JPS59103670A - Hollow yarn type artificial lung - Google Patents
Hollow yarn type artificial lungInfo
- Publication number
- JPS59103670A JPS59103670A JP19039883A JP19039883A JPS59103670A JP S59103670 A JPS59103670 A JP S59103670A JP 19039883 A JP19039883 A JP 19039883A JP 19039883 A JP19039883 A JP 19039883A JP S59103670 A JPS59103670 A JP S59103670A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- blood
- housing
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000004072 lung Anatomy 0.000 title description 7
- 239000012510 hollow fiber Substances 0.000 claims description 90
- 239000012528 membrane Substances 0.000 claims description 80
- 239000008280 blood Substances 0.000 claims description 39
- 210000004369 blood Anatomy 0.000 claims description 39
- 239000007789 gas Substances 0.000 claims description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 29
- 239000001301 oxygen Substances 0.000 claims description 29
- 229910052760 oxygen Inorganic materials 0.000 claims description 29
- 238000005192 partition Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 8
- 230000002785 anti-thrombosis Effects 0.000 claims description 5
- 239000003146 anticoagulant agent Substances 0.000 claims description 5
- 230000000452 restraining effect Effects 0.000 claims description 4
- 229920005672 polyolefin resin Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- -1 polypropylene Polymers 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 5
- 230000005465 channeling Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000006213 oxygenation reaction Methods 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229920006268 silicone film Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000005068 transpiration Effects 0.000 description 1
Landscapes
- External Artificial Organs (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、中空糸膜を使用した中空糸型人工肺に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hollow fiber oxygenator using a hollow fiber membrane.
従来、知られた人工肺は、大別して気泡型と模型に分類
されるが、最近では、血液の損傷が少ないことから模型
のものが推奨されている。Conventionally known artificial lungs can be broadly classified into bubble-type and model-type, but recently model-type oxygenators have been recommended because they cause less damage to the blood.
一般に、この模型の人工肺は、シリコーンゴムからなる
平坦膜を用いてその平坦膜の一側面側に酸素を供給し、
他側面側に血液を供給することにより、平坦膜を介して
酸素と二酸化炭素の交換が行われるようになっている。Generally, this artificial lung model uses a flat membrane made of silicone rubber to supply oxygen to one side of the flat membrane.
By supplying blood to the other side, oxygen and carbon dioxide are exchanged through the flat membrane.
しかし、この形式のものは、平坦膜を使用することから
その装置自体が大型化する。また、平坦膜は膜支持体と
の接触などにより、破損しやすく2強度的に不安なもの
であって、その取扱にも細心の注意を払わなければなら
なかった。However, since this type of device uses a flat film, the device itself becomes large. In addition, the flat membrane is easily damaged by contact with the membrane support, and its strength is unstable, and great care must be taken in its handling.
本発明は、上記事情に着目してなされたもので、その目
的とするところは、ガス交換効率の向上を図ることがで
きるとともに、平坦膜に比べ膜強度が強く、コンパクト
な構成でその取扱も容易な中空糸型人工肺を提供するこ
とにある。The present invention has been made in view of the above-mentioned circumstances, and its purpose is to improve gas exchange efficiency, have stronger membrane strength than flat membranes, and have a compact structure that makes it easy to handle. The object of the present invention is to provide a hollow fiber oxygenator that is easy to use.
そして、上記目的を達成するものは、ハウジングと、こ
のハウジング内に並べて配列された内径約100乃至1
000μ、肉厚約10乃至50μ、空孔率約20乃至8
0%を有する多孔性ポリオレフィン針樹脂製の多数のガ
ス交換用中空糸膜からなる中空糸束と、上記各中空糸膜
の外表面と上記ハウジングの内面との間によって形成さ
れる酸素室とこの酸素室に連通ずる入口および出口と、
上記中空糸膜の各端部をそれぞれ支持し、この中空糸膜
の開口端を上記酸素室から隔離する隔壁と、上記各中空
糸膜の内部空間に連通ずる血液用入口および出口と、上
記ハウジング内面または内面上に設けられ上記中空糸束
の中間部分の周囲を絞る拘束部とを設け。The object that achieves the above object includes a housing, and the inner diameter of the housing is about 100 to 1,000 mm.
000μ, wall thickness approximately 10 to 50μ, porosity approximately 20 to 8
a hollow fiber bundle consisting of a large number of hollow fiber membranes for gas exchange made of porous polyolefin needle resin having 0.0% porosity, and an oxygen chamber formed between the outer surface of each hollow fiber membrane and the inner surface of the housing; an inlet and an outlet communicating with the oxygen chamber;
a partition that supports each end of the hollow fiber membrane and isolates the open end of the hollow fiber membrane from the oxygen chamber; a blood inlet and an outlet that communicate with the internal space of each hollow fiber membrane; and the housing. and a restraining portion provided on the inner surface or the inner surface to narrow the periphery of the intermediate portion of the hollow fiber bundle.
