JPS59103279A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPS59103279A
JPS59103279A JP57214108A JP21410882A JPS59103279A JP S59103279 A JPS59103279 A JP S59103279A JP 57214108 A JP57214108 A JP 57214108A JP 21410882 A JP21410882 A JP 21410882A JP S59103279 A JPS59103279 A JP S59103279A
Authority
JP
Japan
Prior art keywords
silver oxide
silver
battery
zinc
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57214108A
Other languages
Japanese (ja)
Other versions
JPH0526306B2 (en
Inventor
Shigeru Oishi
大石 繁
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Ebaredei KK
Original Assignee
Sony Ebaredei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ebaredei KK filed Critical Sony Ebaredei KK
Priority to JP57214108A priority Critical patent/JPS59103279A/en
Publication of JPS59103279A publication Critical patent/JPS59103279A/en
Publication of JPH0526306B2 publication Critical patent/JPH0526306B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature

Abstract

PURPOSE:To suppress variation in the discharge capacity of a silver oxide battery by restricting the discharge capacity through silver oxide or silver peroxide which is contained in the positive electrode and the packed quantity of which can easily be controlled. CONSTITUTION:A button-type silver oxide battery is constituted of the following members: a positive electrode 2 principally consisting of silver oxide; a separator 3 consisting of cellophane, polyethylene formed by graft polymerization and an absorbing nonwoven-fabric member; and a negative electrode 6 consisting of amalgamated zinc, a gelling agent and electrolyte. In such a battery, when the quantity of zinc which can react with whole silver oxide and/or silver peroxide which give the discharge capacity of the positive electrode 2 is supposed to be 100, a quantity corresponding to 100-110 of zinc is used as amalgamated zinc. In addition, the electric capacity of packed amalgamated zinc is adjusted to 101-110% of the electric capacity of packed oxide and/or silver peroxide. As a result, restriction of the positive electrode 2 as well as improvement of the preservation characteristic of capacity are secured.

Description

【発明の詳細な説明】 この発明は酸化銀電池に関するものであり、更に詳細に
は、放電容量のばらつきを小さく改良した酸化銀電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silver oxide battery, and more particularly to a silver oxide battery with improved discharge capacity variations.

電子卓上計算機の小型電子機器に広く利用されている。It is widely used in small electronic devices such as electronic desktop calculators.

近年、これらの電子機器の発達はめざましく、その小型
化、薄型化か進んでいる。それに伴い、使用される電池
も、小型あるいは薄型で容量の小さいものが多くなって
きている。
In recent years, the development of these electronic devices has been remarkable, and they are becoming smaller and thinner. Along with this, many of the batteries used are becoming smaller or thinner and have lower capacity.

容量の小さい電池を評価するにあたり、容量のばらつき
が問題となってきている。すなわち、容量の小さい電池
の場合、個々の電池の容量のばらつきの絶対量が容量の
大きい電池と等しくても、容量の中心値に対するばらつ
き量の比率は容量の中心値に反比例するために、容量の
小さい電池はどこのばらつき量の比率が大きくなる。こ
の容量のばらつきを調査した結果、電池製造時に充填さ
れる活物質の充填量のばらつきに大きく起因することが
判明した。
When evaluating batteries with small capacities, variations in capacity have become a problem. In other words, in the case of a battery with a small capacity, even if the absolute amount of variation in capacity of each individual battery is the same as that of a battery with a large capacity, the ratio of the variation amount to the center value of capacity is inversely proportional to the center value of capacity, so the capacity The smaller the battery, the larger the ratio of the amount of variation. As a result of investigating this variation in capacity, it was found that it was largely due to variation in the amount of active material filled during battery manufacture.

