。
Generally, in a liquid-cooled internal combustion engine, a thermostat provided in the cooling system does not control the temperature of the coolant circulating in the cooling system to be within a temperature range of about 85°C. It is desirable that this temperature range be higher in terms of reducing the amount of HC in the exhaust gas and improving fuel efficiency. However, if this is high, the wall temperature of the combustion chamber will rise more than necessary under high load, heating the air-fuel mixture and causing non-king during acceleration etc., and durability will become a problem due to thermal distortion. Therefore, from the viewpoint of preventing knocking under high loads and durability due to thermal distortion, a lower value is desirable.

このような観点から、従来、高負荷時には冷却液温度を
比較的低温域に保ち、これ以外の中・低負荷時には冷却
液温度を比較的高温域にする冷却液温度制御法が提案さ
れており、実開昭54−142722号はそのひとつで
ある。
From this point of view, coolant temperature control methods have been proposed that keep the coolant temperature in a relatively low range during high loads and keep the coolant temperature in a relatively high range during other medium and low loads. , Utility Model Application Publication No. 54-142722 is one of them.

第1図は実開昭54−142722号に示される冷却系
、第2図は第1図における冷却液温度制御装置な示す。
FIG. 1 shows the cooling system shown in Utility Model Application No. 54-142722, and FIG. 2 shows the cooling liquid temperature control device shown in FIG.

ラジェータ1で冷却された冷却液は、ウォータポンプ6
により、冷却液通路3を介してエンジン2内のウォータ
ジャケットを通過した後冷却液温度制御装置旦に送られ
、別の冷却液通路4を介して再びラジェータ1に入り、
冷却液の循環が行なわれる。冷却液温度制御装置旦は、
機関の負荷の状態に応じて冷却液の流量を制御し、最適
な冷却液温度を機関に与える。
The coolant cooled by the radiator 1 is transferred to the water pump 6
After passing through the water jacket in the engine 2 via the coolant passage 3, the coolant is sent to the coolant temperature control device, and then enters the radiator 1 again via another coolant passage 4.
Coolant circulation takes place. The coolant temperature control device is
The flow rate of the coolant is controlled according to the engine load condition to provide the engine with the optimum coolant temperature.

冷却液温度制御装置は、第2図に示されるように、エン
ジン本体に設けられたウォータアウトレット10とウォ
ータアウトレットハウ、ジンク11との間に挾持される
ワックス型のサーモスタット12ヲ有する。このサーモ
スタット12は、容器形状の感温部13と感温部13の
中を相対的に上下に摺動するピストン14とを有し、感
温部13には固形ワックスと弾性体のゴムが装入されて
いて、ピストン14の頭部は後述する制御片15の動作
によって上方に向けての付勢力が抑止されるように構成
されている。
As shown in FIG. 2, the coolant temperature control device includes a wax-type thermostat 12 held between a water outlet 10 provided in the engine body, a water outlet housing, and a zinc 11. This thermostat 12 has a container-shaped temperature sensing part 13 and a piston 14 that slides relatively up and down inside the temperature sensing part 13. The temperature sensing part 13 is equipped with solid wax and elastic rubber. The head of the piston 14 is configured such that the upward biasing force is suppressed by the operation of a control piece 15, which will be described later.

従って、エンジンの冷却水の温度が上昇し、ワックスが
融解して膨張すると、これにより生ずる圧力によって、
ピストン140頭部が制御片15によって抑止されてい
る限りは、感温部13の方が下方に押し下げられる。7
は感温部13の外側に設けられたサーモスタット弁で、
サーモスタンド12の未作動時には、ばね17のばね力
により、固定されている弁座18に圧接して冷却液通路
3を閉成している。
Therefore, as the temperature of the engine coolant rises and the wax melts and expands, the resulting pressure causes
As long as the head of the piston 140 is restrained by the control piece 15, the temperature sensing portion 13 is pushed downward. 7
is a thermostatic valve installed outside the temperature sensing part 13,
When the thermostand 12 is not in operation, the spring force of the spring 17 presses against the fixed valve seat 18 to close the coolant passage 3.