さらに上記中空糸膜の血液と接触する表面を抗血栓性材
料でコーティングした中空糸型人工肺である。好ましく
は中空糸膜は平均口径が約200乃至1000人である
中空糸型人工肺であるさらに好ましくは中空糸膜の充填
率は絞り部においては約60〜80%、その他のハウジ
ング内では約30〜60%である中空糸型人工肺である
。Furthermore, the hollow fiber oxygenator has the surface of the hollow fiber membrane that comes into contact with blood coated with an antithrombotic material. Preferably, the hollow fiber membrane is a hollow fiber type oxygenator having an average diameter of about 200 to 1000 people.More preferably, the filling rate of the hollow fiber membrane is about 60 to 80% in the constriction part and about 30% in the other housing. ~60% hollow fiber oxygenator.
以下1本発明の一実施例を図面にもとすいて説明する。An embodiment of the present invention will be described below with reference to the drawings.
図中1は、中空糸型人工肺のハウジングであり、このハ
ウジング1は、筒状体2の料端部にそれぞれ環状の取付
はカバー3,4を取り付けてなり、このハウジング1内
には、全体に広がって多数の、たとえば10,000〜
60,000本のガス交換用中空糸膜5が並列的に配置
されている。そして、このガス交換用中空糸1!i15
の両端部は、取付はカバー3.4内においてそれぞれ隔
壁6.7により支持されている。また、上記隔壁6.7
は、中空糸膜5の外周面と上記ハウジング1の内面との
間によって形成される酸素室8を閉塞し、かつ上記ガス
交換用中空糸膜5の内部から形成される血液流通用空間
(図示しない)と酸素室8を隔離するものである。In the figure, reference numeral 1 indicates a housing for a hollow fiber oxygenator, and this housing 1 has annular covers 3 and 4 attached to the end of a cylindrical body 2, respectively, and inside this housing 1, A large number spread throughout, for example 10,000 ~
60,000 hollow fiber membranes 5 for gas exchange are arranged in parallel. And this hollow fiber for gas exchange 1! i15
The ends are each supported by a partition 6.7 in the mounting cover 3.4. In addition, the partition wall 6.7
closes the oxygen chamber 8 formed between the outer peripheral surface of the hollow fiber membrane 5 and the inner surface of the housing 1, and also closes the blood circulation space (not shown) formed from the inside of the hollow fiber membrane 5 for gas exchange. This is to isolate the oxygen chamber 8 from the oxygen chamber 8.
なお、一方の取付はカバー3には、酸素を供給する入口
9が設けられ、他方の取付はカバー4には、酸素室8内
の気体を排出する出口loが設けられている。Note that in one case, the cover 3 is provided with an inlet 9 for supplying oxygen, and in the other case, the cover 4 is provided with an outlet lo for discharging the gas in the oxygen chamber 8.
一方、上記隔壁6.7の外面は、それぞれへソドカバ−
11,12によってそれぞれ覆われており、このヘッド
カバ−11,12の内面と上記隔壁6.7の表面との間
でそれぞれ血液の流入室13と流出室14を形成してい
る。さらに、ヘッドカバー11には血液の入口15が形
成されており、ヘッドカバー12には血液の出口16が
形成されている。On the other hand, the outer surfaces of the partition walls 6 and 7 are respectively covered with navel covers.
11 and 12, respectively, and a blood inflow chamber 13 and blood outflow chamber 14 are formed between the inner surfaces of the head covers 11 and 12 and the surface of the partition wall 6.7, respectively. Furthermore, a blood inlet 15 is formed in the head cover 11, and a blood outlet 16 is formed in the head cover 12.
さらに、上記ハウジング1の筒状体2の内面には、軸方
向の中央に位置して突出する絞り用拘束部17が設けら
れている。すなわち、拘束部17は上記筒状体2の内面
に筒状体と一体に形成されていて、筒状体2内に挿通さ
れる多数の中空糸膜5からなる中空糸束18の外周を締
め付けるようになっている。しかして、上記中空糸束1
8は、第1図で示すように軸方向の中央において絞り込
まれ、絞り部19を形成している。したがって、中空糸
膜5の充填率は、軸方向に沿う各部において異なり、中
央部分において最も高くなっている。なお、後述する理
由により望ましい各部の充填率は次のとおりである。ま
ず、中央の絞り部19における充填率は約60〜80%
、その他部状体2内では約30〜60%であり、中空糸
束18の両端、つまり隔壁6,7の外面における充填率
は、約20〜40%である。Furthermore, on the inner surface of the cylindrical body 2 of the housing 1, there is provided a restricting portion 17 for aperture that protrudes from the center in the axial direction. That is, the restraint part 17 is formed integrally with the inner surface of the cylindrical body 2, and tightens the outer periphery of the hollow fiber bundle 18 made up of a large number of hollow fiber membranes 5 inserted into the cylindrical body 2. It looks like this. However, the above hollow fiber bundle 1
8 is constricted at the center in the axial direction to form a constricted portion 19, as shown in FIG. Therefore, the filling rate of the hollow fiber membrane 5 differs in each part along the axial direction, and is highest in the central part. Note that, for reasons to be described later, the desirable filling rate of each part is as follows. First, the filling rate in the central constriction section 19 is approximately 60 to 80%.
