JPS59103378A - Insulated gate type field-effect transistor - Google Patents

Insulated gate type field-effect transistor

Info

Publication number
JPS59103378A
JPS59103378A JP21263582A JP21263582A JPS59103378A JP S59103378 A JPS59103378 A JP S59103378A JP 21263582 A JP21263582 A JP 21263582A JP 21263582 A JP21263582 A JP 21263582A JP S59103378 A JPS59103378 A JP S59103378A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
semiconductor
layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21263582A
Other languages
Japanese (ja)
Inventor
Tatsuro Sakai
達郎 酒井
Yuki Shimada
島田 悠紀
Kuniharu Kato
邦治 加藤
Yukio Fukuda
幸夫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21263582A priority Critical patent/JPS59103378A/en
Publication of JPS59103378A publication Critical patent/JPS59103378A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To expand the applied voltage range between a source and a drain by a method wherein a Pt layer and a back-gate electrode are superposed on the side of a p type Si substrate, a p<+> layer is formed on the side reverse to the channel side adjoining to the n<+> type source located on the other side of the p type Si substrate, and it is connected to the back gate electrode. CONSTITUTION:A p<+> layer 10 and a back-gate electrode 11 are formed on one surface of a p type Si substrate, and an n<+> type source layer 3, a drain layer 4 and a p<+> type layer 15, adjoining to the n<+> layer 3, are formed on the other surface of the p type Si substrate. An aperture is opened on an insulating film 2, an electrode 8 is attached astriding a source layer 13 and the p<+> layer 15, connected to the back-gate electrode 11, and a drain electrode 9 and an insulating gate electrode 7 are attached. When the voltage of the electrode 9 is increased for the electrode 8, the hole generated at a high electric field region 12 runs to the electrode 8 through a p-layer 1 and the p<+> layer 15, or runs to the electrode 11 through the p-layer 1 and a p<+> layer 14, thereby enabling to lower the boosting of potential located in the vicinity of a region 12 and also to lower the forward bias of the junction 13 of the n<+> layer 13 and the p type substrate 1. As a result, the range of voltage which can be applied between the electrode 8 and the drain electrode 9 can be widened when compared with the conventional one.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は絶縁ゲート型電界効果トランジスタの改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in insulated gate field effect transistors.

(従来技術) 従来、この独の積形絶縁ゲート型電昇効果トランジスタ
として、第1図に示すように、例えばP型の層状の半導
体領域1の主面2i111Iに、N+型の半導体領域3
及び4が設けらtし、かつ半導体領域lの主面2側に半
導体領域3及び4により取囲まれている半導体領域5を
形成し、半導体領域1の領域5の主面2側の表面上に絶
縁層6を介して等電性層7が配さ0、δらに半導体領域
3の主i]I+2側の衣■上に導電性層8がオーミック
に設けら扛、半導体領域4の主面2側の表面上に導電性
層9がオーミックに形成さtし、更に半導体領域1の主
面2側の表面上に導電性層16’がオーミックに附さt
しでなる枯造にあ゛いて、半導体領域3をソース領域、
半導体領域47ドレイン領域、半導体領域1をチャネル
形成領域、絶縁層6をケート絶縁層、導電性層7,8.
9及び16’にそn:f:れケート電極、ソース電極、
ドレイン電極及びバックケート電極とする構成のものが
提案さtしている。
(Prior Art) Conventionally, as shown in FIG. 1, as shown in FIG.
and 4 are provided, and a semiconductor region 5 surrounded by semiconductor regions 3 and 4 is formed on the main surface 2 side of the semiconductor region 1, and on the surface of the region 5 of the semiconductor region 1 on the main surface 2 side. An isoelectric layer 7 is disposed on the semiconductor region 3 through an insulating layer 6, and a conductive layer 8 is ohmically provided on the main layer of the semiconductor region 3 on the I+2 side. A conductive layer 9 is ohmically formed on the surface of the surface 2, and a conductive layer 16' is ohmically attached to the surface of the semiconductor region 1 on the main surface 2.
Due to the dry structure, the semiconductor region 3 is used as a source region,
Semiconductor region 47 is a drain region, semiconductor region 1 is a channel forming region, insulating layer 6 is a gate insulating layer, conductive layers 7, 8 .
9 and 16', n:f: receiver electrode, source electrode,
A structure having a drain electrode and a backgate electrode has been proposed.

しかして第1図に示す絶縁ゲート型電界効果l・シンジ
スタの場会、ソース電極としての導電性層8と、バック
ケート電極としての等電性層16′と會短籟し、ケート
電極としての2#=亀性層7に、ソース電極としての導
電性層8に対して正の予定の値(閾値)よシ太なる電圧
ケ与えると、チャネル形成餉域としての半導体領域lの
領域5の主面2側の表面に、N型層のテヤイ・ルが形成
さ扛、さらにドレイン電極としての導電性層’IC,ソ
ース電極としての導電性層8に対して正の電圧全与え7
′Lは、導電性層8、半導体領域3、半導体領域1の領
域5の主面2側の懺血に形成さ1LkN型層のチャネル
、半導体領域4、導電性層9に連なる電流路が形成さ扛
、オン状態が得られるが、ソース電極としての尋′屯性
層8に対して、ドレイン電極としてのd導電性層9に与
える正の電圧を増加した場会、半導体領域1に寂いて半
導体領域4の半導体領域3側の部分に晶電界領域りが形
成さjL、半導体領域5の主面21111の表m1に形
成さ才したN型ノ曽のナヤ不ル全流fLる’tri子が
、尚電界領域12に為・いて衝突電離を生じ、このため
電十−正孔対の発生か起り、発生した正孔が半導体領域
1勿、バックケート直便としての導′電性層16′に向
かってblf: TL ;bため、半導体領域lの有す
る抵抗により半導体領域lの領域12の近傍の電位が、
バックケート電極としての導電性1曽16“及びソース
電極としての導電性層8よりも高く(正)になジ、この
ため半導体領域1とソース鎖酸としての半導体領域3と
で形成式れる整流性接合13が順方向にバイアスち扛る
こととなり、ソース領域としての半導体領域3から半導
体領域lへの電子の注入が促進さ75 この電子が領域
12全流扛る際、再び電子−正孔対を発生するという正
帰還効果によって素子の制伽機能は制限さlし、ソース
′屯極としての導電性層8とドレイン′眠極とし−Cの
轡′屯性層9どの間に印加できる′電圧が制限さ才して
し址うという欠点?射していた。
However, in the case of the insulated gate field-effect l syndistor shown in FIG. 1, the conductive layer 8 as the source electrode and the isoelectric layer 16' as the backgate electrode are shortened. 2# = When a voltage greater than a positive predetermined value (threshold value) is applied to the conductive layer 7 with respect to the conductive layer 8 as a source electrode, the region 5 of the semiconductor region l as a channel forming region is applied. An N-type layer is formed on the surface of the main surface 2, and a full positive voltage is applied to the conductive layer IC as a drain electrode and the conductive layer 8 as a source electrode.
'L is formed in the conductive layer 8, the semiconductor region 3, and the main surface 2 side of the region 5 of the semiconductor region 1, and a current path connected to the channel of the 1LkN type layer, the semiconductor region 4, and the conductive layer 9 is formed. However, when the positive voltage applied to the conductive layer 8 as the source electrode and the d conductive layer 9 as the drain electrode is increased, the semiconductor region 1 is turned on. A crystal electric field region is formed in the portion of the semiconductor region 4 on the semiconductor region 3 side, and a crystal electric field region is formed on the surface m1 of the main surface 21111 of the semiconductor region 5. However, impact ionization occurs in the electric field region 12, which causes the generation of electron-hole pairs, and the generated holes are transferred not only to the semiconductor region 1 but also to the conductive layer 16 as a backgate. blf: TL ;b Therefore, due to the resistance of the semiconductor region l, the potential near the region 12 of the semiconductor region l becomes
The conductivity is higher (positive) than the conductive layer 8 as the backgate electrode and the conductive layer 8 as the source electrode, thus the rectification formed by the semiconductor region 1 and the semiconductor region 3 as the source chain acid. The sexual junction 13 is biased in the forward direction, and the injection of electrons from the semiconductor region 3 serving as a source region to the semiconductor region l is promoted. The control function of the device is limited by the positive feedback effect of generating a pair, and the voltage can be applied between the conductive layer 8 as the source pole and the conductive layer 9 of C as the drain pole. ``The disadvantage is that the voltage is limited and the voltage is limited.''

