JPH0841453A - Production of rare earth oxide-sulfide fluorescence body - Google Patents

Production of rare earth oxide-sulfide fluorescence body

Info

Publication number
JPH0841453A
JPH0841453A JP18001294A JP18001294A JPH0841453A JP H0841453 A JPH0841453 A JP H0841453A JP 18001294 A JP18001294 A JP 18001294A JP 18001294 A JP18001294 A JP 18001294A JP H0841453 A JPH0841453 A JP H0841453A
Authority
JP
Japan
Prior art keywords
rare earth
phosphor
earth oxide
particle size
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18001294A
Other languages
Japanese (ja)
Inventor
Ryuji Adachi
隆二 安達
Chihiro Yoshida
千尋 吉田
Shinsuke Aoki
信介 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP18001294A priority Critical patent/JPH0841453A/en
Publication of JPH0841453A publication Critical patent/JPH0841453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To efficiently manufacture a rare earth oxide-sulfide fluorescence body having an improved particle size distribution. CONSTITUTION:This is a process for producing a rear earth oxide-sulfide fluorescence body expressed by the formula (Ln1-x, Ln'x)2O2S in which a raw material rear earth oxide, an alkali metal carbonate, an aluminum compound and a raw material S are mixed with each other and the mixture is burnt. In the formula, Ln is at lest one selected from La, Y, Gd and Lu; Ln' is at least one selected from Eu, Sm and Tb; x is a number satisfying the relation 0.001<=x<=0.2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、陰極線管などの蛍光膜
面、特に、ディスプレイ用陰極線管などの高精細でピン
ホールのない緻密な蛍光膜の形成に適した希土類酸硫化
物蛍光体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor film surface of a cathode ray tube or the like, and more particularly to a rare earth oxysulfide phosphor suitable for forming a high-definition and pinhole-free dense phosphor film such as a cathode ray tube for a display. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】従来、焼成による結晶生成によって得ら
れる蛍光体は、比較的広い粒度分布を有し、特に多量の
融剤を用いて焼成するときには、正規分布に近い粒度分
布を有する蛍光体が得られる。そして、光印刷法で蛍光
膜を形成するときには、輝度が高く、緻密な蛍光膜を得
るために、微細粒子や粗大粒子が多量に存在するのは好
ましくない。これらの微細粒子や粗大粒子は必要に応じ
て分級操作により除去されるが、分級操作は作業性が悪
く、収率を低下させ、特に、粗大粒子の生成は所望粒径
の粒子の収率に大きく影響し、また、必ずしも確実に除
去することができない。したがって、高精細陰極線管用
蛍光膜の形成には、不要な微細粒子や粗大粒子、特に粗
大粒子を焼成時に生成させないことが重要となる。
2. Description of the Related Art Conventionally, a phosphor obtained by crystal formation by firing has a relatively wide particle size distribution, and when firing with a large amount of flux, a phosphor having a particle size distribution close to a normal distribution has been obtained. can get. When the fluorescent film is formed by the optical printing method, it is not preferable that a large amount of fine particles or coarse particles be present in order to obtain a dense and dense fluorescent film. These fine particles and coarse particles are removed by a classification operation as necessary, but the classification operation has poor workability and lowers the yield. In particular, the production of coarse particles leads to the yield of particles having a desired particle size. It has a great influence and cannot always be reliably removed. Therefore, in forming the fluorescent film for a high-definition cathode ray tube, it is important not to generate unnecessary fine particles and coarse particles, especially coarse particles during firing.

【0003】ところで、希土類酸硫化物蛍光体は、所定
量の希土類化合物を硫黄等の硫化剤、アルカリ金属炭酸
塩等の融剤と共に焼成する方法で製造されているが、希
土類酸化物等の希土類化合物を他の原料と共に焼成して
希土類酸硫化物蛍光体を製造するときには、蛍光体の粒
子成長は硫化剤と融剤と焼成温度の影響を直接に受け、
粒径制御は主に融剤の種類と量及び焼成温度の選択によ
っていた。
The rare earth oxysulfide phosphor is manufactured by a method of firing a predetermined amount of a rare earth compound together with a sulfurizing agent such as sulfur and a flux such as an alkali metal carbonate, but rare earth oxides and the like. When producing a rare earth oxysulfide phosphor by firing the compound with other raw materials, the particle growth of the phosphor is directly affected by the sulfiding agent, the flux and the firing temperature,
The particle size control was mainly based on the selection of the type and amount of flux and the firing temperature.