, the filling rate in the other parts 2 is about 30 to 60%, and the filling rate at both ends of the hollow fiber bundle 18, that is, on the outer surfaces of the partition walls 6 and 7, is about 20 to 40%.
次に、上記ガス交換用中空糸膜5と隔壁6゜7について
述べておく。まず、中空糸膜5は多孔性ポリオレフィン
系樹脂、たとえばポリプロピレン、ポリエチレンといっ
たものからなり。Next, the hollow fiber membrane 5 for gas exchange and the partition wall 6.degree. 7 will be described. First, the hollow fiber membrane 5 is made of porous polyolefin resin, such as polypropylene or polyethylene.
特に、ポリプロピレンが好適である。この中空糸膜5は
壁の内部と外部を連通ずる細孔が多数存在するものが得
られる。そして、その内径は約100〜1000μ、肉
厚は約10〜50μ平均孔径は約200〜1000人、
かつ空孔率は約20〜80%とするものである。したが
って。Particularly suitable is polypropylene. This hollow fiber membrane 5 has a large number of pores communicating between the inside and outside of the wall. The inner diameter is about 100-1000μ, the wall thickness is about 10-50μ, the average pore diameter is about 200-1000μ,
And the porosity is about 20 to 80%. therefore.
従来のシリコーン製膜のごときに気体の移動が溶解、拡
散というものとは異なり、気体の移動が体積流として行
われるため、気体の移動における膜抵抗が少なくそのガ
ス交換性能が著しく高くなるものである。Unlike conventional silicone film formation, where gas movement occurs through dissolution and diffusion, gas movement occurs as a volumetric flow, so there is less membrane resistance during gas movement, and its gas exchange performance is significantly improved. be.
ところで、中空糸膜5の内部空間に血液を流しガス交換
を行う場合には、その、内径が特に問題となる。一般に
、内径が約100μ以下になると、流体力学的な抵抗が
大きくなり、また目詰りを起こしやすくなる。このため
内径はそれ以上のものが望ましい。一方、内径の上限に
ついては、実験を行い決定することができたのでここに
説明する。By the way, when blood is flowed into the internal space of the hollow fiber membrane 5 to perform gas exchange, the inner diameter becomes a particular problem. Generally, when the inner diameter is about 100 μm or less, hydrodynamic resistance becomes large and clogging is likely to occur. For this reason, it is desirable that the inner diameter be larger than this. On the other hand, the upper limit of the inner diameter was able to be determined through experiments and will be described here.
肉厚的30μ、空孔重量45〜50%、平均孔径約50
0〜650人のポリプロピレンの中空糸膜の内径がそれ
ぞれ約200μ、約300μ、約400μの3種類につ
いて血液量と酸素添加能、血液量と人工肺出口の酸素飽
和度の関係を測定したところ、その結果が第2図と第3
図で示すごとく得られた。なお1本装置に送られる血液
の人工肺入口の酸素飽和度は約60%である。Wall thickness: 30μ, pore weight: 45-50%, average pore diameter: approximately 50
We measured the relationship between blood volume and oxygenation capacity, and blood volume and oxygen saturation at the outlet of the artificial lung for three types of polypropylene hollow fiber membranes with inner diameters of approximately 200μ, approximately 300μ, and approximately 400μ, respectively, from 0 to 650 people. The results are shown in Figures 2 and 3.
The results were obtained as shown in the figure. Note that the oxygen saturation of the blood sent to this device at the inlet of the artificial lung is approximately 60%.
血液量と酸素添加能との関係を示す第2図の結果によれ
ば明らかに膜面積1イに対する1分間の所定の血液量に
ついて200μの内径のものが最もよい結果を示し、内
径が大きくなるに従って悪くなることを示している。さ
らに、血流量と人工肺出口の酸素飽和度との関係を示す
第3図の結果により、血液量41/minを処理する(
通審、この程度のものを処理する必要がある。)のに必
要な中空糸膜の膜面積およびプライミング量ならびにコ
ンタクトタイム〔中空糸膜の入口端と出口端の酸素飽和
度の差が35%(実際的に人工肺に要求される数値)に
なるための血液の中空糸膜内の必要滞在時間〕を求める
と1表1で示すようになる。According to the results shown in Figure 2, which shows the relationship between blood volume and oxygenation capacity, it is clear that for a given blood volume per minute for a membrane area of 1 I, the one with an inner diameter of 200μ gives the best results, and the larger the inner diameter. It shows that it gets worse as the condition increases. Furthermore, based on the results shown in Figure 3, which shows the relationship between blood flow and oxygen saturation at the outlet of the artificial lung, a blood volume of 41/min is processed (
It is necessary to process something like this before the trial. ) The membrane area, priming amount, and contact time of the hollow fiber membrane required for (the difference in oxygen saturation between the inlet and outlet ends of the hollow fiber membrane is 35% (a value practically required for an oxygenator)) Table 1 shows the required residence time of blood in the hollow fiber membrane for this purpose.