制御片15は制御片作動用ダイアフラム装置束のダイア
フラム21に取付けられており、ダイアフラム装置グは
シール部材22を介してウメーータアウトレットハウジ
ング11に取付けられている。ダイアフラム21によっ
て上下に分割されたダイアフラムと 装置の上部室nは負圧室であり、下部室は大気に通じて
いる。負圧室器は負圧遅延弁5を介してインテークマニ
ホールド(図示せず)等の負圧源に接続されており、エ
ンジンの負荷変動に応じてその吸入負圧が負圧室器に導
かれる。
The control piece 15 is attached to a diaphragm 21 of a control piece actuating diaphragm device bundle, and the diaphragm device is attached to the meter outlet housing 11 via a seal member 22. The upper chamber n of the diaphragm and the device, which is divided into upper and lower parts by the diaphragm 21, is a negative pressure chamber, and the lower chamber is communicated with the atmosphere. The negative pressure chamber unit is connected to a negative pressure source such as an intake manifold (not shown) via a negative pressure delay valve 5, and the intake negative pressure is guided to the negative pressure chamber unit according to engine load fluctuations. .

26は負圧室器の上部に設けられたストツノくで、制御
片端部15aがサーモスタット12のガイド部材谷内面
に治って上下に摺動する際の上方に向けての動作を規制
している。公は負圧室ηに設けたばねであり、負圧室に
導かれる負圧が小さくなり大気圧に近づいた状態となる
と、ダイアフラム21および制御片15をそのばね力に
よって図に示すような位置に戻す。
Reference numeral 26 is a stopper provided at the upper part of the negative pressure chamber unit, and controls the upward movement of the control end 15a when the control end 15a fits inside the groove of the guide member of the thermostat 12 and slides up and down. A spring is provided in the negative pressure chamber η, and when the negative pressure introduced into the negative pressure chamber becomes small and approaches atmospheric pressure, the spring force moves the diaphragm 21 and the control piece 15 to the position shown in the figure. return.

上記構成で、高負荷運転時にはインテークマニホールド
の吸入負圧が比較的小さいので、制御片15は、その端
部15aとピストン14との離間が小となるような位置
に保たれる。従って、冷却水温度が上昇してきて感温部
13のワックスが溶融し膨張すると、ピストン140頭
部自由端は直ちに制御片15の端部15aに当接してし
まい、上方に伸延しようとする付勢力がばねあのばね力
により拘束される。よってサーモスタット12の感温部
13は下方に押し出され、サーモスタット弁16が開か
れる。すなわち、エンジンの高負荷時にあっては、冷却
水温度上昇の比較的早い時期に大きい弁開度でサーモス
タット12による開弁が行なわれるので、開弁開始時期
における冷却水の水温は比較的低い温度、例えば70℃
前後に保たれる。一方、エンジンの低負荷時にあっては
、比較的大きい吸入負圧が負圧室nに導かれるので、制
御片15は上方に引き上げられる。従って、冷却水温度
の上昇により感温部13のワックスが膨張しピストン1
4が上方に伸延してもすぐには制御片端部15aには当
接せず、サーモスタットの開弁が遅延され、高負荷時に
比べて比較的高い温度に保たれる。
With the above configuration, during high-load operation, the suction negative pressure of the intake manifold is relatively small, so the control piece 15 is maintained at a position where the distance between its end 15a and the piston 14 is small. Therefore, when the cooling water temperature rises and the wax in the temperature sensing part 13 melts and expands, the free end of the head of the piston 140 immediately comes into contact with the end 15a of the control piece 15, and a biasing force that tries to extend upward is generated. is restrained by the spring force of the spring. Therefore, the temperature sensing portion 13 of the thermostat 12 is pushed downward, and the thermostat valve 16 is opened. That is, when the engine is under high load, the thermostat 12 opens the valve at a large valve opening at a relatively early stage when the temperature of the cooling water rises, so the temperature of the cooling water at the time when the valve starts to open is relatively low. , e.g. 70℃
It is kept forward and backward. On the other hand, when the engine is under low load, a relatively large suction negative pressure is introduced into the negative pressure chamber n, so the control piece 15 is pulled upward. Therefore, as the cooling water temperature rises, the wax in the temperature sensing part 13 expands and the piston 1
4 extends upward, it does not immediately contact the control end 15a, and the opening of the thermostat is delayed, so that the temperature is kept relatively high compared to when the load is high.