(発明の目的〕 本発明は、この欠点を除去するために提案さ扛1ヒもの
で、第1図にυける半導体領域lの領域12の近傍の電
位の上昇ケ低く押えることKよジ、ソース′電極とドレ
イン電極との同VC印加し9る電圧の範囲葡改善するこ
と全目的とするものである。
(Object of the Invention) The present invention has been proposed in order to eliminate this drawback, and it is possible to suppress the rise in potential near the region 12 of the semiconductor region 1 shown in FIG. 1 to a low level. The overall purpose is to improve the voltage range by applying the same VC to the source and drain electrodes.

(発明の構成) 前記の目的を達成するため、本発明は第1の導電型に有
する第1の半導体領域と、該第1の半導体領域に連接し
、第工の褥電型勿4]シかつ前記の第1の半導体領域に
比し高い比抵抗全41する第2の半導体領域と、該第2
の半導体領域VC連接する第1の半導体領域とは逆の第
2の尋′亀型r有するソース領域としての第3の半導体
領域と、前記第1及び第3の半導体領域には連接せう゛
、前Nr2第2の半導体領域に連接)−る第2の導電型
を巾するドレイン領域としての第4の半導体領域と、前
記第3及び第4の半導体領域間の領域の表面上にゲート
絶縁層としての絶縁層全弁して配さt″したゲート電極
としての第10等電性層と、前iじ第2.第3及び第4
の半導体領域Vこは連接せず、前記第lの半導体・頭載
において前記第2の半導体領域とは反対側の主面の表面
上に設けらγしたバックゲート電極としての第2の導電
性層とを具備する絶縁ゲート型電界効果トランジスタに
於て、前記第l及び第4の半導体領域には連接せず、前
ロピ第2及び第30半導体領域に連接し、第1の導電型
をイ〕し、かつ前記第2の半導体領域に比し低い比抵抗
ケ有ターる第5の半導体領域と、前記第2及び第5の半
導体領域に連接し、共通の電極としての第3の導電性層
ケ有丁ゐことケ特似とする絶縁ケート型′亀界効呆トラ
ンジスタを発明の少旨とするものでめる。
(Structure of the Invention) In order to achieve the above-mentioned object, the present invention includes a first semiconductor region having a first conductivity type; and a second semiconductor region having a higher specific resistance than the first semiconductor region;
A third semiconductor region serving as a source region having a second diagonal turtle shape opposite to the first semiconductor region to which the semiconductor region VC is connected is connected to the first and third semiconductor regions; a fourth semiconductor region as a drain region spanning a second conductivity type (connected to the first Nr2 second semiconductor region), and a gate insulating layer on the surface of the region between the third and fourth semiconductor regions. a 10th isoelectric layer as a gate electrode, and a 10th isoelectric layer as a gate electrode, and a 10th isoelectric layer as a gate electrode, and
The semiconductor regions V are not connected and are provided on the surface of the main surface opposite to the second semiconductor region in the first semiconductor head, and have a second conductive property as a back gate electrode. In the insulated gate field effect transistor comprising a layer, the first conductivity type is not connected to the first and fourth semiconductor regions, but is connected to the second and thirtieth semiconductor regions, and has a first conductivity type. ] and a fifth semiconductor region having a specific resistance lower than that of the second semiconductor region, and a third conductive region connected to the second and fifth semiconductor regions and serving as a common electrode. The gist of the invention is to provide an insulating gate type 'turret field effect transistor' having a layer structure.

ぜらに本発明は第1の導電型孕有する第1の半導体領域
と、該第1の半導体領域に連接し、第1の導電型を有し
77)つ前記の紀lの半導体領域に比し商い比抵抗全治
する第2の半導体領域と、該第2の半導体領域に連接す
る第1の半導体領域とtユ逆の第2の等電型ケ有するソ
ース領域としての第3の半轡体誤域と、前記第l及び第
3の半導体領域にtま連接せず、前記第2の半導体領域
に連接する第2の導電型全治するドレイン領域としての
第4の半導体領域と、前記第3及び第4の半導体領域間
の領域の表面上にゲート絶縁層としての絶縁If!に介
して配さt″したゲート電極としての第1の導電性層と
、υσ記第2゜第3及び第4の半導体領域には連接せす
、niJ配第1の半導体領域VCBいて前記第2の半導
体領域とは反対側の主面の表面上に設けらγしたバック
ゲート電極としての第2の尋1M、住胎と’d: 88
ii+するe林ゲート型電界効果トシンジスタに於て、
MiJ韻第4の半導体領域には連接せツー、前記第1゜
第2及び第3の半導体領域に連接し、第1の導電型金南
しかつ前記第2の半導体領域に比し低い比抵抗を有する
第5の半導体領域と、前記第3及び第5の半導体領域に
連接する共通の電極としての第3の導電a層とを有する
ことを特徴とする絶縁ケート型電界効来トランジスタケ
発明の要旨とテるものである。
Furthermore, the present invention includes a first semiconductor region having a first conductivity type, and a semiconductor region connected to the first semiconductor region having a first conductivity type. a second semiconductor region having a completely cured resistivity, and a third half body as a source region having a second isoelectric type opposite to that of the first semiconductor region connected to the second semiconductor region; a fourth semiconductor region that is not connected to the first and third semiconductor regions but is connected to the second semiconductor region and serves as a fully cured drain region of the second conductivity type; and an insulation If! as a gate insulation layer on the surface of the region between the fourth semiconductor regions. A first conductive layer serving as a gate electrode is disposed through a first conductive layer VCB, and a first conductive layer VCB is connected to the third and fourth semiconductor regions VCB and The second layer 1M serves as a γ-shaped back gate electrode provided on the surface of the main surface opposite to the semiconductor region of No. 2.
In the e-bayashi gate type field effect syndister with ii+,
The fourth semiconductor region is connected to the first, second and third semiconductor regions, has a first conductivity type, and has a resistivity lower than that of the second semiconductor region. An insulating cat type field effect transistor according to the invention, characterized in that it has a fifth semiconductor region having a structure of 1, and a third conductive a layer as a common electrode connected to the third and fifth semiconductor regions. This is a summary.

