JPS59102978A - Phosphate fluorescent material and its preparation - Google Patents

Phosphate fluorescent material and its preparation

Info

Publication number
JPS59102978A
JPS59102978A JP21175082A JP21175082A JPS59102978A JP S59102978 A JPS59102978 A JP S59102978A JP 21175082 A JP21175082 A JP 21175082A JP 21175082 A JP21175082 A JP 21175082A JP S59102978 A JPS59102978 A JP S59102978A
Authority
JP
Japan
Prior art keywords
phosphor
phosphate
orthophosphate
zinc
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21175082A
Other languages
Japanese (ja)
Inventor
Shusaku Kakita
柿田 修作
Chihiro Yoshida
千尋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP21175082A priority Critical patent/JPS59102978A/en
Publication of JPS59102978A publication Critical patent/JPS59102978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To prepare a phosphate fluorescent material having particular shape and characteristics, high and stable luminance, and excellent resistance to hydrolysis, by using an orthophosphate of a bivalent metal containing zinc as a main component, and manganese as a main dopant. CONSTITUTION:The objective phosphate fluorescent material contains an orthophosphate of a bivalent metal containing zinc as a main component and manganese as a main dopant, wherein >=50wt% of the fluorescent particle is nearly rectangular parallelopiped plate crystals having the ratio of the longest side to the shortest side of 2:1-4:1, and the glow characteristic curve at 25-300 deg.C has its peak at 100-200 deg.C and/or the ratio of the peak fluorescent intensity excited by the light having a wavelength of 200-280nm to the peak intensity excited by the light with 380-420nm wavelength is 0.6-3.0.

Description

【発明の詳細な説明】 本発明は燐酸塩螢光体およびその製造方法に関する。[Detailed description of the invention] The present invention relates to phosphate phosphors and methods of manufacturing the same.

更に詳しくは、特定の形状と特定の特性とを有する、高
輝度でかつ輝度維持率の高い燐酸塩螢光体およびその製
造方法に関するものである。
More specifically, the present invention relates to a phosphate phosphor having a specific shape and specific characteristics, which has high brightness and a high brightness maintenance rate, and a method for manufacturing the same.

マンガ゛ンを主付活剤とし、1乗船を含む2価金属のメ
ルト燐酸塩を主母体七してなる燐酸塩螢光体(以F単に
父は必要によ1) 1昨酸塩螢光体と略称する)は、市
、子線励起下に於て、高・4度の赤色発光を示し、」1
0常144Th線管用螢光体に用いられる。また、この
・JtE光体は10チ残光時間(励起停市後発光輝度が
、その10%にまで低下するのに要する時間)が長いと
いう性質を有するので、1¥極線管のうちでも特にコン
ピューターの端末ディスプレイ装置、杭空(幾・d i
l+11システムの表示装しガ等のカラーテレビジョン
用陰極線管よりもi’lい走査速度が(采用されるディ
スプレー用陰)ホ鞄′αに汎用てれている。
Phosphate phosphor consisting of manganese as the main activator and melt phosphate of a divalent metal containing 1 as the main matrix (hereinafter simply ``father'' is necessary) 1) Phosphate phosphor (abbreviated as ``body'') exhibits a high-4 degree red luminescence under beam excitation, and ``1''
Used in phosphors for 144Th ray tubes. In addition, this JtE light body has a long afterglow time (the time required for the luminance to drop to 10% after excitation stops), so it In particular, computer terminal display equipment,
It has a scanning speed that is higher than that of color television cathode ray tubes, such as those used in the display equipment of the 1+11 system, and is widely used in the camera's case.

この種のfi 71? 堪’、i)光(′*け、組成式
がZn3(PO4)2:Mn で表わされる燐酸塩螢光
体を基本組成とし、公知技術、例えば特公昭53−18
471号や、本出願人が先に提案した特開昭56−12
1258号、特開昭56−136873号、特開昭57
−87487号、!t♀願昭56−139’072号等
に示されるように母体の一部が置換されたり、あるいは
他の共付活剤や添加物を組by中に含むものである。し
かしながら、これらの燐酸塩螢光体は、長時間の電子線
励起により、他の一般の埼光体に比べ著しい7弾度の低
Fを起し、しかもその初1′4度も十分なものではなか
った。そのため、ディスプレー用陰極線・α等に使用し
た場合に輝度低下により色ずれを生じたり、初4度の不
充分さから他の発光色冴光体を1幼起する−は子、統と
の間に使用電流の隔差が必然的に大きくなシ、所謂電流
バランスを悪くする等の不都合が見られた。
This kind of fi 71? i) Light ('*Ke, the basic composition is a phosphate phosphor whose composition formula is Zn3(PO4)2:Mn, and the method is based on known technology, for example, Japanese Patent Publication No. 53-18
No. 471, and JP-A-56-12, which the present applicant proposed earlier.
No. 1258, JP-A-56-136873, JP-A-57
-87487,! As shown in Japanese Patent No. 56-139'072, a part of the parent substance is substituted, or other co-activators and additives are included in the composition. However, these phosphate phosphors exhibit a significantly lower F of 7 elasticity than other general phosphors due to long-term electron beam excitation, and the initial 1'4 degree is also sufficient. It wasn't. Therefore, when used for cathode rays, α, etc. for displays, color shifts may occur due to a decrease in brightness, and due to insufficient initial 4 degrees, other light-emitting color luminescent bodies may be caused to change. However, there are disadvantages such as inevitably large differences in the currents used, which impairs the so-called current balance.