【0004】しかし、これらの方法では、蛍光体の中央
粒径の制御は可能であるが、粒度分布を制御することは
できなかった。唯一、粒度分布を制御する方法として、
シード法と称する方法(特開平3−252495号公報
参照)が知られているが、この方法は目的とする蛍光体
と同じ生成物である希土類酸硫化物蛍光体を、別途製造
しなければならず、合計2度の焼成が必要となる。した
がって、1回の焼成で粒度分布を制御することはできな
かった。
However, with these methods, the median particle size of the phosphor can be controlled, but the particle size distribution cannot be controlled. The only way to control the particle size distribution is
A method called a seed method (see Japanese Patent Application Laid-Open No. 3-252495) is known, but this method requires that a rare earth oxysulfide phosphor, which is the same product as the target phosphor, be separately manufactured. However, a total of two firings are required. Therefore, it was not possible to control the particle size distribution by one firing.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は、上
記の問題点を解消し、粒度分布の改善された希土類酸硫
化物蛍光体を効率的に製造する方法を提供しようとする
ものである。
Therefore, the present invention is intended to solve the above problems and to provide a method for efficiently producing a rare earth oxysulfide phosphor having an improved particle size distribution. .

【0006】[0006]

【課題を解決するための手段】本発明は、一般式(Ln
1-x,Ln' x ) 2 3 で表される希土類酸化物又は加熱
により上記一般式の希土類酸化物を生成する化合物若し
くは混合物、アルカリ金属炭酸塩、アルミニウム化合
物、及び、硫黄を含む原料を混合して焼成することを特
徴とする一般式(Ln1-x,Ln’x 2 2 Sで表され
る希土類酸硫化物蛍光体の製造方法である。(但し、L
nはLa、Y、Gd及びLuの中の少なくとも1種、L
n’はEu、Sm及びTbの中の少なくとも1種であ
り、xは0.001≦x≦0.2、好ましくは0.00
5≦x≦0.1の条件を満たす数である。)
The present invention is based on the general formula (Ln
1-x, Ln 'x) rare earth oxide represented by 2 O 3 or compounds to produce a rare earth oxide of the formula by heating or mixture, an alkali metal carbonate, an aluminum compound, and a raw material containing sulfur mixed formula and firing by (Ln 1-x, Ln ' x) is a 2 O 2 method for producing a rare earth oxysulfide phosphor represented by S. (However, L
n is at least one of La, Y, Gd and Lu, L
n ′ is at least one of Eu, Sm and Tb, and x is 0.001 ≦ x ≦ 0.2, preferably 0.00
It is a number that satisfies the condition of 5 ≦ x ≦ 0.1. )

【0007】[0007]

【作用】本発明者等は、1度の焼成で粒度分布を制御す
る方法について数々の研究を重ねた結果、希土類化合物
を硫化剤、融剤であるアルカリ金属炭酸塩及び特定量の
アルミニウム化合物と混合して焼成することにより、希
土類元素とアルミニウムとの複合酸化物が先に生成し、
この複合酸化物が、希土類酸硫化物蛍光体(Ln 2 2
S)の成長核となって結晶が成長するため、狭い粒径分
布を有する希土類酸硫化物蛍光体が得られることを見出
した。
The present inventors can control the particle size distribution by firing once.
As a result of repeated research on various methods,
A sulfurizing agent, a fluxing agent of alkali metal carbonate and a specified amount of
By mixing with an aluminum compound and firing,
A complex oxide of an earth element and aluminum is generated first,
This composite oxide is a rare earth oxysulfide phosphor (Ln 2O2
Since the crystal grows as a growth nucleus of (S), the grain size is narrow.
Found that a rare earth oxysulfide phosphor with cloth can be obtained
did.

【0008】即ち、本発明の希土類酸硫化物蛍光体の製
造方法においては、希土類化合物をアルカリ金属炭酸
塩、アルミニウム化合物及び硫化剤を含む混合物と共に
焼成するときに、LnAlO3 、Ln4 Al2 3 、L
3 Al5 12等の希土類アルミン酸塩がまず生成する
ものと考えられる。これらの希土類アルミン酸塩は、い
ずれも約900℃から生成し、その後の希土類酸硫化物
蛍光体の結晶成長時に核となると考えられる。即ち、最
初に生成したこれらの希土類アルミン酸塩の少なくとも
一つが希土類酸硫化物蛍光体の成長核となるため、生成
する蛍光体の粒度分布を狭くして、微細粒子や粗大粒子
を生成させないように作用すると考えられる。したがっ
て、これらの希土類アルミン酸塩の生成条件が蛍光体の
粒度分布を狭くするために重要な因子となる。そこで、
本発明者等は、数々の実験を行った結果、希土類アルミ
ン酸塩の生成にとって好ましい条件として、アルカリ金
属炭酸塩とアルミニウム化合物の共存下で焼成すること
にあることを見出した。
That is, in the method for producing a rare earth oxysulfide phosphor of the present invention, when the rare earth compound is fired together with a mixture containing an alkali metal carbonate, an aluminum compound and a sulfiding agent, LnAlO 3 , Ln 4 Al 2 O 3 , L
It is considered that rare earth aluminates such as n 3 Al 5 O 12 are formed first. It is considered that all of these rare earth aluminates are generated from about 900 ° C. and become nuclei during the subsequent crystal growth of the rare earth oxysulfide phosphor. That is, since at least one of these rare earth aluminate salts that is initially formed serves as a growth nucleus of the rare earth oxysulfide phosphor, the particle size distribution of the formed phosphor is narrowed so that fine particles and coarse particles are not generated. It is thought to act on. Therefore, the conditions for forming these rare earth aluminates are important factors for narrowing the particle size distribution of the phosphor. Therefore,
As a result of various experiments, the present inventors have found that the preferable condition for the production of the rare earth aluminate is that firing is performed in the coexistence of an alkali metal carbonate and an aluminum compound.