上記構成によれば、機関の負荷の状態に応じた冷却液の
温度制御が可能となるが、ダイアフラムとサーモスタッ
トとの組合せにより高負荷を検出しサーモスタットを開
弁さぜるようにしているので、冷却液温度の設定値の変
化に時間がかかること、及びラジェータから内燃機関内
部に冷却液が到達するまでに時間がかかることから、高
負荷状態に移行しても機関内部の冷却液温度はすぐには
低温域とはならず高温域の状態が短時間継続し、この間
にノッキングが起こり、運転不能又は機関の破損を招く
おそれがある。
According to the above configuration, it is possible to control the temperature of the coolant according to the engine load condition, but since the combination of the diaphragm and thermostat detects a high load and opens the thermostat, Because it takes time for the set value of the coolant temperature to change and for the coolant to reach the internal combustion engine from the radiator, the coolant temperature inside the engine does not change quickly even under high load conditions. During this period, the engine does not reach a low temperature range but remains in a high temperature range for a short period of time, and during this period knocking may occur, which may result in inoperability or damage to the engine.

本発明はこのような観点に基づいてなされたもので、そ
の目的は、低負荷時の冷却液温度の高温化と共に、高負
荷、移行時に速やかに低温域とじノノキングを防止する
ことの可能な冷却液温度制御法を提供することにある。
The present invention has been made based on this point of view, and its purpose is to provide a cooling system that not only increases the temperature of the coolant during low loads, but also that can quickly prevent the closing of low temperature areas during high loads and transitions. The object of the present invention is to provide a liquid temperature control method.

この目的を達成するための本発明の特徴は、液冷式内燃
機関の冷却液温度制御法において、冷却系に、ウォータ
ポンプの吐出側から吸込側へ冷却液をバイパスする、既
存冷却系より流量抵抗の小さいバイパス通路と、機関の
負荷の状態に従ってバイパス通路の冷却液流量を制御す
る冷却液流量制御弁とを有し、高負荷運転時には前記冷
却液流量制御弁を閉成して冷却系に冷却液を循環させ、
低負荷運転時には前記弁を開成して冷却液の流れをバイ
パス通路に導き冷却系の冷却液の循環をほぼ停止させる
ごとき内燃機関の冷却液温度制御法にある。
A feature of the present invention for achieving this object is that in a method for controlling the coolant temperature of a liquid-cooled internal combustion engine, the coolant is bypassed from the discharge side of the water pump to the suction side. It has a bypass passage with low resistance and a coolant flow control valve that controls the coolant flow rate in the bypass passage according to the load condition of the engine, and during high load operation, the coolant flow control valve is closed and the cooling system is closed. circulate the coolant,
The method of controlling the coolant temperature of an internal combustion engine includes opening the valve during low load operation to guide the flow of the coolant to the bypass passage, thereby substantially stopping the circulation of the coolant in the cooling system.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第3図は本発明による冷却液温度制御法を実施するため
の一構成例で、第1図と同符号のものは同一物を示す。
FIG. 3 shows an example of a configuration for carrying out the coolant temperature control method according to the present invention, and the same reference numerals as in FIG. 1 indicate the same components.

図において、凹は冷却液温度制御装置で、第2図で説明
したワックス型のサーモスタット(図示しない)を有す
るが、ダイアフラム装置は設けられていない。このサー
モスタットのピストン(第2図のピストン14に相当す
る)の自由端は、エンジン本体のウォータアウトレット
に固定されており、開弁温度は85℃近傍に設定されて
いる。40は冷却液のバイパス通路で、ウォータポンプ
6の吐出側60aから吸込側60bに冷却液をバイパス
するように設けられる。ウォータポンプの吐出側60a
はエンジン2のウォータジャケット入口側に位置してお
り、従ってウォータポンプにより吐き出された冷却液は
、ウォータジャケットか又はバイパス通路に導かれる。
In the figure, the recess is a coolant temperature control device and has the wax-type thermostat (not shown) described in FIG. 2, but no diaphragm device is provided. The free end of the piston (corresponding to the piston 14 in FIG. 2) of this thermostat is fixed to the water outlet of the engine body, and the valve opening temperature is set at around 85°C. Reference numeral 40 denotes a coolant bypass passage, which is provided to bypass the coolant from the discharge side 60a of the water pump 6 to the suction side 60b. Water pump discharge side 60a
is located on the water jacket inlet side of the engine 2, so that the coolant discharged by the water pump is guided to the water jacket or to the bypass passage.