唄に燐酸塩・滌光体は、水に対する溶解度が犬きくかつ
加水分解し水利塩になり易いという性質を有しており、
そのため、該螢光体の表面部分から順次不発光性になる
という現象がみられた。そ11゜をさけるために螢光体
調造時の・焼成後の処理工程および陰極線・U・−1モ
光膜作成工程中に水湿潤状態が長く続かないような各種
工夫がなさitできたが、それらは特殊な処理手段を必
要とし、技術的のみならず経済的にも好捷しいものとは
トiえなかった。
Phosphates and phosphors have the property of being highly soluble in water and easily hydrolyzed to form water salts.
As a result, a phenomenon was observed in which the surface portion of the phosphor gradually became non-luminescent. In order to avoid this, various measures were taken to prevent the water from remaining wet for a long time during the phosphor preparation process, the post-baking process, and the cathode ray/U/-1 light film production process. However, they require special processing means and are not economically viable as well as technically.

従って、本発明の目的は初4度が向上し、4[維持率が
高く、加水分解しにぐいrj4酸塩・涛光体を提供する
ことにある。
Accordingly, an object of the present invention is to provide an rj tetra-acid salt/fluorophore which has an improved initial 4 degree, a high 4 retention rate, and is resistant to hydrolysis.

本発明者等は、前記目的を達成するために、各種j4酸
塩螢光体について鋭意研究を重ねた結果、炭酸1屯鉛、
酸化即鉛ふ・よび水酸化推鉛の少なくとも1つよりなる
即鉛化合物とオルトリン酸を主に用いて反応せしめ、そ
の反応生成物を螢光体製造原料として用いると、意外に
も…f配本発明の目的が達成きれることを見出した。
In order to achieve the above object, the present inventors have conducted extensive research on various j4-acid fluorophores, and found that 1 ton lead carbonate,
When a quick lead compound consisting of at least one of quick lead oxide and lead hydroxide is reacted mainly with orthophosphoric acid, and the reaction product is used as a raw material for manufacturing a phosphor, unexpectedly... It has been found that the purpose of the invention can be achieved.

しかして、本発明の前記時酸塩棒光体は以下のような溝
底ならびに特徴を有している。
Accordingly, the phosphate rod light body of the present invention has the following groove bottom and characteristics.

該螢光体σ)粒子形状は、全・、θ光体粒子の中、約5
0 iir量φ以上が、最長辺と最短辺の比が2=1〜
4:1の範囲にあり、はぼ直方体板状結晶粒子で占めら
れている。しかも (1)  3螢光体の25〜300℃におけるグロー特
性曲線において、最高強度位置が10o0〜200℃の
範囲にあるか、および/もしくは、(II)  該螢光
体を、励起波長が200〜280 nmと580〜42
0 nmにある励起エネルギーで励起したとき、それら
の発光の最高強度全それぞれta、Ibとすると、Ia
 / Ibが0.6〜3.0の範囲内にある。
The shape of the phosphor σ) particles is about 5 out of all the θ phosphor particles.
0 iir amount φ or more, the ratio of the longest side to the shortest side is 2 = 1 ~
4:1 and is dominated by rectangular parallelepiped plate-shaped crystal grains. Moreover, (1) in the glow characteristic curve of the three phosphors at 25 to 300°C, the highest intensity position is in the range of 10o0 to 200°C, and/or (II) the phosphor has an excitation wavelength of 200°C. ~280 nm and 580~42
When excited with an excitation energy of 0 nm, if the maximum intensities of their emission are all ta and Ib, respectively, then Ia
/Ib is within the range of 0.6 to 3.0.

捷だ本発明の憐酸塩価光体の製造方法の一具体例は、推
鉛化合物と必要に応じてマグネシウム、カルシウム、ス
トロンチウム、バリウムおヨヒぺIJ IJウムの少な
くとも1種から成る2価金属の炭酸塩、ジ化物あるいは
水酸化物の少なくとも1種とオルトリン酸により共沈さ
せることからなり、次にこのようにして得られた能鉛を
含む2価金属のオルト燐酸塩の共沈物を母体原料としマ
ンガン伺活を行なうことを特徴とするものである。
One specific example of the method for producing the philosophic phosphor of the present invention is to use a divalent metal consisting of a lead compound and, if necessary, at least one of magnesium, calcium, strontium, and barium. Co-precipitation with at least one carbonate, diide or hydroxide of orthophosphate with orthophosphoric acid, and then the coprecipitate of orthophosphate of divalent metal containing active lead obtained in this way. It is characterized by the use of manganese as a base material.

尚、従来の燐酸塩螢光体の調造方法としてはi+i鉛化
合物、燐酸第2アンモニウム等のリン酸塩、マンがン化
合物および融剤等を乾式で混合するが、溶媒を用いて啄
−スト状にて混合した原料を焼成するというような方法
がおこなわれていた。また上述のように各螢光体原料を
機械的に混合して螢光体原料混合物を得るかわりに、母
体構成元素、付活剤元素および共付活剤元素をオルト燐
酸塩として共沈させる事も提案されていた。
The conventional method for preparing a phosphate phosphor is to dryly mix an i+i lead compound, a phosphate such as diammonium phosphate, a manganese compound, and a flux. A method used was to mix the raw materials in a stream and then fire them. In addition, instead of mechanically mixing each phosphor raw material to obtain a phosphor raw material mixture as described above, the host constituent element, activator element, and coactivator element are co-precipitated as an orthophosphate. was also proposed.

しかしながら、従来の共沈による方法は、高り硫酸亜鉛
や硝酸亜鉛等の亜鉛化合物と、リン酸水素アンモニウム
およびリン酸ナトリウムの如き酸塩等のリン酸化合物の
溶液とを反応させ、牧沈物を作るものであり、そのよう
な方法で得られた共沈物を螢光体原料として製造した燐
酸塩螢光体は、本発明の目的ならびに効果を全く満足し
ないものであった。
However, the conventional coprecipitation method involves reacting a zinc compound such as zinc sulfate or zinc nitrate with a solution of a phosphoric acid compound such as an acid salt such as ammonium hydrogen phosphate or sodium phosphate. Phosphate phosphors produced using the coprecipitate obtained by such a method as a phosphor raw material did not satisfy the objects and effects of the present invention at all.