表 1
この表1によれば、内径が約400μを超えると、著し
くコンタクトタイムが長くなり、また、プライミング量
、膜面積も増大する。膜面積が増大すると、装置の規模
が大きくなり、膜コストがアンプし、また血液中の水蒸
気蒸散。Table 1 According to Table 1, when the inner diameter exceeds about 400 μm, the contact time becomes significantly longer, and the amount of priming and film area also increase. As the membrane area increases, the scale of the device increases, the membrane cost increases, and water vapor evaporation in the blood increases.
血液成分の付着なとの問題が生し、また、プライミング
量が多くなれば、患者に相当の負担をかける。Problems arise with adhesion of blood components, and if the amount of priming increases, it places a considerable burden on the patient.
以上のような結果から、中空糸膜の内部に血液を流す場
合、実際的な内径の範囲は、約100〜300μ程度で
あるとみることができる。From the above results, when blood is allowed to flow inside the hollow fiber membrane, it can be concluded that the practical range of the inner diameter is about 100 to 300 μm.
なお1中空糸Il!1li5の膜孔についての他の要因
すなわち、肉厚、平均孔径、空孔率は、ガスの透過およ
び膜の強さなどから考察して上述した値に決定したもの
である。Furthermore, 1 hollow fiber Il! Other factors regarding the membrane pores of 1li5, ie, wall thickness, average pore diameter, and porosity, were determined to the above-mentioned values based on considerations such as gas permeation and membrane strength.
さらに、中空糸膜5の素材としての多孔性ポリプロピレ
ン、ポリエチレンといったものを人工肺にそのまま使用
するのではなく、血液と接触する表面を抗血栓性材料に
てコーティング処理することが望ましい。たとえば、ガ
ス透過性に優れたポリアルキルスル十゛/ エチルセル
ロース、ポリジメチルシロキサンといった材料を肉厚1
〜20μ程度にコーティング処理する。Furthermore, rather than using porous polypropylene, polyethylene, or the like as the material for the hollow fiber membrane 5 in the oxygenator, it is desirable to coat the surface that comes into contact with blood with an antithrombotic material. For example, materials such as polyalkyl sulfate/ethyl cellulose and polydimethylsiloxane, which have excellent gas permeability, are used to
Coat to about 20 μm.
この場合、中空糸膜5のガス透過能に影響を及ぼさない
程度にその膜孔を覆うようにすれば。In this case, the membrane pores should be covered to the extent that the gas permeability of the hollow fiber membrane 5 is not affected.
血液中の水蒸気蒸散を防止することができる。Water vapor transpiration in the blood can be prevented.
また、この人工肺作動中において遺品血液側の圧力のほ
うが酸素側のそれより高いが、何かの原因で逆転するこ
とがある。このようで場合。Also, while the oxygenator is operating, the pressure on the blood side of the deceased is higher than that on the oxygen side, but this may reverse for some reason. If like this.
マイクロバブル(気泡)が血液中に流入するおそれがあ
るが、上述のろうに膜孔を抗血栓性材料でコーティング
処理されていれば、その危険は生じない。さらに、言う
までもないが、血液の凝固(マイクロクロットの発生)
を防ぐことにも役立つものである。There is a risk that microbubbles may flow into the blood, but if the membrane pores of the wax described above are coated with an antithrombotic material, this risk does not occur. Furthermore, it goes without saying that blood coagulation (occurrence of microclots)
It is also useful in preventing.
次に、上記隔壁6.7の形成について述べる。Next, the formation of the partition wall 6.7 will be described.