このバイパス通路40は、機関内部を横断することな(
、即ち破線の矢印(ロ)で示す様にウォータポンプ6の
吐出側6oaからエンジン内部を横断させて吸込側60
bへ導かれるものではなく、実線の矢印げ)で示すよう
に、ウォータポンプ6の吐出側60aの近傍にある機関
外部への冷却液取出し口から機関内部を横断することな
く冷却液通路3に結合されてウォータポンプ6の吸込側
60bに到る。バイパス通路40は、冷却液の流れに対
する抵抗が、エンジン2のウォータジャケット、冷却液
温度制御装置刃及びラジェータ1を含む冷却系の冷却液
通路のそれよりも小となるように、即ち短く且つ内−径
の大きい通路で構成される。
This bypass passage 40 does not cross the inside of the engine (
, that is, as shown by the broken line arrow (b), from the discharge side 6oa of the water pump 6 to the suction side 60 by crossing the inside of the engine.
As shown by the solid arrow mark), the coolant is routed from the coolant outlet to the outside of the engine near the discharge side 60a of the water pump 6 to the coolant passage 3 without crossing the inside of the engine. It is connected to the suction side 60b of the water pump 6. The bypass passage 40 is designed so that the resistance to the flow of the coolant is smaller than that of the coolant passage of the cooling system including the water jacket of the engine 2, the coolant temperature control device blades and the radiator 1, i.e. it is short and internal. -Consists of passages with large diameter.

従って、ウォータポンプから吐き出された冷却液は、バ
イパス通路40が開放されていれば、大部分バイパス通
路40を通りウォータポンプの吸込側60bへ送られ、
バイパス通路を中心に循環することになる。
Therefore, if the bypass passage 40 is open, most of the coolant discharged from the water pump will be sent to the suction side 60b of the water pump through the bypass passage 40.
It will circulate mainly through the bypass passage.

このようなバイパス通路40には、バイパス通路内の流
量を制御するバイパス流量制御装置園が設けられる。こ
の制御装置間はダイアフラムで分離された上部室501
と下部室502を有し、上部室501にはインテークマ
ニホールド(図示しない)から負圧が導かれ、下部室5
02は大気に通じている。上部室501と下部室502
とを分けるダイアフラムには、バイパス通路40を開閉
するバイパス通路開閉弁503が設けもrl、インテー
クマニホールド内の負圧に従ってバイパス通路40の開
閉制御が行なわれるように構成される。
Such a bypass passage 40 is provided with a bypass flow rate control device that controls the flow rate within the bypass passage. The upper chamber 501 is separated by a diaphragm between the control devices.
Negative pressure is introduced into the upper chamber 501 from an intake manifold (not shown), and the lower chamber 5
02 leads to the atmosphere. Upper chamber 501 and lower chamber 502
A bypass passage opening/closing valve 503 for opening and closing the bypass passage 40 is provided on the diaphragm that separates the bypass passage 40 from the intake manifold.

以上のごとき構成で、機関が低負荷運転されていれば、
インテークマニホールド内の負圧従ってバイパス流量制
御装置囚の上部室501の負圧が大となるので、弁50
3は開かれる。この結果、ウォータポンプ6から吐き出
される冷却液は流量抵抗の少ないバイパス通路40を中
心に循環し、エンジンのウォータジャケットを経由して
ラジェータに到る冷却系にはほとんど流れ込まない。こ
れは、冷却液温度制御装置刃のサーモスタット弁が全開
の状態であると否とに関係しない。従って、ラジェータ
1からの放熱量は少なくなり冷却液温度は高くなる。こ
の場合、ウォータジャケット内の冷却液はほとんど滞留
の状態となるので、ウォータジャケット内での温度勾配
が太き(なり、エンジンの燃焼室及びシリンダ壁近傍の
冷却液温度が上昇する。従って、エンジンの燃焼室及び
シリンダ周辺の壁の温度を高くすることができ、この結
果混合気の温度が高まり燃焼が改善されて燃費が向上し
、また消炎厚さが薄くなりHC排出量も一低減する。
If the engine is operated at low load with the above configuration,
Since the negative pressure in the intake manifold and therefore the negative pressure in the upper chamber 501 of the bypass flow control device becomes large, the valve 50
3 will be opened. As a result, the coolant discharged from the water pump 6 circulates mainly through the bypass passage 40 with low flow resistance, and hardly flows into the cooling system that reaches the radiator via the engine water jacket. This is regardless of whether the thermostatic valve of the coolant temperature control device blade is fully open or not. Therefore, the amount of heat radiated from the radiator 1 decreases, and the coolant temperature increases. In this case, most of the coolant in the water jacket remains in a stagnant state, so the temperature gradient in the water jacket becomes thick (and the coolant temperature near the combustion chamber and cylinder wall of the engine rises. The temperature of the combustion chamber and the walls around the cylinder can be increased, which increases the temperature of the air-fuel mixture, improves combustion, and improves fuel efficiency.Furthermore, the quenching thickness becomes thinner, and the amount of HC emissions is also reduced.