要するに本発明をある局面から眺めれば、「オルト燐酸
」を使用するという事に発明の特徴の一部がある。ちな
みに他の燐酸例えば「メタ−」「パラ−」[ポIJ −
J等の各種燐酸、ならびにそれらの塩です本発明の目的
を達成することができないことが判明している。
In short, if the present invention is viewed from a certain aspect, part of the characteristics of the invention lies in the use of "orthophosphoric acid". By the way, other phosphoric acids such as "meta-""para-" [poIJ-
It has been found that various phosphoric acids such as J and their salts cannot achieve the object of the present invention.

そこで以下本発明の燐酸塩螢光体の製造方法について更
に詳細に説明する。
Therefore, the method for manufacturing the phosphate phosphor of the present invention will be explained in more detail below.

まず、亜鉛と必要に応じてマグネシウム、カルシウム、
ストロンチウム、バリウムおよびベリリウムの少なくと
も1種から成る2価金属の炭酸塩、酸化物あるいけ水酸
化物の少なくとも1種を純水中に分散させる。次に該液
中にオルトリン酸溶液を徐々に添加する。かくて亜鉛を
含む2価金属のオルトリン酸塩の共沈物を得る。別法と
して2価金属を純水中に分散させた液中に、マンがン化
合物例えばマンがンの炭酸塩の如きものを少なくとも1
種を溶解させたオル)lン酸溶液を徐々に添加すること
によシ、マンがンオルトリン酸塩の共沈物を得る。
First, zinc and if necessary magnesium, calcium,
At least one divalent metal carbonate, oxide, or hydroxide consisting of at least one of strontium, barium, and beryllium is dispersed in pure water. Next, an orthophosphoric acid solution is gradually added to the liquid. In this way, a coprecipitate of divalent metal orthophosphate containing zinc is obtained. Alternatively, at least one manganese compound, such as a manganese carbonate, is added to a divalent metal dispersed in pure water.
By gradually adding a solution of orthophosphate in which the seeds are dissolved, a coprecipitate of manganese orthophosphate is obtained.

この様にして得られた共沈物を脱水乾燥して螢光体の母
体原料もしくは母体と付活剤の原料とする。
The coprecipitate thus obtained is dehydrated and dried to be used as a matrix raw material for a phosphor or a raw material for a matrix and an activator.

前記共沈による母体原料には塩化物、炭酸塩、硫化塩等
のマンがン化合物を付活剤として添加混合する。尚、必
要に応じて共付活剤や添加物および融剤を適当最混合す
る。特に求める燐酸塩螢光体の組成元素で、前記以外の
元素についても酸化物、炭酸塩あるいは水酸化物等の化
合物を前記溶液中に添加して共沈させても良い。
A manganese compound such as chloride, carbonate, or sulfide salt is added and mixed as an activator to the base raw material obtained by coprecipitation. Incidentally, the co-activator, additives, and flux are appropriately mixed as necessary. Compounds such as oxides, carbonates, or hydroxides of elements other than those mentioned above, which are the constituent elements of the phosphate phosphor that is particularly desired, may be added to the solution and co-precipitated.

上述の螢光体原料は共沈もしくは混合する場合も、各螢
光体原料を化学号論的に求める螢光体の組成式となるよ
うな割合で共沈もしくは秤取する。
Even when the above-mentioned phosphor raw materials are coprecipitated or mixed, each phosphor raw material is coprecipitated or weighed in such a proportion that the chemical formula of the phosphor is chemically determined.

このようにして得られた共沈物は、−欠粒子の大部分が
最長辺/最短辺が2以上の直方体板状結晶粒子である。
In the thus obtained coprecipitate, most of the missing particles are rectangular parallelepiped plate-shaped crystal grains having two or more longest sides/shortest sides.

混合は常法による。すなわち、ポールミ々、ミキサーミ
ル、乳鉢等を用いて(乾式で)行なってもよいし、水、
アルコール、弱酸等を媒体としペースト状態として(湿
式で)行なってもよい。なお、一般に得られる螢光体の
発光輝度、粉体特性等を向上させることを目的として、
螢光体原料混合物にさらに融剤を添加混合することが多
いが、本発明の螢光体の製造においても、特に塩化アン
モニウム(NH4Ce)、炭酸アンモニウム〔(NH4
)2CO3〕 等のアンモニウム塩を融剤として螢光体
原料混合物に適当量添加混合し、上Pのような目的を達
成することができる。
Mixing is done by a conventional method. In other words, it may be carried out (dryly) using a mill, mixer mill, mortar, etc., or it may be carried out using water,
It may also be carried out in the form of a paste (wet method) using alcohol, weak acid, or the like as a medium. In addition, for the purpose of improving the luminance, powder characteristics, etc. of commonly obtained phosphors,
Although a flux is often added to the phosphor raw material mixture, in the production of the phosphor of the present invention, especially ammonium chloride (NH4Ce), ammonium carbonate [(NH4
)2CO3] can be added in an appropriate amount to the phosphor raw material mixture as a fluxing agent to achieve the purpose mentioned above.

次に、上1.F螢光体原料混合物をアνミナνツボ、石
英ルツデ等の耐熱性容器に充填して焼成を行なう。焼成
は空気中(酸化性雰囲気中)、窒素がス雰囲気、アルゴ
ンがス雰囲気等の中性雰囲気中あるいは少量の水素がス
を含有する窒素がス雰囲気、炭素雰囲気等の還元性雰囲
気中で800℃乃至1100℃の温度で1回もしくは2
回以上行なう。
Next, above 1. The F phosphor raw material mixture is filled into a heat-resistant container such as an amine pot or a quartz pot and fired. Firing is performed in air (oxidizing atmosphere), in a neutral atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere, or in a reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas or a carbon atmosphere. Once or twice at temperatures between ℃ and 1100℃
Do it more than once.