妊らに本発明は第1の導電型ケ有する第1の半導体領域
と、該第lの半導体領域に連接し、第1の導電型忙治し
かつ前記の第工の半導体領域に比し高い比抵抗を有する
第2の半導体領域と、該第2の半導体領域に連接する第
1の牛桿体貢域とは逆の第2の導電型を令するソース領
域としての第3の半導体領域と、bj韻第l及び第3の
半導体領域には連接ゼす、前記第2の半導体領域に連接
する第2の導電型7f:南するドレイン領域としての第
4の半導体領域と、前記第3及び第4の半導体領域間の
領域の表面上にゲート絶縁層としての絶縁層?介して配
さIしたケート電極としての第1の導電性層と、前記第
2゜第3及び第4の半導体領域には連接せず、前記第1
の半導体領域に2いて前記第2の半導体領域とは反対側
の主面の表面上に設けらfしたバックゲート電極として
の第2の導電性層と葡其倫する絶縁ゲート型電界効果ト
ランジスタに於て、前記第3の半導体領域の表面よジ、
前記第2及び第3の半導体領域に達するU形、V形、矩
形等の溝を有し、畝溝の表面に、第2及び第3の半導体
領域に連接する第3の導電性層葡設けること葡特徴とす
る絶縁ケート型電界効果トランジスタ勿発明の要旨とフ
〜るものである。
In particular, the present invention includes a first semiconductor region having a first conductivity type, and a first semiconductor region connected to the first semiconductor region, having a first conductivity type and having a higher ratio than the first semiconductor region. a second semiconductor region having resistance; a third semiconductor region serving as a source region having a second conductivity type opposite to that of the first rod-conducting region connected to the second semiconductor region; a second conductivity type 7f connected to the second semiconductor region; a fourth semiconductor region serving as a southward drain region; An insulating layer as a gate insulating layer on the surface of the region between the semiconductor regions of No. 4? The first conductive layer as a gate electrode is disposed through the first conductive layer, and the second conductive layer is not connected to the third and fourth semiconductor regions, but is connected to the first conductive layer as a gate electrode.
A second conductive layer serving as a back gate electrode is provided on the surface of the main surface opposite to the second semiconductor region in the semiconductor region of the insulated gate field effect transistor. In the third semiconductor region, the surface of the third semiconductor region is changed;
A U-shaped, V-shaped, rectangular, etc. groove reaching the second and third semiconductor regions, and a third conductive layer connected to the second and third semiconductor regions is provided on the surface of the ridge. This is an insulated gate field effect transistor characterized by the gist of the invention.

仄に不発明の芙施例勿醗伺図面について説明する。12
実施例は一つの例不であって、不発明の精神を逸脱しな
い範囲内で、独々の変更るるいは改良勿行い9ることは
菖う1でもない。
I will briefly explain the drawings of the uninvented examples. 12
The embodiments are just examples, and it is not a stretch to make individual changes or improvements without departing from the spirit of non-invention.

第2図は本発明による絶縁ケート型電界効果トランジス
タの第1の実施例ケボし、第1図との対応部分には同一
符号r附し、詳細説明はこjL全省略するが、第1図の
構成に2いて、ナヤネル形成領域としての半導体領域1
の主面2狽1jとは反対側の主面170凹上にP型の半
導体領域14勿形成し、さらに半導体領域14において
、主1IIJ17とは反対側の主面lOの表面上に、お
2のバックケート電極L極としての導電性層11 i 
ル成し、ソース領域としての半導体領域に2いて、半導
体領域1の領域51iltlとは反対側に、瞬接するよ
うにP型でなる半導体領域15ヲ形成し、ソースとバッ
クケート共通電極としての導′電性層8紮、半導体領域
3と半導体領域15の王[i 21)411の表面に形
成する点以外は、第1図の場合と同様の構成である。た
だし、この場合半導体領域15は、半導体領域1の高電
界領域12に出米得る限シ近い位置とする。
FIG. 2 shows a first embodiment of an insulated gate field effect transistor according to the present invention. Parts corresponding to those in FIG. In the configuration shown in FIG. 2, semiconductor region 1 is used as a Nayanel formation region.
A P-type semiconductor region 14 is formed on the concave main surface 170 on the opposite side to the main surface 2J1j, and a P-type semiconductor region 14 is formed on the main surface 1O on the opposite side to the main surface 1IIJ17 in the semiconductor region 14. The conductive layer 11 i as a backkate electrode L pole
A P-type semiconductor region 15 is formed in the semiconductor region 2 as a source region and on the opposite side of the region 51iltl of the semiconductor region 1 so as to be in instant contact, and a conductive region 15 is formed as a source and backgate common electrode. The structure is the same as that shown in FIG. 1 except that the conductive layer 8 is formed on the surface of the semiconductor region 3 and the semiconductor region 15 (i21) 411. However, in this case, the semiconductor region 15 is positioned as close to the high electric field region 12 of the semiconductor region 1 as possible.

以上が本発明による絶縁ゲート型電界効果トランジスタ
の第lの実施例の構成であるか、このような構成によr
Lは、そ扛が上述せるΦ項ケ除いて第1図の場合と同様
の構成ケ有するので、肝細祝明は省略ツーるが、共通′
電極としでの与電性ノ曽8とバックケート電極としての
尋′屯性j曽11とを短銘じ、ゲート電極としての等電
性層7Vこ、共通電極としての導電性層8に対して正の
手足の値(閾11な)よシ太なる電圧?与え、テヤイ・
層形成領域としての半導体領域1の領域5の主面2側の
表面に、N型層のチャネルが形成さτし、ちらにドレイ
ン電極としての導電性層9に、共通電極としての導電性
層8に対して正の電圧を与え7しは、i電性層8、半心
体領域3、半導体領域1の領域5の主面2側の表面上に
形成8 tLるN型層のチャネル、半導体領域4、導′
電性層9に連なる電流路が形成さ扛、第1図の揚会と同
様にオン状態か倚ら才しる。
The above is the configuration of the first embodiment of the insulated gate field effect transistor according to the present invention.
Since L has the same structure as in Fig. 1 except for the Φ term mentioned above, the important details are omitted, but the common '
Let's briefly remember the conductive layer 8 as the electrode and the hysterically conductive layer 11 as the backgate electrode, and the isoelectric layer 7V as the gate electrode and the conductive layer 8 as the common electrode. Is the voltage bigger than the positive limb value (threshold 11)? Give, Teyai
A channel of an N-type layer is formed on the main surface 2 side surface of the region 5 of the semiconductor region 1 as a layer forming region, and a conductive layer 9 as a common electrode is formed on the conductive layer 9 as a drain electrode. A positive voltage is applied to 8 to form a channel of an N-type layer 8 on the surface of the i-conductive layer 8, the half-core region 3, and the main surface 2 side of the region 5 of the semiconductor region 1; Semiconductor region 4, conductor'
A current path connected to the conductive layer 9 is formed, and the device is in the on state as in the case shown in FIG.