一方、機関が高負荷運転に移行すると、バイパス流量制
御装置スの上部室501の負圧が小となり、弁503が
閉じらねる。その結果バイパス通路40は閉じられるの
で、ウォータポンプ6から吐き出された冷却液はエンジ
ンのウォータジャケット内に流れ込む。この結果、ウォ
ータジャケット内の冷却液温度は平均化され温度勾配が
なくなるので、燃焼室及びシリンダ周辺の壁の温度が急
冷さね、混合気の必要以上の加熱、従ってノッキングが
防止される。
On the other hand, when the engine shifts to high-load operation, the negative pressure in the upper chamber 501 of the bypass flow rate control device becomes small, and the valve 503 does not close. As a result, the bypass passage 40 is closed, so that the coolant discharged from the water pump 6 flows into the water jacket of the engine. As a result, the temperature of the coolant in the water jacket is averaged and there is no temperature gradient, so the temperature of the walls around the combustion chamber and cylinder does not cool rapidly, and the air-fuel mixture is prevented from being heated more than necessary, thereby preventing knocking.

以上説明したように本発明によれば、ウォータポンプの
吐出側から吸込側に流量抵抗の小さいバイパス通路を設
け、これを機関の負荷状態に応じて開閉制御するように
したので、低負荷時の冷却液温度を高温化し燃費の向上
及びHC排出量の低減を可能にすると共に、高負荷移行
時には速やかiゝ。
As explained above, according to the present invention, a bypass passage with low flow resistance is provided from the discharge side to the suction side of the water pump, and this is controlled to open and close according to the load condition of the engine. It increases the temperature of the coolant to improve fuel efficiency and reduce HC emissions, as well as quickly shift to high loads.

に低温域としノッキングを防止することの可能な冷却液
温度制御法を提供することができる。
It is possible to provide a method of controlling the coolant temperature in a low temperature range and preventing knocking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液冷式内燃機関の冷却系の従来例、第2図は第
1図の冷却液温度制御装置の構造例、第3図は本発明に
よる冷却液温度制御法を実施するための冷却系の一例で
ある。 1・・・・・・・・・ラジェータ 2・・・・・・・・・エンジン 3.4・・・・・・冷却液通路 6・・・・・・・・・ウォータポンプ (9)・・・・・・・・・冷却液温度制御装置4002
9.9190.バイパス通路 50・・・・・・・・・バイパス流量制御装置60a・
・・・・・吐出側 60b・・・・・・吸込側 特許出願人 日産自動車株式会社 特許出願代理人 弁理士  山  本  恵  −
FIG. 1 shows a conventional example of a cooling system for a liquid-cooled internal combustion engine, FIG. 2 shows an example of the structure of the coolant temperature control device shown in FIG. 1, and FIG. This is an example of a cooling system. 1...Radiator 2...Engine 3.4...Cooling fluid passage 6...Water pump (9) ...... Coolant temperature control device 4002
9.9190. Bypass passage 50... Bypass flow rate control device 60a.
...Discharge side 60b...Suction side Patent applicant: Nissan Motor Co., Ltd. Patent application agent Megumi Yamamoto -

Claims (1)