なお、最終焼成(焼成が1回しか行なわれない場合には
その焼成)は、必ず還元性雰囲気中で行なう。
Note that the final firing (or the firing if it is performed only once) is always performed in a reducing atmosphere.

焼成時間は耐熱性容器に充填される螢光体原料混合物の
敬、採用される焼成m度等によって異なるが、一般に上
記鋳成温度範囲においては0.5乃至5時間が適当であ
る。焼成後、得られる焼成物を粉砕、洗浄、乾燥、篩分
は等螢光体製造において一般に採用される各操作によっ
て処理゛して本発明の螢光体粒子を得る。
The firing time varies depending on the quality of the phosphor raw material mixture to be filled in the heat-resistant container, the degree of firing used, etc., but in general, 0.5 to 5 hours is appropriate within the above casting temperature range. After firing, the resulting fired product is pulverized, washed, dried, and sieved by various operations generally employed in the production of isophosphors to obtain the phosphor particles of the present invention.

この様にして得られた本発明の燐酸塩螢光体の一例を従
来の燐酸塩螢光体と比較すると以下のように全く霞なっ
たものである。
When one example of the phosphate phosphor of the present invention thus obtained is compared with a conventional phosphate phosphor, it is completely hazy as shown below.

本発明の燐酸塩螢光体は従来の燐酸塩螢光体に比べ初輝
度で5〜10%以上も高い。
The phosphate phosphor of the present invention has an initial brightness that is 5 to 10% higher than conventional phosphate phosphors.

また第1a図および第1b図はそれぞれ従来の燐酸塩螢
光体および本発明の燐酸塩螢光体の電子顕微鏡写真(1
,0[10倍)であるが、この図より明らかなように、
従来の燐酸塩螢光体が元型系の粒子であるのに比べ、本
発明の燐酸塩螢光体は、全螢光体粒子の50重1%以上
が、最長辺と最短辺の比が2:1〜4:1の範囲とする
、はぼ直方体板状結晶粒子である。
1a and 1b are electron micrographs (1) of a conventional phosphate phosphor and a phosphate phosphor of the present invention, respectively.
, 0 [10 times), but as is clear from this figure,
While conventional phosphate phosphors are archetypal particles, in the phosphate phosphor of the present invention, at least 50% by weight of all phosphor particles has a ratio of the longest side to the shortest side. They are rectangular parallelepiped plate-shaped crystal grains with a ratio of 2:1 to 4:1.

この結晶粒子は、結晶成長の条件や混合、粉砕、篩分は
等の処理条件により、完全な直方体板状結晶粒子として
必ずしも得られず、粒子のごく一部に欠損を有している
場合もある。不発明においては、かかる欠損を有してい
るものも一応直方体板状物とみなし最長辺と最短辺の比
を算出する。
These crystal particles cannot necessarily be obtained as perfect rectangular parallelepiped plate-shaped crystal particles, depending on the crystal growth conditions and treatment conditions such as mixing, crushing, and sieving, and may have defects in a small portion of the particles. be. In the case of non-invention, an object having such a defect is also regarded as a rectangular parallelepiped plate-like object, and the ratio of the longest side to the shortest side is calculated.

また第2図は組成式がZ n 3 (PO、i )2 
: Mn  で表ゎされる燐酸塩螢光体に25!+、7
nm の紫外線を1分間照射した後、直ちに常温(25
C)よυ    ゛500℃迄6.5℃りseaの昇温
速度で昇温した時の熱発光をホトマシで測定し、温度と
熱発光強度との関係を求めた所謂グロー特性曲線である
Also, in Figure 2, the compositional formula is Z n 3 (PO, i ) 2
: 25 to the phosphate phosphor represented by Mn! +, 7
After irradiating with ultraviolet light of nm for 1 minute, immediately store at room temperature (25
C) This is a so-called glow characteristic curve obtained by measuring the thermoluminescence using a photomachine when the temperature was raised at a heating rate of 6.5°C to 500°C, and determining the relationship between temperature and thermoluminescence intensity.

第2図の曲線1は従来の燐酸塩螢光体であり、曲線2は
本発明の燐酸塩螢光体である。
Curve 1 in FIG. 2 is a conventional phosphate phosphor and curve 2 is a phosphate phosphor of the present invention.

この図からも明らかな様に、従来の燐酸塩螢光体は25
°〜100℃の範囲内に最高強度位置を有しているが、
本発明の燐酸塩螢光体は、むしろ1nn’〜200℃の
範囲に最高強度位置を有している。このように不発明の
螢光体は従来の螢光体と、光に関する各種物性が著しく
喝なる。
As is clear from this figure, the conventional phosphate phosphor is
It has a maximum strength position within the range of °~100 °C,
Rather, the phosphate phosphors of the present invention have a maximum intensity position in the range of 1 nn' to 200°C. As described above, the uninvented phosphor has various physical properties related to light that are significantly superior to conventional phosphors.

尚一般的に不発明の燐酸塩螢光体は製造方法によりグロ
ー特性曲線に若干の相違を有している。
In general, uninvented phosphate phosphors have slightly different glow characteristic curves depending on the manufacturing method.

しかし25″〜1oo℃の範囲に有るピークと、100
°〜200℃の範囲に有るピークとの比が2:3〜1:
10にあるものの使用が好ましい。
However, there are peaks in the range of 25" to 100°C and
The ratio of peaks in the range of ° to 200 °C is 2:3 to 1:
Preference is given to using those listed in No. 10.

次に、第3図は200 nmがら500 nmの紫外線
で組成式がzng(po4)2 : Mn  で表わさ
れる燐酸塩螢光体を照射した時の発光強度を示すもので
ある。
Next, FIG. 3 shows the luminescence intensity when a phosphate phosphor having a compositional formula of zng(po4)2:Mn is irradiated with ultraviolet light of 200 nm to 500 nm.