ところで、一般の酸化銀電池では、負極は水化亜鉛とカ
ルボキシメチルセルロースやポリアクリル酸ソーダ等の
ゲル化剤とアルカリ電解液とからゲル状に構成きれてい
る。また、正極は、酸化銀と電導剤としてのグラファイ
トとアセチレンブラック等とから圧粉成型により形成し
たペレット状物質を充填することによって構成されてい
る。従来は過放電時における水素ガスの発注を防ぐため
に、正極側の容量を過剰にして、負極側の容量によって
電池の容量が規制される負極規制とするように、電池が
設計されていた。そこで、電池の放電容量のばらつきは
、負極の水化亜鉛の充填量のばらつきに大きく起因して
いた。ところが、負極には、上述したようにゲル状のも
のを充填して用いるために、充填時にその充填量をコン
トロールするのが難しく、充填量に大きなばらつきか注
するのは免れないところであった。
Incidentally, in a typical silver oxide battery, the negative electrode is formed in a gel form from zinc hydride, a gelling agent such as carboxymethyl cellulose or sodium polyacrylate, and an alkaline electrolyte. Further, the positive electrode is constructed by filling a pellet-like material formed by powder molding from silver oxide, graphite as a conductive agent, acetylene black, etc. Conventionally, in order to prevent hydrogen gas from being ordered during overdischarge, batteries have been designed to have an excessive capacity on the positive electrode side, and to use negative electrode regulation in which the capacity of the battery is regulated by the capacity on the negative electrode side. Therefore, variations in the discharge capacity of the batteries were largely caused by variations in the amount of zinc hydride filled in the negative electrode. However, since the negative electrode is filled with a gel-like material as described above, it is difficult to control the filling amount at the time of filling, and large variations in the filling amount are inevitable.

この発明は、上述の点に鑑みて達成きれたものであって
、放電容量のばらつきを小さく改良した酸化銀電池を提
供するものである。
This invention has been achieved in view of the above-mentioned points, and provides a silver oxide battery with improved variation in discharge capacity.

丁なわち、この発明の酸化銀電池は、酸化銀および/ま
たは過酸化銀を主体とする正極活物質と、電解液と、氷
化亜鉛を主体とする負極活物質とを有し、かつ上記氷化
亜鉛の充填電気容量が上記酸化銀および/または過酸化
銀の充填電気容量の100〜110%に相当することを
特徴とする酸化銀電池に係るものである。
In other words, the silver oxide battery of the present invention has a positive electrode active material mainly composed of silver oxide and/or silver peroxide, an electrolyte, and a negative electrode active material mainly composed of zinc oxide, and the above-mentioned The present invention relates to a silver oxide battery characterized in that the filling capacitance of zinc oxide corresponds to 100 to 110% of the filling capacitance of the silver oxide and/or silver peroxide.

この発明の酸化銀電池では、正極活物質として酸化銀ま
たは過酸化銀、もしくはこれらの混合物が主体に使用き
れる。この正極活物質にはまた、酸化銀や過酸化銀より
も大巾に低い電位で放電する補助材が混合されていて、
もよい。このような補助材を混合させると、亜鉛が過剰
の時に、使用領域で放電し終えなかった残りの亜鉛を低
電位で完全に放電させることができる。したがって、過
放電時に電解液が電気分解されて水素ガスが発生するの
を防ぐことができる。この場合、上記補助材は、氷化亜
鉛の過剰の放電容量以上の充填電気容量を有するのが好
ましく、酸化銀および/または過酸化銀80〜90重量
%に対し、10〜20重量係の割合で混合きれるのが更
に好ましい。またこの補助材としては、酸化カドミウム
CdOが例示きれる。
In the silver oxide battery of the present invention, silver oxide, silver peroxide, or a mixture thereof can be mainly used as the positive electrode active material. This positive electrode active material also contains an auxiliary material that discharges at a much lower potential than silver oxide or silver peroxide.
Good too. When such an auxiliary material is mixed, when there is an excess of zinc, the remaining zinc that has not been completely discharged in the area of use can be completely discharged at a low potential. Therefore, it is possible to prevent the electrolytic solution from being electrolyzed and generating hydrogen gas during overdischarge. In this case, the above-mentioned auxiliary material preferably has a filling electric capacity greater than or equal to the excess discharge capacity of the zinc oxide, and has a proportion of 10 to 20% by weight relative to 80 to 90% by weight of silver oxide and/or silver peroxide. It is more preferable that the mixture can be completely mixed. Further, as this auxiliary material, cadmium oxide CdO can be exemplified.