前述したように隔壁6,7は、中空糸膜5の内部と外部
を隔離するという重要な機能を果たすものである。通品
、この隔壁6.7は、極性の高い高分子ボッティング剤
、たとえばポリウレタン、シリコーン、エポキシ樹脂と
いったものをハウジング1の両端内壁面に遠心注入法を
利用して入口15.出口16側から流し込み、硬化させ
ることにより作られる。さらに、詳述すれば、まず、ハ
ウジング1の長さより長い多数の中空糸膜51.を用意
し、この両開口端を粘度の高い樹脂によって目止めをし
た後、ハウジング1の筒状体2内に並べて位置せしめる
。この後、取付はカバー3.4の径以上の大きさのカバ
ー(型)で、中空糸膜56.の各両端を完全に覆って、
ハウジング1の中心軸を中心にそのハウジング1を回転
させながら、流入室13.流出室14側から高分子ボッ
ティング剤を流入する。流し終って樹脂が硬化すれば、
上記カバーを外して樹脂の外端面部を鋭利な刃物で切断
して中空糸膜54.の両開口端を表面に露出させるかく
して隔壁6,7は形成されることになる。As described above, the partition walls 6 and 7 perform the important function of isolating the inside and outside of the hollow fiber membrane 5. Generally, this partition wall 6.7 is constructed by applying a highly polar polymer bottling agent such as polyurethane, silicone, or epoxy resin to the inner wall surface at both ends of the housing 1 using a centrifugal injection method. It is made by pouring from the outlet 16 side and hardening. Further, in detail, first, a large number of hollow fiber membranes 51. which are longer than the length of the housing 1. are prepared, and after sealing both open ends with a highly viscous resin, they are placed side by side in the cylindrical body 2 of the housing 1. After that, attach the hollow fiber membrane 56. with a cover (mold) having a diameter larger than that of the cover 3.4. completely covering each end of the
While rotating the housing 1 about the central axis of the housing 1, the inflow chamber 13. The polymer botting agent flows in from the outflow chamber 14 side. Once the resin has hardened after pouring,
Remove the cover and cut the outer end surface of the resin with a sharp knife to remove the hollow fiber membrane 54. The partition walls 6 and 7 are thus formed by exposing both open ends to the surface.
上述したように中空糸型人工肺は、たとえば関心術など
において使用されるもので、患者の大静脈より血液を取
り出し、この血液を再び患者の大動脈に戻す血液循環回
路(図示しない)の途中に設置される。なお血液は通常
47!/minの流量で取り出される。As mentioned above, the hollow fiber oxygenator is used, for example, in surgical procedures, and is placed in the middle of a blood circulation circuit (not shown) that takes blood from the patient's vena cava and returns the blood to the patient's aorta. will be installed. In addition, blood is usually 47! It is taken out at a flow rate of /min.
しかして9人工肺の使用時において、血液は血液用人口
15から流入室13内に流入したのち流入室13に臨む
開口端から各中空糸膜5.。Therefore, when the 9 oxygenator is used, blood flows from the blood supply port 15 into the inflow chamber 13 and then from the open end facing the inflow chamber 13 to each hollow fiber membrane 5. .
内に分れて流入し、その中空糸膜59.の内部空間を流
出室14側に向って流れる。そして、流出室14側にお
いて再び集められ、血液用出口16たら流出する。一方
、酸素室8には、後述するように酸素ガスの供給が行な
われているため、その各中空糸膜50.を介してガス交
換が行なわれる。すなわち、血液中の二酸化炭素ガスが
酸素室8側に移行し、酸素室8側の酸素ガスが中空糸膜
50.内の血液に移行するのである。The hollow fiber membrane 59. The water flows through the internal space toward the outflow chamber 14 side. Then, it is collected again on the outflow chamber 14 side and flows out through the blood outlet 16. On the other hand, since oxygen gas is supplied to the oxygen chamber 8 as described later, each hollow fiber membrane 50. Gas exchange takes place via. That is, the carbon dioxide gas in the blood moves to the oxygen chamber 8 side, and the oxygen gas in the oxygen chamber 8 side moves to the hollow fiber membrane 50. It moves into the blood within the body.
この場合、血液は、各中空糸膜50.の内部空間に均一
に流れ込むように規制がなされているため、血液のチャ
ネリング(偏流)は起こらない。In this case, blood is transferred to each hollow fiber membrane 50. Since blood is regulated to flow uniformly into the internal space of the blood, channeling (unbalanced flow) of blood does not occur.
しかし、酸素室8内の流れはガス流であるためガス交換
用中空糸膜50.の分布が均一でないとたちまちチャネ
リングが起り、ガス交換作用に支障を来たす。人工肺の
場合、ガス移動の推出力(Driving force
=血液側とガス側の分圧較差)は、酸素ガスで約680
鰭11g 、炭酸ガスで約46tmHgである。した
がって、酸素室8内でのチャネリングは、特に炭酸ガス
の移動度合に太き(影響する。However, since the flow inside the oxygen chamber 8 is a gas flow, the gas exchange hollow fiber membrane 50. If the distribution of gas is not uniform, channeling will occur immediately, which will impede gas exchange. In the case of an oxygenator, the driving force for gas movement
= partial pressure difference between blood side and gas side) is approximately 680 for oxygen gas
The fin weighs 11g, and the carbon dioxide gas is approximately 46tmHg. Therefore, the channeling within the oxygen chamber 8 has a strong influence on the degree of movement of carbon dioxide gas.