曲線1は従来の燐酸塩螢光体によるものであり、曲線2
け本発明の燐酸塩螢光体によるものである。
Curve 1 is with a conventional phosphate phosphor, curve 2
This is due to the phosphate phosphor of the present invention.

この図からも明らかな様に両者の発光特性が全く異って
いる。例えば励起波長が200〜280 nmと380
〜420 nm にある励起エネルギーで励起したとき
、発光の最高強度をそれぞれla、1bとすると、従来
の燐酸塩螢光体はI a / I b″r3.7、本発
明の燐酸塩螢光体はIa/Ibζ1.8である。すなわ
ち本発明の燐酸塩螢光体は、従来の燐酸塩螢光体に比べ
紫外線(特に短波の紫外線)での発光がすぐなく、更に
I a / I b比も従来のものに比較し顕著に低く
なっている。
As is clear from this figure, the light emission characteristics of the two are completely different. For example, when the excitation wavelength is 200-280 nm and 380 nm,
When excited with an excitation energy of ~420 nm, the maximum intensity of emission is Ia/Ib''r 3.7 for the conventional phosphate phosphor, and the phosphate phosphor of the present invention, assuming that the maximum intensity of emission is la and 1b, respectively. is Ia/Ibζ1.8.That is, the phosphate phosphor of the present invention does not emit light as quickly in ultraviolet rays (particularly short-wave ultraviolet rays) as compared to conventional phosphate phosphors, and also has a lower I a / I b ratio. is also significantly lower than the conventional one.

不発明は、このIa/Ib比と、螢光体の輝度劣化特性
との間に密接な関係のある事を本発明者等が見出したこ
とに特徴の一部を有するものである。さらに具体的に例
示すると、試料となる燐酸塩螢光体の螢光膜に、加速電
圧20KV、[流密e 1071A / cm2の陰極
砂を15分間照射した場合(強制劣化テスト)に於て、
初期輝度を100とした場合と照射後の輝度との比を所
謂輝度維持率(チ)として求め、かつ、前述のIs/I
bとの関係を調べたところ第4図に示すような結果が得
られた。なお第4図においてX印は従来の燐酸塩螢光体
であり、○印は本発明の燐酸塩螢光体である。この図よ
り明らかなごとく、従来の燐酸塩螢光体はIa/Ib比
が3.5以上であり、しかも輝度維持率は83%以下で
ある。−古本発明の燐酸塩螢光体は、Ia/Ib比が3
以下であり、しかも輝度維持率は90チ以上を示してい
る、更に多くの実験を行った結果、輝度維持率が87%
以上(長期間に焼けを生じない)であるためには、Ia
/Ibが3.0以下である必要のあることが確ψされた
。一方、上記1 a/l bの値が0.6以下のものは
、その他の特性で好ましくない欠点の生ずる傾向が偏重
された。よって本発明のI a/I b=0.6〜5.
0の範囲、特にI a / I b = 1.0〜2.
5の範囲が好ましい。
The non-invention is partly characterized by the fact that the present inventors have discovered that there is a close relationship between this Ia/Ib ratio and the luminance deterioration characteristics of the phosphor. To give a more specific example, when the phosphor film of a phosphate phosphor sample was irradiated with cathode sand at an accelerating voltage of 20 KV and a flow density of 1071 A/cm2 for 15 minutes (forced deterioration test),
The ratio of the initial brightness to 100 and the brightness after irradiation is determined as the so-called brightness maintenance rate (chi), and the above-mentioned Is/I
When the relationship with b was investigated, the results shown in FIG. 4 were obtained. In FIG. 4, the X mark is a conventional phosphate phosphor, and the ○ mark is a phosphate phosphor of the present invention. As is clear from this figure, the conventional phosphate phosphor has an Ia/Ib ratio of 3.5 or more and a luminance maintenance rate of 83% or less. - The phosphate phosphor of the old invention has an Ia/Ib ratio of 3
and the brightness maintenance rate is 90% or more.As a result of more experiments, the brightness maintenance rate is 87%.
In order to achieve the above (no burns for a long period of time), Ia
It was confirmed that /Ib must be 3.0 or less. On the other hand, those with a value of 1 a/l b of 0.6 or less tended to have unfavorable defects in other properties. Therefore, Ia/Ib=0.6 to 5.
0, especially I a / I b = 1.0 to 2.
A range of 5 is preferred.

また本発明における萌述の(1)と(II)の特性は、
本発明において少なくとも一方を有している事が必須で
ある。
In addition, the characteristics (1) and (II) of the present invention are as follows:
In the present invention, it is essential to have at least one of them.

また燐酸塩螢光体は水に対する溶解度が大きい。Phosphate phosphors also have high solubility in water.

そのため、一般に螢光体塗布用のポリビニールアルコー
ル水溶液等の水溶液中で加水分解し易すい傾向がちυ、
それによシ輝度低丁、螢光体塗布用の粘度6変化を招き
、普通安定性を欠くというような問題があった。
Therefore, it tends to be easily hydrolyzed in aqueous solutions such as polyvinyl alcohol aqueous solutions for fluorescent coating.
This causes problems such as low brightness, viscosity changes for phosphor coating, and generally lack of stability.

第5図は、ポリビニールアルコール水溶液中に入れられ
た燐酸塩螢光体スラリーの経時変化(攪拌中)を、時間
と粘度変化の関係で示すものである。曲線1は従来の燐
酸塩螢光体であり、曲線2は不発明の燐酸塩螢光体であ
る。
FIG. 5 shows the change over time (during stirring) of a phosphate phosphor slurry placed in an aqueous polyvinyl alcohol solution in terms of the relationship between time and viscosity change. Curve 1 is a conventional phosphate phosphor and Curve 2 is an uninvented phosphate phosphor.