この発明において、負極の氷化亜鉛の充填電気容量は正
極の酸化銀および/または過酸化銀の充填電気容量の1
00〜110%に規制きれる。換言子れば、正極の放電
容量を与える酸化銀およG′または過酸化銀と完全に反
応するだけの亜鉛の量を100とした場合、100〜1
10に相当する量の亜鉛を水化亜鉛として用いる。丈た
、水化亜鉛の充填電気容量は、酸化銀および/または過
酸化銀の充填電気容量の101〜110%とするのがざ
らに好ましい。このようにすることによって、後述Tる
ような、正極規制や容量の保存特性の改善を確実に行な
うことができる。
In this invention, the filling capacitance of frozen zinc in the negative electrode is 1 of the filling capacitance of silver oxide and/or silver peroxide in the positive electrode.
It can be regulated from 00% to 110%. In other words, if the amount of zinc that completely reacts with silver oxide and G' or silver peroxide that gives the discharge capacity of the positive electrode is 100, then 100 to 1
An amount of zinc equivalent to 10% is used as zinc hydrate. It is generally preferable that the filling capacitance of zinc hydride is 101 to 110% of the filling capacitance of silver oxide and/or silver peroxide. By doing so, it is possible to reliably improve positive electrode regulation and capacity storage characteristics, as described below.

以上のように構成することによって、この発明の酸化銀
電池においては、電池の放電容量が正極の酸化銀および
/または過酸化銀で規制きれる正極規制とすることかで
きる。正極の酸化銀および/または過酸化銀はその充填
量のばらつきを小ざく抑えることが容易であるために、
結果として、電池の放電容量のばらつきを小さくするこ
とが可能となる。
By configuring as described above, in the silver oxide battery of the present invention, the discharge capacity of the battery can be regulated by the positive electrode, which is regulated by the silver oxide and/or silver peroxide of the positive electrode. Since it is easy to suppress variations in the amount of silver oxide and/or silver peroxide in the positive electrode,
As a result, it is possible to reduce variations in battery discharge capacity.

才た、この発明において、氷化亜鉛の充填電気容量を酸
化銀および/゛才たは過酸化銀の充填電気容量より大き
くすることによって、放電容量の保存特性、例えば保存
後の容量劣化や容量のばらつきを改善できる。保存後の
容量劣化や容量のばらつきは、亜鉛の不動態化に起因す
る場合が多い。
In this invention, by making the filling capacitance of zinc oxide larger than the filling capacitance of silver oxide and/or silver peroxide, storage characteristics of discharge capacity, such as capacity deterioration after storage and capacity It is possible to improve the variation in Capacity deterioration and variation in capacity after storage are often caused by zinc passivation.

この発明においても、また従来の場合においても、保存
中に亜鉛の不動態化はおこりつる。しかし、従来の電池
の容量は亜鉛の量で決っていたから、亜鉛の不動態化は
電池の容量に直接影響を与えていた。これに対し、この
発明の電池は、酸化銀およツまたは過酸化銀の量で容量
か決るから、仮に亜鉛は影響がない。したがって、使用
領域でみた容量の保存性は、従来より優れたものにする
ことができる。
In this invention as well as in the conventional case, passivation of zinc occurs during storage. However, since the capacity of conventional batteries was determined by the amount of zinc, passivation of zinc had a direct impact on battery capacity. On the other hand, in the battery of the present invention, the capacity is determined by the amount of silver oxide and silver peroxide, so even if zinc has no effect. Therefore, the storage capacity of the capacity in terms of the used area can be made better than in the past.