しかしなから、第2図で示した本発明による絶縁ゲート
型奄界効来トランジスタの場合、オン状態において、共
通電極としての導電性層8に対してドレイン電極として
の導電性層9に与える′電圧ケ瑠加しfC,場合、第1
図に2いて説明し1このと同様に半導体領域lの詞電昇
領域12において発生した正孔は、共通電極としての導
電性層8へ、半導体領域1及び半導捧領域15荀履って
流rしるか、あるいは第2のバックケート電極としての
導電性層11へ、半導体領域1及び半導体領域14勿辿
って流7Lるlζめ、第1図で説明した場合に比べ、そ
の抵抗は小名くなり、筒電界領域12近傍の電位上昇は
低めらjL、丑た半々)体領域3と半導体領域lとで形
成さtしる接合13の順バイアスの程#會低めることか
口」能となるため、共通電極としての導電性層8とドレ
イン′亀換としての導電性層9との間に印加し得る電圧
は\第1図の従来の絶縁ケート型電界効果トランジスタ
に比べて筒くすることかできるという効果會有する。
However, in the case of the insulated gate type Amali effect transistor according to the present invention shown in FIG. 2, in the on state, ' If the voltage is added fC, then the first
As explained in FIG. The resistance of the semiconductor region 1 and the semiconductor region 14 is lower than that of the case described in FIG. 1. In other words, the potential rise near the cylindrical electric field region 12 is low, which means that the forward bias of the junction 13 formed between the body region 3 and the semiconductor region 1 is lowered. Therefore, the voltage that can be applied between the conductive layer 8 as a common electrode and the conductive layer 9 as a drain electrode is smaller than that in the conventional insulated gate field effect transistor shown in FIG. It has the effect of being able to reduce

次に第3図によって本発明による絶縁ケート型電界効果
トランジスタの第2の実施例を述べると、本発明の第1
の実施例として第2図VC7TI:した構成に寂いて、
P型の半導体領域15か半導体領域1の主囲2側力)ら
半導体領域14に遅するよりに形成きれる点以外は、第
2図の場合と同様の構成である。
Next, referring to FIG. 3, a second embodiment of the insulated gate field effect transistor according to the present invention will be described.
As an example of the configuration shown in Figure 2, VC7TI:
The configuration is the same as that shown in FIG. 2, except that the P-type semiconductor region 15 can be formed from the main area 2 of the semiconductor region 1 to the semiconductor region 14 rather than later.

以上が本発明の絶縁ケート型−昇効米トランジスタの第
2の実施例でおるか、このような構成によrしば、そt
しか上述せる事狽葡除いて第2図の場合と同様の構成勿
肩1−るので、詳細説明は省略するが、半導体領域1の
高電界領域12で発生した正孔は、ソース電極としての
S電性層8へ、半導体領域l及び半導体領域15i通じ
て流rしるか、めるいは第2のバンクケート電極として
の導電性層11へ、半導体領域1及び半導体領域14奮
通って鑞nるため、第1図で上述した場合に比しその抵
抗は小さく、畠電界領域12近傍の電位上昇は低められ
、又半導体領域3と半導体領域lとで形成さfLる接合
13の順バイアスの程度を低めることが巧能となるため
、共通電極としての導電性層8とドレイン電極としての
導電性層9との間に印加し得る電圧は、第1図の従来の
絶縁ケート型電界幼朱トランジスタに比し市くすること
ができるという効果ケ射するものである。
The above is the second embodiment of the insulated gate type boosting effect transistor of the present invention.
However, except for the above-mentioned drawbacks, the structure is the same as that shown in FIG. 2, so a detailed explanation will be omitted. The S conductive layer 8 is filled through the semiconductor region 1 and the semiconductor region 15i, or the conductive layer 11 as the second bank electrode is passed through the semiconductor region 1 and the semiconductor region 14. Therefore, the resistance is smaller than in the case described above in FIG. Since it is possible to reduce the degree of It has the advantage of being more commercially available than red transistors.

次に第4図によって、本発明による絶縁ケート型電界効
果トランジスタの第3の実施例2述べると、第2図に示
す構成においてナヤ不ル形に領域とし1の半導体領域l
の主面211111とは反対1(1]の主面17 Ul
)面上に、P型の半導体領域14金形成し、塾らに半導
体領域14の主= 17とは反別側の主面10の六回上
に、第2のバックケート′電極としての4電性層11を
形成し、ソース領域としての半導体領域3の主面2側の
表面よジ半辱体領域3から半導体領域1に達するU形、
V形あるいは矩形等の溝16全形成し、さらにその而1
6の表面にυいて半導体領域3及び半導体領域lの双方
に接するように、共通′屯極としての導電性層8を形成
する点以外は、第2図の場合と同様の栴J!i、會有す
る。たノどしこの揚会、溝16は半導体領域1(7)尚
′亀界幀域12に出米得る限り近い位置とする。
Next, referring to FIG. 4, a third embodiment of the insulated gate field effect transistor according to the present invention will be described. In the structure shown in FIG.
Main surface 17 of 1 (1) opposite to main surface 211111 of
), a P-type semiconductor region 14 is formed on the surface, and a second backgate' electrode 4 is formed on the main surface 10 on the opposite side from the main surface 17 of the semiconductor region 14. A U-shape that forms the conductive layer 11 and extends from the semicircular region 3 to the semiconductor region 1 from the surface on the main surface 2 side of the semiconductor region 3 serving as a source region;
All 16 grooves such as V-shaped or rectangular are formed, and then 1
6 is the same as that shown in FIG. 2, except that a conductive layer 8 is formed as a common electrode so as to be in contact with both the semiconductor region 3 and the semiconductor region l. i, have a meeting. The groove 16 is located as close as possible to the semiconductor area 1 (7) and the turtle area 12.

以上が本光切による第3の実施例の構成であるが、この
ような′a成によILは、それか上述せる事項を除いて
は第1図の場合と同様の栴成葡有するので、計細歇明は
省略するか、共通電極としての導電性層8とバックケー
ト電極としての導電性層11とを短絡し、ケート電極と
しての導電性層7に共通電極としての導電性層8 VL
一対して正の手足の値(閾値)より大なる電圧奮与え、
チャネル形成領域としての半導体領域lの領域5の主面
2側の表面にN型層のテヤイ・ルが形成′さrシ、6ら
にドレイン電極としての導電性層9に、共通電極として
の導電性層8に対して正の電圧を与えf′Lは、導電性
層8、半導体領域3、半導体領域1の領域5の主UII
J2側の表面に形成さrしたナヤネノペ半導体領域4、
導電性層9に連なる′厄流路が形成さ扛、第1図の場合
と同様にオン状態が侍ら扛る。
The above is the configuration of the third embodiment according to Honkokiri, but because of this configuration, the IL has the same structure as the case of FIG. 1 except for the matters mentioned above. , the detailed explanation is omitted, or the conductive layer 8 as a common electrode and the conductive layer 11 as a back electrode are short-circuited, and the conductive layer 7 as a gate electrode is connected to the conductive layer 8 as a common electrode. VL
Applying a voltage greater than the value (threshold value) of the positive limb on the other hand,
A layer of an N-type layer is formed on the main surface 2 side of the region 5 of the semiconductor region 1 as a channel forming region, and a layer 6 as a common electrode is formed on the conductive layer 9 as a drain electrode. A positive voltage is applied to the conductive layer 8 and f'L is the main UII of the conductive layer 8, the semiconductor region 3, and the region 5 of the semiconductor region 1.
Nayanenope semiconductor region 4 formed on the surface of J2 side,
A path is formed that continues to the conductive layer 9, and the ON state is maintained as in the case of FIG.