しかしながら、上記実施例では、中空糸束18の中央部
分が拘束部17によって絞りこまれ両端において拡げら
れているため、絞り部19では中空糸膜58.の充填率
が大きくなるとともに、筒状部では各中空糸膜53.が
均一に分散する。したがって、絞り部19を形成しない
場合に比べ、M素ガスが均一に分散する安定した流れを
形成する結果酸素、炭酸ガスの交換効率が高まる。また
、ハウジング1の内断面積がその中央の絞り部19にお
いて急激に変化するためこの部分での流速が急激に変化
し、その結果流れに乱れが起こり、ガスの移動速度を増
長する作用も生じる。However, in the above embodiment, since the central portion of the hollow fiber bundle 18 is squeezed by the restricting portion 17 and expanded at both ends, the hollow fiber membrane 58. As the filling rate of each hollow fiber membrane 53. increases, each hollow fiber membrane 53. is evenly distributed. Therefore, compared to the case where the constriction part 19 is not formed, a stable flow is formed in which the M gas is uniformly dispersed, and as a result, the exchange efficiency of oxygen and carbon dioxide gas is increased. Additionally, since the internal cross-sectional area of the housing 1 changes rapidly at the constricted portion 19 in the center, the flow velocity at this portion changes rapidly, resulting in turbulence in the flow and an effect of increasing the gas movement speed. .
なお、絞り部19での中空糸膜58.の充填率は約60
〜80%とすることが望ましいが、この理由は次の通り
である。すなわち、充填率を約60%以下とすると、拘
束部17によって絞り込めない部分が生じ、中空糸膜5
1.の分布が不均一になってチャネリングを越し、性能
を悪くする。さらに、中空糸束18を筒状部の中央に位
置させるのが困難になり、加工上の問題となる。一方、
充填率を約80%以上とすると。Note that the hollow fiber membrane 58. The filling rate is about 60
It is desirable to set it to ~80%, and the reason for this is as follows. That is, if the filling rate is about 60% or less, there will be a portion where the restricting portion 17 cannot be narrowed down, and the hollow fiber membrane 5
1. The distribution becomes uneven, exceeding channeling and deteriorating performance. Furthermore, it becomes difficult to position the hollow fiber bundle 18 at the center of the cylindrical portion, which poses a processing problem. on the other hand,
When the filling rate is about 80% or more.
拘束部17に接する中空糸膜50.が強く押されて潰れ
がおき、血液が流れなくなり、効率の低下を招くのみな
らずまた残血の原因となる。さらに、加工上中空糸束1
8を挿入する際、きつく作業がしにくくなるからである
。A hollow fiber membrane 50 in contact with the restraining portion 17. is pressed too hard and collapses, preventing blood from flowing, which not only reduces efficiency but also causes residual blood. Furthermore, processing hollow fiber bundle 1
This is because when inserting 8, it becomes difficult to work tightly.
また、筒状体2内での充填率を約30%〜60%とした
が、この理由は充填率を約30%以下とすると、中空糸
膜52.が筒状体2内で偏り。In addition, the filling rate in the cylindrical body 2 was set to about 30% to 60%, but the reason for this is that if the filling rate is about 30% or less, the hollow fiber membrane 52. is biased within the cylindrical body 2.
その結果、交換効率の低下を招く。また、加工がやりに
くくなる。一方、充填率を約60%以上にすると、中空
糸膜51.同士の密着が起り。As a result, exchange efficiency decreases. In addition, it becomes difficult to process. On the other hand, when the filling rate is about 60% or more, the hollow fiber membrane 51. Close contact between them occurs.
やはり性能に悪い影響を与えるからである。This is because it still has a negative effect on performance.
また、隔壁6.7の外面における充填率は約20〜40
%としたが、この理由は約20%以下とすると、中空糸
膜50.の開目端の分布が加工上不均一になりやすく、
その結果血流分布の不均一、血栓等の問題が起る。一方
、充填率を40%以上とすると、中空糸膜50.同士の
密着が起り、隔壁6.7の材料であるポツティング剤が
充填されない部分が現れ、リークの原因となるからであ
る。Moreover, the filling rate on the outer surface of the partition wall 6.7 is about 20 to 40
%, but the reason for this is that if the hollow fiber membrane is about 20% or less, the hollow fiber membrane 50. The distribution of open edges tends to be uneven due to processing,
As a result, problems such as uneven blood flow distribution and blood clots occur. On the other hand, when the filling rate is 40% or more, the hollow fiber membrane 50. This is because they come into close contact with each other, and some parts are not filled with the potting agent, which is the material of the partition walls 6.7, causing leaks.
なお、上記実施例では拘束部17部分のみをハウジング
1の内面から部分的に突き出ずようにしたが9本発明は
これに限定されず、別部材としてリング状のものを設け
てもよく、また中央部の内径を最も小さクシ、両端側に
大きくなるテーパ状に形成してもよいのである。In addition, in the above embodiment, only the restraining portion 17 was made not to partially protrude from the inner surface of the housing 1, but the present invention is not limited to this, and a ring-shaped member may be provided as a separate member. The inner diameter of the comb may be the smallest at the center, and may be tapered to become larger at both ends.