この発明において使用きれる電解液は従来公知のもので
あってよく、例えばKOH水溶液などが挙げられる。ま
た、この発明による酸化銀電池の他の構成要素も、従来
公知のものが適用できる。例えば、正極には上述したよ
うな正極活物質と共風電導剤としてのグラファイトやア
セチレンブラック等が使用可能であり、負極には水化亜
鉛の他にゲル化剤や電解液等が含まれていてよい。
The electrolytic solution that can be used in this invention may be any conventionally known electrolytic solution, such as a KOH aqueous solution. Furthermore, conventionally known components can be used as other components of the silver oxide battery according to the present invention. For example, the positive electrode can use the above-mentioned positive electrode active material and a co-wind conductive agent such as graphite or acetylene black, and the negative electrode can contain a gelling agent, electrolyte, etc. in addition to zinc hydrate. It's fine.

また、この発明の酸化銀電池は、従来のものと放電電圧
やその平坦性が変わらず、従来の酸化銀電池の特長や利
点をそのま才維持したものである。
Further, the silver oxide battery of the present invention has the same discharge voltage and flatness as the conventional one, and maintains the features and advantages of the conventional silver oxide battery.

したがって、実際に使用する上で、従来の電池に合わせ
て設計きれた機器にも、困Bfきたすこきな(従来通り
使用できる。
Therefore, in actual use, even devices that have been designed to accommodate conventional batteries can be used in the same manner as before.

以下、この発明を実施例につき、図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明を適用し得る従来から公知のボタン
型酸化銀電池の構成の一例を示している。
FIG. 1 shows an example of the configuration of a conventionally known button-type silver oxide battery to which the present invention can be applied.

この第1図に示す酸化銀電池は、鉄にニッケルメッキを
施した正極ケース(1)、酸化銀を主成分とする正極(
2)、セロハン、グラフト重合したポリエチレン及び不
織布吸収体から構成きれるセパレータ(3)、ナイロン
からなる封口ガスケット(4)、銅、ステンレス及びニ
ッケルの3層クラッドからなる負極ケース(5)、水化
亜鉛とゲル化剤と電解液から構成される負極(6)から
なり、大きさは直径9.5 mm 。
The silver oxide battery shown in FIG.
2), separator (3) made of cellophane, graft-polymerized polyethylene, and nonwoven absorbent material, sealing gasket (4) made of nylon, negative electrode case (5) made of three-layer cladding of copper, stainless steel, and nickel, and zinc hydrate. It consists of a negative electrode (6) composed of a gelling agent and an electrolyte, and has a diameter of 9.5 mm.

高さ2.6 mrnである。この発明による電池Aでは
、6重量部からなる粉末0.28g%5トン/ cm 
で圧粉成型したものを用いた。そして負極(6)には、
水化亜鉛とゲル化剤とKOH水溶液とのゲル状混合物を
充填した。なお、この氷化亜鉛の充填電気容量は、正極
の酸化銀の充填電気容量の108%に相当するようにし
た。電解液にはKOH水溶液を用いたO 才た、従来公知の電池Bを本発明との比較例として用い
た。この電池Bでは、正極に酸化銀100重量部、グラ
ファイト6重量部からなる粉末0.27g;’i5 ト
ン/ cm  で圧粉酸をしたものを用い、また負極に
は、正極の酸化銀の充填電気容量の90チに相当する充
填電気容量を有する氷化亜鉛とゲル化剤とKOH水溶液
とのゲル状混合物を充填した。
The height is 2.6 mrn. In battery A according to the invention, 0.28 g% powder consisting of 6 parts by weight 5 tons/cm
A powder molded product was used. And for the negative electrode (6),
A gel-like mixture of zinc hydrate, a gelling agent, and an aqueous KOH solution was filled. Note that the filling electric capacity of this frozen zinc was made to correspond to 108% of the filling electric capacity of silver oxide of the positive electrode. A conventionally known battery B using a KOH aqueous solution as an electrolyte was used as a comparative example with the present invention. In this battery B, 0.27 g of a powder consisting of 100 parts by weight of silver oxide and 6 parts by weight of graphite was used as the positive electrode, and the negative electrode was filled with the silver oxide of the positive electrode. A gel-like mixture of frozen zinc, a gelling agent, and an aqueous KOH solution having a filling capacitance corresponding to 90 g of capacitance was filled.