この図からも明らかなように、従来の燐酸塩螢光体は加
水分解してスラリー粘度が大きく変化するため、通常の
塗布法と異なった特殊な塗布プロセスを選ぶ必要があっ
たが、不発明の燐酸塩螢光体のスラリー粘度は曲線2に
示すようにほとんど変化しないので、従来周知の通常の
塗布法が使用し得るという利点を有する。
As is clear from this figure, conventional phosphate phosphors hydrolyze and the slurry viscosity changes significantly, so it was necessary to choose a special coating process different from the usual coating method. Since the slurry viscosity of the phosphate phosphor does not change much as shown in curve 2, it has the advantage that conventional coating methods well known in the art can be used.

以上述べたように、本発明の燐酸塩螢光体は、従来の燐
酸塩螢光体に比べ明確に区別し得る特定の形状等に関す
る構造的特性を有しており、かつ初輝度が5〜10%以
上も高く、輝度維持率も10〜17%向上し、さらに水
圧対して安定である等、工業的実施に際し啄めて顕著な
効果を示すものである。
As described above, the phosphate phosphor of the present invention has structural characteristics such as a specific shape that can be clearly distinguished from that of conventional phosphate phosphors, and has an initial luminance of 5 to 5. The brightness retention rate is improved by 10% or more, the brightness maintenance rate is improved by 10 to 17%, and it is stable against water pressure, which shows remarkable effects in industrial implementation.

以下実施例により本発明を更に具体的に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 炭酸亜鉛   ZnCO3576,1?燐   酸  
   H3PO4230,6グ炭酸マンがy  MnC
O35,85’まず、上F配合比の各種原料を純水中で
共沈せしめた。得られたオルト燐酸亜鉛マンがン水和吻
を石英ルツMに充填[7て電、気炉に入れ、空気中で9
00℃の温度で1.5時間焼成した。かくて、組成式が
Zn3(PO4)2 : 0 、 D 5 Mn  で
示される螢光体を得た。この螢光体は第2図の曲a2に
似た170Cにピークを有するグロー特性を示した。
Example 1 Zinc carbonate ZnCO3576,1? phosphoric acid
H3PO4230,6g man carbonate y MnC
O35,85' First, various raw materials having the above F blending ratio were co-precipitated in pure water. The obtained hydrated zinc orthophosphate was packed into quartz M [7], then placed in an electric and air furnace, and heated in air for 9
It was baked at a temperature of 00°C for 1.5 hours. In this way, a phosphor having the composition formula Zn3(PO4)2:0, D5Mn was obtained. This phosphor exhibited glow characteristics having a peak at 170C similar to curve a2 in FIG.

また第3図の曲eI2に示すような励起スペクトυを示
し、励起ス被りトセ比1.92であった。また第1b図
に示すような粒子形状を有していた。
It also exhibited an excitation spectrum υ as shown in curve eI2 in FIG. 3, and an excitation overlap ratio of 1.92. Moreover, it had a particle shape as shown in FIG. 1b.

(短辺に対する長辺の比が、1.5〜6倍の長方形板状
粒子が約90%を占めていた。)次に得られた螢光体を
グラス・臂ネルにポリビニールアルコール、重クロム酸
アンモニウム等の塗布液を用いて塗布した。得られた陰
極線管の輝度は、110%であり輝度維持率は92.9
%てあった。
(Approximately 90% of the particles were rectangular plate-like particles with a long side to short side ratio of 1.5 to 6 times.) Next, the obtained phosphor was placed in a glass/arm flannel with polyvinyl alcohol, heavy It was applied using a coating liquid such as ammonium chromate. The brightness of the resulting cathode ray tube was 110%, and the brightness maintenance rate was 92.9.
It was %.

実施例2 酸化亜鉛   ZnO244,1!i’燐   酸  
   H3PO4230,6!i’炭酸マンがン Mn
CO35、8P まづ、上H[″配合比の各種原料を純水中で共沈せしめ
た。得られたオルト燐酸亜鉛マンがン水和物を石英ルツ
ボに充填し、次いで雷1気炉に入れ空気中で900℃の
温度で1.5時間′焼成して、組成式が、Zn3(PO
4)2 : 0 、05 Mn  で示される螢光体を
得た。この螢光体は第2図の曲線2に似た170℃にピ
ークを有するグロー特性を示した。
Example 2 Zinc oxide ZnO244,1! i' phosphoric acid
H3PO4230,6! i' carbonated mangann Mn
CO35, 8P First, various raw materials with a blending ratio of H['' were co-precipitated in pure water.The obtained zinc orthophosphate manganese hydrate was charged into a quartz crucible, and then placed in a thunder 1 furnace. The composition formula is Zn3(PO
4) A phosphor of 2:0,05 Mn was obtained. This phosphor exhibited glow characteristics having a peak at 170°C, similar to curve 2 in FIG.

また第3図の曲線2に近似した励起スペクトνを示した
。(励起ス啄りトル比IA/l8=2.42)さらに粒
子形状は全体の85%が長方形の板状結晶であった。
Moreover, the excitation spectrum ν approximated to curve 2 in FIG. 3 was shown. (Excitation torque ratio IA/l8=2.42) Furthermore, 85% of the particles were rectangular plate crystals.

次に得られた螢光体を、グラスパネルにポリビニールア
ルコール、重りaムi(977石ニウム等の塗布液を用
いて塗布した。得られた陰極線管の輝度は109%であ
シ、輝度維持率は90%であった。
Next, the obtained phosphor was applied to a glass panel using a coating solution such as polyvinyl alcohol and weight ai (977 stoneium).The brightness of the obtained cathode ray tube was 109%. The retention rate was 90%.