以上説明したように本発明は、ハウジング内の酸素室に
配置される多数の中空糸膜からなる中空糸束の中間部分
の周面を拘束部によって絞り込んでなるから、その絞り
部を中心として中空糸膜の充填率が大きくなり、かつ各
中空糸膜が均一に分散することになる。したがって、酸
素ガスが均一に分散する安定した流れを形成する結果酸
素、炭酸ガスの交換効率が高まる。また、絞り用拘束部
を設けたことにより、この部分での流速の急激な変化が
起こり、これによってガスの移動を促進する。しかして
、上記各作用により、チャネリング現象を防止しながら
。As explained above, in the present invention, the peripheral surface of the intermediate portion of a hollow fiber bundle consisting of a large number of hollow fiber membranes arranged in an oxygen chamber in a housing is narrowed by a constraint part, so that the hollow fiber bundle is narrowed around the narrowed part. The filling rate of the fiber membranes increases, and each hollow fiber membrane is uniformly dispersed. Therefore, as a result of forming a stable flow in which oxygen gas is uniformly dispersed, the exchange efficiency of oxygen and carbon dioxide gas is increased. Further, by providing the throttle restricting portion, a rapid change in flow velocity occurs in this portion, thereby promoting the movement of gas. Therefore, the above effects prevent the channeling phenomenon.
中空糸膜全表面における均一なガス交換を行うことがで
きるとともに、そのガス交換効率を高めることができる
。Uniform gas exchange can be performed on the entire surface of the hollow fiber membrane, and the gas exchange efficiency can be increased.
また、絞り用拘束部で中空糸束の中央部を絞り込み、中
空糸膜を均一に分布させるため、その絞り用拘束部を設
けない場合に比べて高い製作制度が要求されず、かつそ
の製作が容易になる。たとえば両端における分布が比較
的不均一であっても全体的に均一化することができる。In addition, since the center part of the hollow fiber bundle is squeezed by the restricting part for squeezing and the hollow fiber membranes are distributed uniformly, a higher manufacturing system is not required compared to the case where the restricting part for restricting is not provided, and the manufacturing process is easier. becomes easier. For example, even if the distribution at both ends is relatively non-uniform, it can be made uniform overall.
また1本発明の中空糸型人工肺は、上述したような構成
であるから、全体的にコンパクトで取扱いが容易であり
、しかも、平坦膜を使用するものとは異なり強度の向上
を図ることができるなどすぐれた実用的効果を奏するも
のである。Furthermore, since the hollow fiber oxygenator of the present invention has the above-described structure, it is compact overall and easy to handle, and unlike those using a flat membrane, it is possible to improve the strength. It has excellent practical effects.
図面は本発明の一実施例を示すもので、第1図はその人
工肺の側断面図、第2図は中空糸膜の内径と酸素添加能
および血液量との関係を示すグラフ、第3図は中空糸膜
の内径と人工肺出口の酸素飽和度および血液量との関係
を示すグラフである。
1・・ハウジング、 2・・筒状体。
3.4・・取付はカバー。
5・・ガス交換用中空糸膜 。
6.7・・隔壁、 8・・酸素室。
9・・入口、 10・・出口。
11.12・・ヘッドカバー。
13・・流入室、 14・・流出室。
15・・入口、 16・・出口。
17・・拘束部、 18・・中空糸束。
19・・絞り部。
出願人 チル七株式会社The drawings show one embodiment of the present invention, and FIG. 1 is a side sectional view of the oxygenator, FIG. 2 is a graph showing the relationship between the inner diameter of the hollow fiber membrane, oxygenation capacity, and blood volume, and FIG. The figure is a graph showing the relationship between the inner diameter of the hollow fiber membrane and the oxygen saturation and blood volume at the outlet of the artificial lung. 1. Housing, 2. Cylindrical body. 3.4... Installation is with a cover. 5.Hollow fiber membrane for gas exchange. 6.7... Bulkhead, 8... Oxygen chamber. 9...Entrance, 10...Exit. 11.12...Head cover. 13...Inflow chamber, 14...Outflow chamber. 15...Entrance, 16...Exit. 17...Restriction part, 18...Hollow fiber bundle. 19...Aperture section. Applicant: Chill Seven Co., Ltd.
Claims (5)
れた内径約100乃至1000μ、肉厚約10乃至50
μ、空孔率約20乃至80%を有する多孔性ポリオレフ
ィン系樹脂製の多数のガス交換用中空糸膜からなる中空
糸束と、上記各中空糸膜の外表面と上記ハウジングの内
面との間によって形成される酸素室とこの酸素室に連通
ずる入口および出口と、上記中空糸膜の各端部をそれぞ
れ支持し、この中空糸膜の開口端を上記酸素室から隔離
する隔壁と、上記各中空糸膜の内部空間に連通ずる血液
用入口および出口と、上記ハウジング内面または内面上
に設けられ上記中空糸束の中間部分の周囲を絞る拘束部
とを設け、さらに上記中空糸膜の血液と接触する表面を
抗血栓性材料でコーティングしたことを特徴とする中空
糸型人工肺(1) A housing with an inner diameter of about 100 to 1000μ and a wall thickness of about 10 to 50μ, which are arranged side by side in this housing.