しかしなから、第4図に示す本発明による絶縁ケート型
電界効米トランジスタの場合、オン状態に2いて、共通
電極としての導電性層8に対して、ドレイン電極として
の導電性層9に与える正の′電圧葡ア^・加した場合、
第1図において直り」したのと同様に、半導体領域lの
尚′電昇領域12にあ・いて発生した正孔は共通電極と
しての碑*性層8へ半導体領域1全通って流fLるため
、第1図の場合に比らべ、半導体領域1による抵抗は小
姑く、高電界領域12近傍の電位上昇は低められ、首だ
半導体領域3と半導体領域1とで形成さrしる接合13
の順バイアスの程度勿低めることが可能とな/)ため、
共通′屯極としての導電性層8とドレイン電極としての
導′屯性層9との間に印加し得る電圧は、第1図の従来
の絶縁ケート型電界効米トランジスタに比し、尚くする
ことかできるという効果を有1−るものである。
However, in the case of the insulated gate field effect transistor according to the present invention shown in FIG. If a positive voltage is applied,
In the same way as shown in FIG. 1, the holes generated in the electrophoresis region 12 of the semiconductor region 1 flow through the entire semiconductor region 1 to the static layer 8 serving as a common electrode. Therefore, compared to the case of FIG. 1, the resistance due to the semiconductor region 1 is smaller, the potential rise near the high electric field region 12 is lowered, and the junction formed between the neck semiconductor region 3 and the semiconductor region 1 is reduced. 13
It is possible to reduce the degree of forward bias of /), so
The voltage that can be applied between the conductive layer 8 as the common electrode and the conductive layer 9 as the drain electrode is much higher than that in the conventional insulated gate field effect transistor shown in FIG. It has the effect of being able to do a lot of things.

次に第5図によって本発明による絶縁ゲート型箪界効呆
トランジスタの第4の実施例會述べると、第4図に示フ
ー構成に於て、溝16が半導体領域3の主面2側の表面
77ユら半導体領域3、半導体領域l及び半4坏領域工
4に丑で達づ−るように形成式71.る点以外は、第4
図の場合と同様の構成r有する。
Next, a fourth embodiment of the insulated gate type small field effect transistor according to the present invention will be described with reference to FIG. 5. In the structure shown in FIG. Formation formula 71. 4.
It has the same configuration as the case shown in the figure.

以上が本発明による絶縁ケート型電界効果トランジスタ
の第4の実施例であるが、このような構成によrしは、
そ扛が上述せる事項′?f:除いて第4図の場合と同様
の栴M、全治するので、吐細説明は省略するが、半導体
領域lの商電界領域12で発生した正孔は、共通電極と
してのS電性層8へ半導体領域1を逃しで流れる/jめ
、第1図の楊会にくらべ、半導体領域1による抵抗は小
姑<、高電界領域12近傍の電位上昇は低めらn、また
半導体領域3と半導体領域lとで形成さ扛る接合13の
IWiバイアスの程度全像めることが可能となるため、
共通電極とし又の導電性層8とドレイン電極としての導
電性層9との間に印加し得る電圧は、第1図の従来の絶
縁ゲート型電界効果トランジスタに比し高くできるとい
う効果ケ有するものである。
The above is the fourth embodiment of the insulated gate field effect transistor according to the present invention.
What can be said above? f: Same as in the case of FIG. 4 except f: The hole M is completely cured, so a detailed explanation will be omitted, but holes generated in the commercial electric field region 12 of the semiconductor region l are transferred to the S conductive layer as a common electrode. 8, the resistance due to the semiconductor region 1 is smaller than that shown in FIG. Since it is possible to fully image the IWi bias of the junction 13 formed with the region l,
This transistor has the effect that the voltage that can be applied between the conductive layer 8 serving as the common electrode and the conductive layer 9 serving as the drain electrode can be higher than that in the conventional insulated gate field effect transistor shown in FIG. It is.

次に第6図によって本光切によ/b杷縁ケート型電界効
効果ランジスタの第5の実施例ケ述べると、第5図に示
した構成にお・いで、溝16の表面に形成さf′Lfc
共通電極としての導電性層8と半導体領域1.半尋体領
域3及び半導体領域14との間にP型の半導体領域18
を形)Aする点以外は、第5図の場合と同様の構成企有
する。
Next, referring to FIG. 6, a fifth embodiment of the optical gate type field effect transistor will be described. f'Lfc
A conductive layer 8 as a common electrode and a semiconductor region 1. A P-type semiconductor region 18 is provided between the half-body region 3 and the semiconductor region 14.
The configuration is similar to that in Figure 5, except that A is in the form A).

以上が本発明による絶縁ゲート型電界効果トランジスタ
の第5の実施例であるが、このような構成によ7’Lは
、そnが上述せる事項4除いて第5図の場合と同様の構
成7有するので、肝油」説明は鳴略するか、半導体領域
lの高電界領域12で発生した正孔は、共通電極として
の導電性層8へ半導体領域1及び半導体領域18を辿し
て冗jLるため、第1図の場合にくらべ、その抵抗は小
さく、a ’+Q界狽域領域傍の電位上昇は低めらrt
X−&た半導体領域3と半導体領域1とで形成さ扛る接
置13の騙バイアスの程度全像めることがThJ能とな
るため、共通電極としての導電性層8とドレイン電極と
してのS電性層9との間に印加し得る電圧は、第1図の
従来の絶縁ケート型電界効果トランジスタに比し高くで
きるという効果を有するものである。
The above is the fifth embodiment of the insulated gate field effect transistor according to the present invention, and with this configuration, 7'L has the same configuration as in the case of FIG. 5 except for the above-mentioned item 4. 7, so the explanation is omitted, the holes generated in the high electric field region 12 of the semiconductor region 1 follow the semiconductor region 1 and the semiconductor region 18 to the conductive layer 8 serving as a common electrode, and become redundant. Therefore, compared to the case shown in Fig. 1, the resistance is smaller and the potential rise near the a'+Q boundary region is lower.
Since it is ThJ capability to fully image the degree of deceptive bias of the contact layer 13 formed by the semiconductor region 3 and the semiconductor region 1 formed by X-&, the conductive layer 8 as a common electrode and the conductive layer 8 as a drain electrode This has the effect that the voltage that can be applied between the S-conducting layer 9 and the S-conducting layer 9 can be made higher than that of the conventional insulated gate field effect transistor shown in FIG.