実施例3 水酸化亜鉛  Zn(OH)2  29 B −I P
燐     酸   H3PO4230,6P炭酸マン
が:/  MnCO35、81fまづ上記配合の原料を
、純水中で共沈せしめた。
Example 3 Zinc hydroxide Zn(OH)2 29 B -I P
Phosphoric acid H3PO4230, 6P man carbonate:/MnCO35, 81f First, the raw materials of the above formulation were co-precipitated in pure water.

得られたオルト燐酸亜鉛マンがン水和物を石英ルツボに
充填し次に電気炉に入れ、空気中900℃の温度で1.
5時間焼成した。かぐ”〔組成式がZn3(PO4)2
 : (] −[15Mn  で示される螢光体を得た
。この螢光体は第2図の曲線2に示すような170Cに
近似したグロー特性を示した。また第3図の曲線2に近
似した励起スペクトルを示した(励起スペクトルIA/
IB=1.56 )。また粒子形状は、全体の80%が
第1b図に示すような長方形の板状結晶であった。次に
得られた螢光体ヲがラスパネルに4リビニールアルコー
ル、重クロム酸アン〔ニウム等の塗布液を用いて塗布し
た。得られた陰極線管の輝度は、110チであり、輝度
維持率は94.5%であった。
The obtained zinc manganese orthophosphate hydrate was filled into a quartz crucible, then placed in an electric furnace, and heated in air at a temperature of 900°C for 1.
It was baked for 5 hours. Kagu” [compositional formula is Zn3(PO4)2
: (] - [15Mn) A phosphor was obtained. This phosphor showed a glow characteristic similar to that of 170C as shown in curve 2 in FIG. (Excitation spectrum IA/
IB=1.56). Regarding the shape of the particles, 80% of the total particles were rectangular plate crystals as shown in FIG. 1b. Next, the obtained phosphor was coated on a glass panel using a coating solution such as 4-vinyl alcohol or am[ium] dichromate. The brightness of the obtained cathode ray tube was 110 cm, and the brightness maintenance rate was 94.5%.

実施例4 炭酸亜鉛   ZnCO3376−1?燐  酸   
H3PO4230,6Pまづ上記配合の原料を純水中で
反応せしめた。
Example 4 Zinc carbonate ZnCO3376-1? phosphoric acid
H3PO4230,6P First, the above-mentioned raw materials were reacted in pure water.

得られたオルト燐酸亜鉛水和物に硫酸マンがンMnSO
47、6Fをボールミルにて充分混合し、石英ルツMに
充填した後、電気炉tc入れ空気中900℃の温度で、
2.0時間焼成した。かぐて組成式がZn3(PO4)
2 : [) 、 D 5 Mn  で示される螢光体
を得た。
Manganese sulfate (MnSO) was added to the obtained zinc orthophosphate hydrate.
After thoroughly mixing 47 and 6F in a ball mill and filling it into quartz M, it was placed in an electric furnace TC at a temperature of 900°C in air.
It was baked for 2.0 hours. Kagute composition formula is Zn3 (PO4)
A phosphor represented by 2: [), D 5 Mn was obtained.

この螢光体は第2図の曲線2に示すような100℃に近
似したピークを有するグロー特性を示した。
This phosphor exhibited glow characteristics having a peak close to 100° C. as shown by curve 2 in FIG.

また1第5図の曲@2に近似した励起ス被りトルを示し
た・ (励起スにクトル比IA/IB=1.82 ) また粒子形状は第1b図に類似したものであり、90%
以上が長方形の板状結晶であった。次いで得られた螢光
体をガラスパネルにポリビニールアルコール、重クロム
酸アンモニウム等の塗布液にて塗布した。得られた陰極
線管の輝度は、107チであり輝度維持率は92.8%
であった。
In addition, the particle shape was similar to that shown in Fig. 1b, and the particle shape was similar to that in Fig. 1b, with a 90% overlap.
The above were rectangular plate crystals. Next, the obtained phosphor was applied to a glass panel using a coating solution such as polyvinyl alcohol or ammonium dichromate. The brightness of the resulting cathode ray tube was 107 cm, and the brightness maintenance rate was 92.8%.
Met.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は、従来法により得られた燐酸塩螢光体の電子
顕微鏡写真(1,000倍)である。 第1b図は、不発明により得られた燐酸塩螢光体の電子
顕微鏡写真(1,G[10倍)である。 第2図は、グロー特性曲線である。図に於て1は従来の
燐酸塩螢光体、2は本発明の燐酸塩螢光体によるもので
ある。 第3図は、200 nmから550 nn1の紫外線で
、燐酸塩螢光体を照射した時の発光強度を示すものであ
る。図に於て1は従来の燐酸塩螢光体、2は本発明の燐
酸塩螢光体によるものである。 第4図は、輝度維持率(%)と、Ia/Ibとの関係を
示すものである。 第5図は、ポリビニールアルコール水溶液中に入れられ
た燐酸塩螢光体スラリーの経時変化を、時間と粘度変化
の関係で示すものである。 第10図 第1b図 (X 1000/#) 第2図 浪度 (1) 第3図 JjL表(面) 第4図 輝度紐持キ(%)
FIG. 1a is an electron micrograph (1,000x magnification) of a phosphate phosphor obtained by a conventional method. FIG. 1b is an electron micrograph (1,G [10x) of the phosphate phosphor obtained according to the invention. FIG. 2 is a glow characteristic curve. In the figure, 1 is a conventional phosphate phosphor, and 2 is a phosphate phosphor of the present invention. FIG. 3 shows the luminescence intensity when the phosphate phosphor is irradiated with ultraviolet light from 200 nm to 550 nn1. In the figure, 1 is a conventional phosphate phosphor, and 2 is a phosphate phosphor of the present invention. FIG. 4 shows the relationship between the brightness maintenance rate (%) and Ia/Ib. FIG. 5 shows the change over time of a phosphate phosphor slurry placed in an aqueous polyvinyl alcohol solution in terms of the relationship between time and viscosity change. Fig. 10 Fig. 1b (X 1000/#) Fig. 2 Ratio (1) Fig. 3 JjL table (surface) Fig. 4 Luminance string (%)