μ, between a hollow fiber bundle consisting of a large number of hollow fiber membranes for gas exchange made of porous polyolefin resin having a porosity of about 20 to 80%, and the outer surface of each of the hollow fiber membranes and the inner surface of the housing. an oxygen chamber formed by the oxygen chamber; an inlet and an outlet communicating with the oxygen chamber; a partition wall that supports each end of the hollow fiber membrane and isolates the open end of the hollow fiber membrane from the oxygen chamber; A blood inlet and an outlet communicating with the internal space of the hollow fiber membrane, and a restraining portion provided on or on the inner surface of the housing to squeeze the periphery of the intermediate portion of the hollow fiber bundle, further comprising a blood inlet and an outlet communicating with the inner space of the hollow fiber membrane. A hollow fiber oxygenator characterized in that the contacting surface is coated with an antithrombotic material.
ある特許請求の範囲第1項記載の中空糸型人工肺(2) The hollow fiber oxygenator according to claim 1, wherein the hollow fiber membrane has an average diameter of about 200 to 1000 people.
0%、その他のハウジング内では約30〜60%である
特許請求の範囲第1項または第2項記載の中空糸型人工
肺(3) The filling rate of the hollow fiber membrane is approximately 60 to 8 in the restraint part.
0%, and about 30 to 60% in the other housing.
る特許請求の範囲第3項記載の中空糸型人工肺(4) The hollow fiber oxygenator according to claim 3, wherein the filling rate of the hollow fiber membrane within the partition wall is about 20 to 40%.
範囲第1項ないし第4項のいずれか記載の中空糸型人工
肺(5) The hollow fiber oxygenator according to any one of claims 1 to 4, wherein the antithrombotic material is silicone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19039883A JPS59103670A (en) | 1983-10-12 | 1983-10-12 | Hollow yarn type artificial lung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19039883A JPS59103670A (en) | 1983-10-12 | 1983-10-12 | Hollow yarn type artificial lung |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59103670A true JPS59103670A (en) | 1984-06-15 |
JPS6244948B2 JPS6244948B2 (en) | 1987-09-24 |
Family
ID=16257487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19039883A Granted JPS59103670A (en) | 1983-10-12 | 1983-10-12 | Hollow yarn type artificial lung |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59103670A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6120559A (en) * | 1984-07-04 | 1986-01-29 | テルモ株式会社 | Hollow yarn type artificial lung |
JPS61206456A (en) * | 1985-03-09 | 1986-09-12 | 泉工医科工業株式会社 | Antithrombotic membrane type artificial lung |
-
1983
- 1983-10-12 JP JP19039883A patent/JPS59103670A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6120559A (en) * | 1984-07-04 | 1986-01-29 | テルモ株式会社 | Hollow yarn type artificial lung |
JPS61206456A (en) * | 1985-03-09 | 1986-09-12 | 泉工医科工業株式会社 | Antithrombotic membrane type artificial lung |
Also Published As
Publication number | Publication date |
---|---|
JPS6244948B2 (en) | 1987-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1158510A (en) | Hollow fiber-type artificial lung having enclosed heat exchanger | |
EP0005866B1 (en) | An oxygenator | |
CA1226231A (en) | Method of manufacturing hollow fibre devices | |
JPS6057872B2 (en) | Hollow fiber oxygenator with built-in heat exchanger | |
JPS6229061B2 (en) | ||
WO1989002282A1 (en) | Medical instrument and production thereof | |
JPS59103670A (en) | Hollow yarn type artificial lung | |
JPH0127794Y2 (en) | ||
JP2888607B2 (en) | Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same | |
JPS6237992B2 (en) | ||
JPS59108563A (en) | Hollow yarn type artifical long | |
JPS5957661A (en) | Hollow yarn type artificial lung | |
JPH0548135B2 (en) | ||
JP2000042100A (en) | Hollow fiber membrane type liquid treatment apparatus | |
JPS59108564A (en) | Hollow yarn type artifical long | |
JPS609820B2 (en) | Hollow fiber membrane mass transfer device | |
JP3025973B2 (en) | Liquid treatment equipment | |
JPH0116504B2 (en) | ||
JPS60249970A (en) | Production of hollow fiber membrane type artificial lung | |
JPH0119902B2 (en) | ||
JPH03262522A (en) | Fluid treatment apparatus and manufacture thereof and potting material | |
JPS631861B2 (en) | ||
JPS59108562A (en) | Hollow yarn type artifical long | |
JPH03158166A (en) | Hollow fiber membrane type fluid treating device | |
JPS60249969A (en) | Hollow fiber membrane type artificial lung |