次に第7図によって本発明による絶縁ケート型電界効果
トランジスタの第6の実施例ケ述べると、太′lj、 
lAtの動作全行う絶縁ケート型電界効果トランジスタ
は、第1図に示した構成の絶縁ゲート型電界効果トラン
ジスタ葡単体とし、この単体のトランジスタを同一基板
上に多数形成し、こrしらを並列動作させることにより
得ら才したが、第7図に示す如く、本発明の第1から第
5の実施例と同様に、半導体領域14及び2!3L電性
層11葡形成し、きらに上述の単体の絶縁ケート型電°
界効釆トランジスタのうち数個に1個の割合で、第2図
から第6図に示す第1から第5の実施例の絶縁ゲート型
電界効果トランジスタ全混入してなる構成金有する。(
第7図ではTr2゜Tr3が本発明による第1の実施例
であシ、Tr、。
Next, referring to FIG. 7, a sixth embodiment of the insulated gate field effect transistor according to the present invention will be described.
The insulated gate field effect transistor that performs all the operations of lAt is a single insulated gate field effect transistor with the configuration shown in Figure 1, and a large number of these single transistors are formed on the same substrate, and these are operated in parallel. However, as shown in FIG. 7, similarly to the first to fifth embodiments of the present invention, the semiconductor region 14 and the 2!3L conductive layer 11 are formed, and then the above-mentioned Single insulated cable type electric
One out of every few field effect transistors has a structure in which the insulated gate field effect transistors of the first to fifth embodiments shown in FIGS. 2 to 6 are all mixed. (
In FIG. 7, Tr2 and Tr3 are the first embodiment according to the present invention.

+1r、 l Tr6は従来の絶線ケート捜電界効果ト
ランジスタである。) 以上が本発明による第6の実施例の構成であるが、この
ような′+#成によfLは、第7図に2けるTr、 、
 Tr、 、 ’fr11の従来枯遺の絶縁ゲート型電
界効果トランジスタに対しても、本発明にょる絶縁ケー
ト型電界効果トランジスタTr2及びTr3の壱する共
通電極としての4電性層8に連なる半導体領域15によ
る抵抗の低下の効果が現わ7L、素子全体を見た場合、
単体の絶縁ゲート型電界効果トランジスタのソース電極
及び共通電極全1とめたソース端子と、ドレイン電極t
lとめたドレイン端子間に印加し得る電圧全従来のもの
より高くすることが出来るという効果金有するものであ
る。
+1r, l Tr6 is a conventional disconnected gate field effect transistor. ) The above is the configuration of the sixth embodiment according to the present invention.
Even for conventional insulated gate field effect transistors such as Tr, , 'fr11, the semiconductor region connected to the four-conductor layer 8 as a common electrode of insulated gate field effect transistors Tr2 and Tr3 according to the present invention. The effect of reducing resistance due to 15 appears.7L, when looking at the entire element,
The source electrode and common electrode of a single insulated gate field effect transistor are connected to the source terminal and the drain electrode t.
This has the advantage that the voltage that can be applied between the fixed drain terminals can be made higher than that of the conventional method.

(発明の効果) 以上、読切したように木兄ゆjによる絶縁ケート型電界
効果トランジスタによfLは、ソース電極とドレイン電
極、るるいはソース端子とドレイン端子間に印加し得る
°電圧全従来構造のものよシ筒くすることができるので
、絶縁ゲート型電界効果トランジスタの高耐圧化という
点において効果かめる。
(Effects of the Invention) As explained above, in the insulated gate field effect transistor by Yuki Kinoe, fL is the voltage that can be applied between the source electrode and the drain electrode, or between the source terminal and the drain terminal. Since the structure can be made more compact, it is effective in increasing the withstand voltage of insulated gate field effect transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁ゲート型電界効果トランジスタを示
す路線的断面図、第2図、第3図。 第4図、第5図、第6図及び第7図は、夫々本発明によ
る絶縁ケート型電界効果トランジスタの第1.第2.第
3.第4.第5及び第6の実施例を示す路線的断面図で
ある。 l・・・・・・P4型型半体領域(第2の半導体領域)
2・・・・・・主面 3・・・・−・N型半導体領域(第3の半導体領域)4
・・・・・・   〃   (第4の半導体領域)5・
・・・・・半導体領域 6“・・・・・・絶縁層 7・・・・・・導電性層(第lの導電性層)8・・・・
・・  〃  (絹、1(7)導電性層)9 ・・・・
・・    〃 lO・・・・・・主面 11・・・・・・導電性層(第2の導電性層)L・・・
・・・高電界領域 13・・・・・・整流性接合 14・・・・・−P型半導体領域(第1の半導体領域)
15・・・・・・P型半導体領域(第5の半導体領域)
16・・・・・・溝 l7・・・・・・主■ 18・・・・・・P+型半導体領域(第5の半導体領域
)特許出願人 日本電信電話公社 第1図 第3図 第4図
FIG. 1 is a cross-sectional view showing a conventional insulated gate field effect transistor, and FIGS. 2 and 3. 4, 5, 6 and 7 respectively show the first insulated gate field effect transistor according to the present invention. Second. Third. 4th. It is a line sectional view showing a fifth and a sixth example. l...P4 type half region (second semiconductor region)
2...Main surface 3...N-type semiconductor region (third semiconductor region) 4
・・・・・・ 〃 (Fourth semiconductor region) 5.
... Semiconductor region 6'' ... Insulating layer 7 ... Conductive layer (lth conductive layer) 8 ...
・・ 〃 (Silk, 1 (7) conductive layer) 9 ・・・・
...〃 lO ... Main surface 11 ... Conductive layer (second conductive layer) L ...
. . . High electric field region 13 . . . Rectifying junction 14 . . . - P-type semiconductor region (first semiconductor region)
15...P-type semiconductor region (fifth semiconductor region)
16... Groove l7... Main ■ 18... P+ type semiconductor region (fifth semiconductor region) Patent applicant Nippon Telegraph and Telephone Public Corporation Figure 1 Figure 3 Figure 4 figure

Claims (1)