Claims (1)

【特許請求の範囲】 (1)亜鉛を少なくとも含む2価金属のオルト燐酸塩を
主母体としかつ主付活剤としてマンガンを含む燐酸塩螢
光体において、 (A)  該螢光体の粒子の50重量%以上は、最長辺
と最短辺の比が2:1〜4:1のほぼ直方体板状結晶粒
子であり、しかもその25℃〜500℃におけるグロー
特性面&lは、最高強度位置が100℃〜200℃の範
囲にあるか。 または (8)波長が200−280nrn と580〜420
nmの励起エネルギーでそれを励起したときの発光の最
高強度を、夫々IaとIbとしたとき、その比が0.6
〜3.0の範囲内にあるか、 前記(A)及び(B)の少なくとも一方の性質を有する
ことを特徴とする、上記燐酸塩螢光体。 (2)亜鉛を少なくとも含む2価金属のオルト燐酸塩を
主母体としかつ主付活剤としてマンガンを含む燐酸塩螢
光体において、 該主母体の製造原料が、亜鉛と必要によりマクネシウム
、カルシウム、ストロンチウム、バリウムおよびベリリ
ウムの少なくとも1種からなる2価金属の、炭酸塩、酸
化物あるいは水酸化物の少なくとも1種と、オルト燐酸
とを共沈させて得られた、亜鉛を含む2価金属のオルト
燐酸塩の共沈物であることを特徴とする、上記燐酸塩螢
光体の製造方法。
[Scope of Claims] (1) A phosphate phosphor whose main matrix is orthophosphate of a divalent metal containing at least zinc and which contains manganese as a main activator, (A) particles of the phosphor; 50% by weight or more are almost rectangular parallelepiped plate-shaped crystal grains with a ratio of the longest side to the shortest side of 2:1 to 4:1, and the glow characteristic surface &l at 25°C to 500°C has a maximum strength position of 100°C. Is it within the range of ℃~200℃? or (8) the wavelength is 200-280nrn and 580-420nrn
When the maximum intensity of luminescence when excited with an excitation energy of nm is Ia and Ib, respectively, the ratio is 0.6
3.0 or having at least one of the properties of (A) and (B). (2) A phosphate phosphor whose main matrix is an orthophosphate of a divalent metal containing at least zinc and which contains manganese as a main activator, in which the raw materials for producing the main matrix are zinc and optionally magnesium, calcium, A divalent metal containing zinc obtained by co-precipitating orthophosphoric acid with at least one carbonate, oxide or hydroxide of a divalent metal consisting of at least one of strontium, barium and beryllium. The method for producing the phosphate phosphor described above, characterized in that it is a coprecipitate of orthophosphate.
JP21175082A 1982-12-02 1982-12-02 Phosphate fluorescent material and its preparation Pending JPS59102978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21175082A JPS59102978A (en) 1982-12-02 1982-12-02 Phosphate fluorescent material and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21175082A JPS59102978A (en) 1982-12-02 1982-12-02 Phosphate fluorescent material and its preparation

Publications (1)

Publication Number Publication Date
JPS59102978A true JPS59102978A (en) 1984-06-14

Family

ID=16610958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21175082A Pending JPS59102978A (en) 1982-12-02 1982-12-02 Phosphate fluorescent material and its preparation

Country Status (1)

Country Link
JP (1) JPS59102978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011578A (en) * 1983-06-30 1985-01-21 Kasei Optonix Co Ltd Phosphate phosphor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011578A (en) * 1983-06-30 1985-01-21 Kasei Optonix Co Ltd Phosphate phosphor
JPH0142316B2 (en) * 1983-06-30 1989-09-12 Kasei Optonix

Similar Documents

Publication Publication Date Title
US3676361A (en) Ternary alkaline-earth pyrosilicate luminescent materials activated with divalent europium
US5156764A (en) Phosphor
US2476654A (en) Preparation of alkaline earth fluorophosphate phosphors by coprecipitation
US4100101A (en) Europium-activated alkaline earth fluorohalide x-ray phosphors and method for preparing the same
JPH0574638B2 (en)
JPS59102978A (en) Phosphate fluorescent material and its preparation
JP3268761B2 (en) High brightness and long afterglow aluminate phosphor with excellent heat and weather resistance
US3535267A (en) Zinc orthosilicate phosphor of improved maintenance and its manufacture
JP3205398B2 (en) Unactivated yttrium tantalate phosphor
JP2001131544A (en) Yellow-green emitting luminous body of heat-resistance, water resistance, high luminance and long luminescent persistency and production thereof
US3650975A (en) Rare earth oxide phosphors containing alkali metal silicates and germanates
US4336313A (en) Luminescent material, method of making, and screens employing same
JP3209724B2 (en) Method for producing fine luminous phosphor powder and fine luminous phosphor powder
JPS606783A (en) Phosphate phosphor and its preparation
JP2001234166A (en) Yttrium silicate fluorescent substance for low voltage drive and its preparation process
JPH0518879B2 (en)
JPH02276884A (en) Fluorescent compound
KR100364494B1 (en) A red fluorescent body based on gadolinium oxide and methods of preparing the same
JPS6173787A (en) Alkali halide phosphor
KR910007091B1 (en) Phosphate fluorescent substance
JPH01189A (en) fluorescent material
JP2002275462A (en) Fluorescent substance for electric lamp and method of producing the same
JPS61118489A (en) Calcium halophosphate and its production
JPH0841453A (en) Production of rare earth oxide-sulfide fluorescence body
JP2007002085A (en) Method for producing electron beam-excited red phosphor