これらの電池A及びBについて、製造直後と、6CIC
で20日間貯蔵後と、60tl’で40日間貯蔵後とに
負荷6.5にΩの条件でそれぞれ放電テストを行なった
。第2図に、この発明の電池Aと従! 来の池Bの放電曲線を示す。この発明の電池Aの場合、
放電電圧が1.55 Vの領域か酸化銀と亜鉛との間の
放電に対応し、放電電圧が0.45Vの領域がCdOと
亜鉛との間の放電に対応する。終止電圧を1.30 V
とした場合、放電容量は酸化銀で規制きれるととになる
。第1表には、この発明の電池Aの各保存条件における
放電容量の平均値と標準偏差を、終止電圧F!:1.3
0 Vと0.40Vにした場合について、示した。また
、第2表には従来の電池Bの各保存条件における放電容
量の平均値と標準偏差を、終止電圧% 1.30 Vと
した場合について示した。
For these batteries A and B, immediately after manufacture and 6CIC
A discharge test was conducted under the conditions of a load of 6.5 and Ω after storage for 20 days at a temperature of 60 tl' and after storage for 40 days at a temperature of 60 tl'. Figure 2 shows battery A of this invention and battery A of this invention. The discharge curve of Next Pond B is shown. In the case of battery A of this invention,
The region where the discharge voltage is 1.55 V corresponds to the discharge between silver oxide and zinc, and the region where the discharge voltage is 0.45 V corresponds to the discharge between CdO and zinc. Final voltage 1.30V
In this case, the discharge capacity can be regulated by silver oxide. Table 1 shows the average value and standard deviation of the discharge capacity of Battery A of the present invention under each storage condition, and the final voltage F! :1.3
The cases where the voltage is 0 V and 0.40 V are shown. Further, Table 2 shows the average value and standard deviation of the discharge capacity of the conventional battery B under each storage condition when the final voltage % was 1.30 V.

第  1  衣 第  2  表 第1表および第2表から、酸化銀で規制きれた電池への
放電容量はそのばらつきが亜鉛で規制された電池Bの放
電容量に比較して格段に小さいことが明らかである。才
た保存後の容量劣化も酸化銀で規制された電池Aの放電
容量の方が小さいことが示されている。
From Tables 1 and 2, it is clear that the dispersion in the discharge capacity of batteries regulated with silver oxide is much smaller than that of battery B, which is regulated with zinc. It is. It is also shown that the discharge capacity of battery A, which is regulated by silver oxide, has a smaller capacity deterioration after storage for a long time.

以上のように、この発明の酸化銀電池は、充填量のコン
トロールか容易な正極の酸化銀および/または過酸化銀
によって放電容量が規制されるので、放電容量のばらつ
きを抑えることができる。才た、酸化銀や過酸化銀は比
較的高価であるが、この発明間の酸化銀電池では用いら
れる酸化銀や過酸化銀を最大限に利用できるので、従来
より少量でTへ安価に製造できる。
As described above, in the silver oxide battery of the present invention, the discharge capacity is regulated by the silver oxide and/or silver peroxide of the positive electrode, which makes it easy to control the filling amount, so that variations in the discharge capacity can be suppressed. However, silver oxide and silver peroxide are relatively expensive, but since the silver oxide and silver peroxide used in this invention's silver oxide battery can be utilized to the maximum, it can be produced in smaller quantities and at lower cost than before. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を適用し得る従来から公知のボタン
屋酸化銀電池の縦断面図であり、第2図にはこの発明に
よる酸化銀電池と従来の酸化銀電池の放電曲線を示すグ
ラフである。 なお図面に用いた符号において、 (1)・・・・・・・・・・・・・・・正極ケース(2
)・・・・・・・・・・・・・・・正極(31・・・・
・・・・・・・・・・・セパレーク(4)・・・・・・
・・・・・・・・・封口ガスケット(5)・・・・・・
・・・・・・・・・負極ケース(6)・・・・・・・・
・・・・・・・負極である。 代理人 土星 勝
FIG. 1 is a longitudinal cross-sectional view of a conventionally known Buttonya silver oxide battery to which the present invention can be applied, and FIG. 2 is a graph showing discharge curves of the silver oxide battery according to the present invention and the conventional silver oxide battery. It is. In addition, in the symbols used in the drawings, (1)・・・・・・・・・・・・ Positive electrode case (2
)・・・・・・・・・・・・Positive electrode (31・・・・
・・・・・・・・・・・・Separate Lake (4)・・・・・・
・・・・・・・・・Sealing gasket (5)・・・・・・
・・・・・・・・・Negative electrode case (6)・・・・・・・・・
・・・・・・It is a negative electrode. Agent Masaru Saturn