【特許請求の範囲】 (υ第1り導′屯型盆廟J−る第1の半導体領域と、該
第1の半導体領域に連接し、第1の導′也型盆山しかつ
前記の第lの半導体領域に比し商い比抵抗會有する第2
の半導体領域と、該第2の半導体領域に連接jる第1の
半導体領域とは逆の第2の導電型7有するソース領域と
しての第3の半導体領域と、前記第1及び第3の半導体
領域には連接せず、前記第2の半導体領域に連接する第
2の導電型を有するドレイン函域としての第4の半導体
領域と、前記第3及び第4の半導体領域間の領域の表面
上にゲート絶縁層としての絶縁層勿介して配さ7t、た
ケート電極としての第1(1)等電性層と、前記第2.
第3及び第4の半導体領域には連接せす、前記第1の半
導体領域において前記第2の半導体領域とは反対側の主
面の表面上に設けられたバックゲート電極としての第2
の等奄性層と全具備する絶縁ケート型奄界効米トランジ
スタに於て、前記第1及び第4の半導体領域(Cは連接
せず、前記第2及び第3の半導体領域に連接し、第lの
等電型盆4jし、かつ−IJ記第2の半導体領域に比し
低い比抵抗會七する第5の半導体領域と、前記第2及び
第5の半導体領域に連接し、共通の電極としての第3の
尋奄性層ケ冶1−ること?f−特徴とする杷祿ゲート型
′亀界効果トラン文スタ。 (2)第°1の導電型を有1−る第lの半導体領域と、
該第lの半導体領域に連接し、第lの導′屯型紮徊しか
つ前記の第1の半導体領域に比し向い比抵抗In−る第
2の半導体領域と、該第2の半導体領域に連接する第l
の半導体領域とは逆の第2の導電型を有するソース領域
としての第3の半導体領域と、前記第1及び第3の半導
体領域には連接セーす、前記第2の半導体領域に連接す
る第2の導電型葡七するドレイン領域としての第4の半
導体領域と、mJ配第3及び第4の半導体領域間の領域
の表面上にケート絶に層としでの絶縁層を介して配さf
したゲート電健としての第1の導′屯性層と、前記第2
.第3及び第4の半導体領域には連接せず、前記第1の
半導体領域VCおいて前記第2の半導体領域とは反対側
の主面の表面上に設けらfしたバックケート電極として
の第2の導電性層と全具備する絶縁ケート型電界効果ト
ランジスタに於て、前id第4の半導体領域には連接せ
ず、前記第1.第2及び第3の半導体領域に連接し、第
1の導電型葡梅し〃・つ前記第2の半導体領域に比し低
い比抵抗を有する第5の半導体領域と、前記第3及び第
5の半導体領域に連接する共通の電極としての第3の導
電性層とを有すること全特徴とする絶縁ケート型′亀界
効果トランジスタ。 (3)第1の導電型を有する第1の半導体領域と、該第
lの半導体領域に連接し、第工の導電型4弔しη)つ前
記の第工の半導体領域に比し高い比抵抗を有する第2の
半導体領域と、紙第2の半導体領域に連接する鋼重の半
導体領域とは逆の第2の導電型を有するソース領域とし
ての第3の半導体領域と、前記第l及び第3の半導体領
域には連接せず、前記第2の半導体領域に連接する第2
の導電型を有するドレイン領域としての第4の半導体領
域と、前記第3及び第4の半導体領域間の領域の表面上
にゲート絶縁層としての絶縁層ヶ介して配さ扛たケート
電極としての第1の導電性層と、前記第2.第3及び第
4の半導体領域には連接せず、前記第1の半導体領域に
2いて前記第2の半導体領域とは反対側の主′面の表面
上に設けらfしたバンクゲート′屯極としての第2の導
電性層とを具備する絶縁ゲート型軍界効果トランジスタ
に於て、前記第3の半導体領域の表向より、前記第2及
び第3の半導体領域に達するU形、V形、矩形等の湾r
南し、畝溝の表面に、第2及び第3の半導体領域に連接
する第3の導電性層を設けること全特徴とする絶縁ケー
ト型篭界効果トランジスタ。 (4)第1の導電型勿有する、第1の半導体領域と、該
第1の半導体領域に連接し、第1の導電型7有し刀1つ
前記の第1の半導体領域に比し高い比抵抗勿有する第2
の半導体領域と、し第2の半導体領域に連接する第1の
半導体領域とは逆の第2の導電型全有するソース渓域と
しての第3の半導体領域と、前記第1及び第3の半導体
領域には連接せず、前記第2の半導体領域に連接する第
2の導電型を有するドレイン領域としての第4の半導体
領域と、前記第3及び第4の半導体領域間の領域の表面
上にゲート絶縁層としての絶縁層を介して配さfL7ヒ
ケート電極としての第1の導電性層と、前記第2.第3
及び第4の半導体領域には連接せず、前記第1の半導体
領域に2いて前記第2の半導体領域とは反対側の主面の
表面上に設けらrしたバックケート電極としての第2の
導電性層と全具備する絶縁ケート型電界効果トランジス
タに於て、前記第3の半導体領域の表面より、前記第1
.第2及び第3の半導体領域に達するU形、V形、矩形
等の溝を有し、畝溝の底面に第l、第2及び第3の半導
体領域に連接する第3の導電性層奮設けることを特徴と
する特Wf請求の範囲第3.!14記載の絶縁ケート型
電界効未トランジスタ。 (5)第1の導′亀型を有する第1の半導体領域と、該
第1の半導体領域に連接し、第工の導電型勿有しかつ前
記の第工の半導体領域に比し商い比抵抗葡肩する第2の
半導体領域と、該第2の半導体領域に連接する第1の半
導体領域とは逆の第2の導電型?11″壱するソース領
域としての第3の半導体領域と、前記第l及び第3の半
導体領域には連接せず、前記第2の半導体領域に連接す
名調2の導電型勿有するドレイン領域としての第4の半
導体領域と、前記第3及び第4の半導体領域間の領域の
表面上にケート絶縁層としての絶縁層を介して配さnた
ケート電極としての第1の導′屯性層と、前記第2.第
3及び第4の半導体領域には連接せず、前記第1の半導
体領域に2いて前記第2の半導体領域とは反対側の主面
の表面上に設けら7したバックゲート電極としての第2
の導電性層と全具備する絶縁ケート型電界効果トランジ
スタに於て、前記第3の半導体領域の表面よシ、前記第
l、第2及び第3の半導体領域に達するU形、■形、矩
形等の溝を有し、咳溝の表面に第1.第2及び第3の半
導体領域に連接し、第lの導電型を有しかつrgjl記
第2の半導体領域に比し低い比抵抗r有する第5の半導
体領域と、前記第3及び第5の半導体領域に連接する共
通の電極としての第3の導電性層と全肩すること全特徴
とする特許請求の範囲第4項記載の絶縁ケ−1・型軍界
幼朱トランジスタ。
[Scope of Claims] The second region has a specific resistivity compared to the semiconductor region of l.
a third semiconductor region as a source region having a second conductivity type opposite to that of the first semiconductor region connected to the second semiconductor region, and the first and third semiconductor regions. a fourth semiconductor region as a drain box region having a second conductivity type that is not connected to the second semiconductor region and is connected to the second semiconductor region, and on the surface of the region between the third and fourth semiconductor regions; an insulating layer 7t as a gate insulating layer, a first (1) isoelectric layer as a gate electrode, and a first (1) isoelectric layer as a gate electrode;
A second back gate electrode connected to the third and fourth semiconductor regions and provided on the main surface of the first semiconductor region opposite to the second semiconductor region.
In the insulated cat type Amami-effect transistor, which is completely equipped with an isotropic layer, the first and fourth semiconductor regions (C are not connected and are connected to the second and third semiconductor regions, a fifth semiconductor region having a resistivity lower than that of the second semiconductor region, and a common semiconductor region connected to the second and fifth semiconductor regions; The third flexible layer as an electrode is characterized by a gate-type 'kame field effect transistor'. (2) The first conductivity type is semiconductor field,
a second semiconductor region connected to the first semiconductor region, having a conductive shape and having a resistivity In- opposite to the first semiconductor region; concatenated with
a third semiconductor region serving as a source region having a second conductivity type opposite to that of the semiconductor region; a third semiconductor region connected to the first and third semiconductor regions; A fourth semiconductor region as a drain region having two conductivity types, and an insulating layer disposed on the surface of the region between the third and fourth semiconductor regions.
a first conductive layer as a gate conductor;
.. A backgate electrode that is not connected to the third and fourth semiconductor regions and is provided on the main surface of the first semiconductor region VC on the side opposite to the second semiconductor region. In an insulated gate field effect transistor comprising all the conductive layers of the first and second conductive layers, the first and second conductive layers are not connected to the fourth semiconductor region; a fifth semiconductor region connected to the second and third semiconductor regions and having a first conductivity type and a lower resistivity than the second semiconductor region; a third electrically conductive layer as a common electrode connected to a semiconductor region of the insulated gate type 'katele effect transistor'. (3) a first semiconductor region having a first conductivity type, which is connected to the first semiconductor region and has a conductivity type η) having a higher ratio than the first semiconductor region; a second semiconductor region having resistance; a third semiconductor region as a source region having a second conductivity type opposite to that of the semiconductor region of steel connected to the second semiconductor region; A second semiconductor region that is not connected to the third semiconductor region but is connected to the second semiconductor region.
a fourth semiconductor region as a drain region having a conductivity type of a first electrically conductive layer; a bank gate electrode not connected to the third and fourth semiconductor regions, provided in the first semiconductor region on the surface of the main surface opposite to the second semiconductor region; In an insulated gate military field effect transistor comprising a second conductive layer, a U-shaped or V-shaped conductive layer extends from the surface of the third semiconductor region to the second and third semiconductor regions. , rectangular etc. bay r
An insulated cat cage field effect transistor, characterized in that a third conductive layer is provided on the surface of the ridge to the south and connected to the second and third semiconductor regions. (4) a first semiconductor region having a first conductivity type, and a semiconductor region having a first conductivity type 7 connected to the first semiconductor region and having a semiconductor region having a first conductivity type 7; 2nd resistivity
a semiconductor region connected to the second semiconductor region, a third semiconductor region as a source region having a second conductivity type opposite to that of the first semiconductor region, and the first and third semiconductor regions. a fourth semiconductor region serving as a drain region having a second conductivity type that is not connected to the second semiconductor region and connected to the second semiconductor region; and a surface of a region between the third and fourth semiconductor regions. a first conductive layer serving as a gate electrode fL7 disposed through an insulating layer serving as a gate insulating layer; Third
and a second backgate electrode not connected to the fourth semiconductor region but provided on the main surface of the first semiconductor region and opposite to the second semiconductor region. In an insulated gate field effect transistor fully equipped with a conductive layer, from the surface of the third semiconductor region, the first
.. It has U-shaped, V-shaped, rectangular, etc. grooves reaching the second and third semiconductor regions, and has a third conductive layer formed on the bottom surface of the ridges and connected to the first, second and third semiconductor regions. Claim 3. ! 15. The insulated gate field effect transistor according to 14. (5) a first semiconductor region having a first conductive turtle shape, connected to the first semiconductor region, having a conductivity type of the first conductivity type and having a commercial ratio compared to the first semiconductor region; The second semiconductor region having a high resistance and the first semiconductor region connected to the second semiconductor region have a second conductivity type opposite to each other. a third semiconductor region as a source region of 11", and a drain region of conductivity type 2 that is not connected to the first and third semiconductor regions but is connected to the second semiconductor region; a fourth semiconductor region, and a first conductive layer as a gate electrode disposed on the surface of the region between the third and fourth semiconductor regions with an insulating layer as a gate insulating layer interposed therebetween. and the second semiconductor region is not connected to the third and fourth semiconductor regions, is located in the first semiconductor region, and is provided on the surface of the main surface on the opposite side from the second semiconductor region. Second as back gate electrode
In an insulated gate field effect transistor comprising a conductive layer, a U-shaped, ■-shaped, rectangular shape extending from the surface of the third semiconductor region to the first, second, and third semiconductor regions. The first groove is formed on the surface of the cough groove. a fifth semiconductor region connected to the second and third semiconductor regions, having a conductivity type and having a specific resistance r lower than that of the second semiconductor region; 5. The insulated case 1 type military red transistor as claimed in claim 4, characterized in that the third conductive layer serves as a common electrode connected to the semiconductor region.
JP21263582A 1982-12-06 1982-12-06 Insulated gate type field-effect transistor Pending JPS59103378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21263582A JPS59103378A (en) 1982-12-06 1982-12-06 Insulated gate type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21263582A JPS59103378A (en) 1982-12-06 1982-12-06 Insulated gate type field-effect transistor