【特許請求の範囲】 】)液冷式内燃機関の冷却液温度制御法において、冷却
系に、ウォータポンプの吐出側から吸込側へ冷却液をバ
イパスする、既存冷却系より流量抵抗の小さいバイパス
通路と、機関の負荷の状態に従ってバイパス通路の冷却
液流量を制御する冷却液流量制御弁とを肩し、高負荷運
転時には前記冷却液流量制御弁を閉成して冷却系に冷却
液を循環させ、低負荷運転時には前記弁を開成して冷却
液の流れをバイパス通路に導き冷却系の冷却液の循環を
ほぼ停止させることを特徴とする内燃機関の冷却液温度
制御法。 2)前記バイパス通路が、機関内部を横断することなく
、ウォータポンプの吐出側近傍から吸込側に設けられる
ごとき特許請求の範囲第1項の内燃機関の冷却液温度制
御法。
[Scope of Claims] ]) In a method for controlling the temperature of a coolant in a liquid-cooled internal combustion engine, a bypass passage is provided in the cooling system, which bypasses the coolant from the discharge side of the water pump to the suction side, and has a flow resistance smaller than that of the existing cooling system. and a coolant flow control valve that controls the coolant flow rate in the bypass passage according to the engine load condition, and during high load operation, the coolant flow control valve is closed to circulate the coolant in the cooling system. A method for controlling a coolant temperature of an internal combustion engine, characterized in that during low load operation, the valve is opened to guide the flow of the coolant to a bypass passage, thereby substantially stopping the circulation of the coolant in the cooling system. 2) The coolant temperature control method for an internal combustion engine according to claim 1, wherein the bypass passage is provided from near the discharge side of the water pump to the suction side without crossing the inside of the engine.
JP20255581A 1981-12-17 1981-12-17 Control method of cooling fluid temperature in internal-combustion engine Pending JPS58106125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20255581A JPS58106125A (en) 1981-12-17 1981-12-17 Control method of cooling fluid temperature in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20255581A JPS58106125A (en) 1981-12-17 1981-12-17 Control method of cooling fluid temperature in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58106125A true JPS58106125A (en) 1983-06-24

Family

ID=16459433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20255581A Pending JPS58106125A (en) 1981-12-17 1981-12-17 Control method of cooling fluid temperature in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58106125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712028B1 (en) * 2003-03-26 2004-03-30 General Motors Corporation Engine cooling system with water pump recirculation bypass control
EP3382176A4 (en) * 2015-11-24 2018-10-03 Aisin Seiki Kabushiki Kaisha Internal-combustion engine cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712028B1 (en) * 2003-03-26 2004-03-30 General Motors Corporation Engine cooling system with water pump recirculation bypass control
EP3382176A4 (en) * 2015-11-24 2018-10-03 Aisin Seiki Kabushiki Kaisha Internal-combustion engine cooling system

Similar Documents

Publication Publication Date Title
US3921600A (en) Circulating cooling system for piston internal combustion engines
KR960012137B1 (en) Cooling system for an automotive engine
JP2006348793A (en) Exhaust gas recirculation device for internal combustion engine
CN109915249A (en) Car engine cooling system and its control method
RU2082890C1 (en) Automobile engine cooling system
KR100622472B1 (en) a system for cooling an engine
EP0900924B1 (en) Apparatus for circulating cooling water for internal combustion engine
JP2003148145A (en) Engine cooling system using two thermostats
US6499442B2 (en) Integral water pump/electronic engine temperature control valve
US3946943A (en) Cooling system of an internal combustion engine incorporating a by-pass flow control system
JPS58106125A (en) Control method of cooling fluid temperature in internal-combustion engine
KR102359941B1 (en) Engine cooling system
JP3104538B2 (en) Internal combustion engine cooling system
JPS6226583Y2 (en)
JPS6121552Y2 (en)
JPS6123608Y2 (en)
WO2022184021A1 (en) Vehicle and engine thereof
JP3739859B2 (en) Cooling water temperature control method for internal combustion engine
JPS6124655Y2 (en)
JPH049508Y2 (en)
JPS60128968A (en) Suction heating mechanism for internal-combustion engine
US4383501A (en) Cooling system for internal combustion engine
JPS58162716A (en) Cooling device for water-cooled engine
JPH0645662Y2 (en) Engine intake air amount control device
JP2528853Y2 (en) Engine cooling system