Claims (1)

【特許請求の範囲】[Claims] 酸化銀および7才たは過酸化銀を主体とする正極活物質
と、電解液と、水化亜鉛を主体とTる負極活物質とを有
し、かつ上記水化亜鉛の充填電気容量か上記酸化銀およ
び7才たは過酸化銀の充填電気容量の100〜110%
に相描すること7i:特徴とする酸化銀電池。
It has a positive electrode active material mainly composed of silver oxide and silver peroxide, an electrolytic solution, and a negative electrode active material mainly composed of zinc hydride, and the filling electric capacity of the zinc hydrate or the above 100-110% of the filling capacitance of silver oxide and 7 years old or silver peroxide
7i: Characteristics of silver oxide batteries.
JP57214108A 1982-12-06 1982-12-06 Silver oxide battery Granted JPS59103279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57214108A JPS59103279A (en) 1982-12-06 1982-12-06 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57214108A JPS59103279A (en) 1982-12-06 1982-12-06 Silver oxide battery

Publications (2)

Publication Number Publication Date
JPS59103279A true JPS59103279A (en) 1984-06-14
JPH0526306B2 JPH0526306B2 (en) 1993-04-15

Family

ID=16650362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57214108A Granted JPS59103279A (en) 1982-12-06 1982-12-06 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPS59103279A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547537A (en) * 1977-06-20 1979-01-20 Hitachi Maxell Silver oxide primary cell
JPS5419131A (en) * 1977-07-14 1979-02-13 Yuasa Battery Co Ltd Alkaline cell
JPS5999678A (en) * 1982-11-30 1984-06-08 Hitachi Maxell Ltd Silver (ii) oxide cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547537A (en) * 1977-06-20 1979-01-20 Hitachi Maxell Silver oxide primary cell
JPS5419131A (en) * 1977-07-14 1979-02-13 Yuasa Battery Co Ltd Alkaline cell
JPS5999678A (en) * 1982-11-30 1984-06-08 Hitachi Maxell Ltd Silver (ii) oxide cell

Also Published As

Publication number Publication date
JPH0526306B2 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
TW302560B (en)
US3880672A (en) Battery barrier and battery
US4197366A (en) Non-aqueous electrolyte cells
CA1232634A (en) Battery cell
US4167609A (en) Zinc oxide additive for divalent silver oxide electrodes
US3935026A (en) Energy cell for watch
US2988585A (en) Hermetically sealed alkaline storage battery
US2697736A (en) Rechargeable lead dry cell
US3600231A (en) Mercury cell
JPS59103279A (en) Silver oxide battery
JPH048899B2 (en)
JP4388426B2 (en) Alkaline battery
JP3505823B2 (en) Flat alkaline battery
JPH1173949A (en) Air zinc battery
US3418166A (en) Alkaline storage cell having silicate dissolved in the electrolyte
JP2517936B2 (en) Air zinc battery
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
JPH04368777A (en) Nickel electrode for alkaline storage battery
JP3188652B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JPH0317182B2 (en)
JPS6014761A (en) Silver oxide cell
JPS6122422B2 (en)
JPS62165880A (en) Solid-electrolyte secondary cell
JPS61176060A (en) Button-shaped alkaline cell
JPS5822868B2 (en) nickel zinc alkaline storage battery