Publications (1)

Publication Number Publication Date
JPS59103378A true JPS59103378A (en) 1984-06-14

Family

ID=16625913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21263582A Pending JPS59103378A (en) 1982-12-06 1982-12-06 Insulated gate type field-effect transistor

Country Status (1)

Country Link
JP (1) JPS59103378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656662A2 (en) * 1993-11-30 1995-06-07 Siliconix Incorporated A bidirectional blocking lateral mosfet with improved on-resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656662A2 (en) * 1993-11-30 1995-06-07 Siliconix Incorporated A bidirectional blocking lateral mosfet with improved on-resistance
EP0656662A3 (en) * 1993-11-30 1995-08-02 Siliconix Inc A bidirectional blocking lateral mosfet with improved on-resistance.

Similar Documents

Publication Publication Date Title
US3512058A (en) High voltage transient protection for an insulated gate field effect transistor
US4686551A (en) MOS transistor
US3135926A (en) Composite field effect transistor
US4743952A (en) Insulated-gate semiconductor device with low on-resistance
JPS62120121A (en) Cmos output driving circuit
US5751036A (en) Floating gate type non-volatile semiconductor memory device
US3543052A (en) Device employing igfet in combination with schottky diode
JPS63224260A (en) Conductivity modulation type mosfet
KR930022582A (en) Complex Controlled Semiconductor Device and Power Conversion Device Using the Same
JPS59103378A (en) Insulated gate type field-effect transistor
US4584593A (en) Insulated-gate field-effect transistor (IGFET) with charge carrier injection
US4761679A (en) Complementary silicon-on-insulator lateral insulated gate rectifiers
US4641163A (en) MIS-field effect transistor with charge carrier injection
JPH0376592B2 (en)
JP3412393B2 (en) Semiconductor device
JPS5889872A (en) Junction type field effect semiconductor device
US3500138A (en) Bipolar mos field effect transistor
JPH0291975A (en) Semiconductor device
EP0272753B1 (en) Complementary silicon-on-insulator lateral insulated gate rectifiers
JPH01111378A (en) Vertical mosfet
JPS6276557A (en) Insulated gate type self-turn-off element
JPH01251755A (en) Thyristor
JPS58122695A (en) Input overvoltage protection circuit
JPH0354477B2 (en)
JPS58178566A (en) Field effect transistor