【0009】本発明の希土類酸硫化物蛍光体の製造方法
は、所定量の蛍光体原料、即ち、(1)(Ln1-x,
n' x 2 3 で表される希土類酸化物、又は、希土類
の蓚酸塩、水酸化物等の加熱により該酸化物を生成する
希土類化合物若しくは混合物、(2)Li2 CO3 、N
2 CO3 、K2 CO3 等のアルカリ金属炭酸塩、
(3)塩化アルミニウム、硝酸アルミニウム等のアルミ
ニウ化合物、及び(4)硫黄粉末等の硫黄原料を必須原
料とし、更に必要に応じて燐酸カリウム等の他の焼成助
剤を加えてこれらを十分に混合し、アルミナ坩堝等の耐
熱性容器に詰めて焼成する。
The method for producing a rare earth oxysulfide phosphor of the present invention comprises a predetermined amount of the phosphor raw material, that is, (1) (Ln 1-x, L
(2) Li 2 CO 3 , N, a rare earth oxide represented by n ′ x ) 2 O 3 , or a rare earth compound or mixture that forms the oxide by heating a rare earth oxalate, a hydroxide, or the like.
a 2 CO 3 , K 2 CO 3 or other alkali metal carbonate,
(3) Aluminum chloride compounds such as aluminum chloride and aluminum nitrate, and (4) Sulfur raw materials such as sulfur powder are essential raw materials, and if necessary, other firing aids such as potassium phosphate are added to thoroughly mix them. Then, it is packed in a heat-resistant container such as an alumina crucible and baked.

【0010】なお、蛍光体原料の中、(Ln1-x,Ln'
x 23 は所定量のLn2 3 又は加熱によりLn2
3 に変わり得るLnの化合物と、Ln’23 又は加
熱によりLn’2 3 に変わり得るLn' の化合物を単
に混合してもよいが、これらの希土類化合物の混合物を
可溶性溶媒中に溶解した後、蓚酸、NH4 OH等のアル
カリ等を添加して蓚酸塩、水酸化物等として共沈させこ
れを加熱、分解して(Ln1-X,Ln' X ) 2 3 で表さ
れる希土類酸化物としたものを用いてもよい。
Among phosphor materials, (Ln 1-x, Ln '
x ) 2 O 3 is a predetermined amount of Ln 2 O 3 or Ln 2 by heating.
The compound of Ln which can be converted to O 3 and the compound of Ln ′ 2 O 3 or Ln ′ which can be converted to Ln ′ 2 O 3 by heating may be simply mixed, but a mixture of these rare earth compounds is dissolved in a soluble solvent. After dissolution, oxalic acid, alkali such as NH 4 OH, etc. are added to co-precipitate as oxalate, hydroxide, etc., which are heated and decomposed to form (Ln 1-X, Ln ' x ) 2 O 3 The rare earth oxide may be used.

【0011】また、Li2 CO3 、Na2 CO3 、K2
CO3 等のアルカリ金属炭酸塩の配合量は、(Ln1-X,
Ln' x 2 3 100重量部に対し、10〜100重
量部、好ましくは30〜60重量部の範囲が適してい
る。10重量部を下回ると、目的とする希土類酸硫化物
の結晶成長が不十分となったり、蛍光体として有用な粒
子径や発光特性を有する蛍光体が得られず、100重量
部を上回ると、蛍光体としての品質は確保されるもの
の、蛍光体焼成のための設備や焼成容器の劣化を来すの
で好ましくない。
In addition, Li 2 CO 3 , Na 2 CO 3 and K 2
The blending amount of the alkali metal carbonate such as CO 3 is (Ln 1-X,
Ln 'x) 2 O 3 100 parts by weight of 10 to 100 parts by weight, preferably suitable range of 30 to 60 parts by weight. If it is less than 10 parts by weight, the crystal growth of the target rare earth oxysulfide will be insufficient, or a phosphor having a particle size and emission characteristics useful as a phosphor cannot be obtained, and if it exceeds 100 parts by weight, Although the quality of the phosphor is secured, it is not preferable because it deteriorates the equipment for baking the phosphor and the baking container.

【0012】さらに、アルミニウム化合物の配合量は、
(Ln1-X,Ln' x 2 3 1モルに対して1×10-4
〜1×10-2グラム原子、好ましくは6×10-4〜8×
10 -3グラム原子の範囲が適しており、10-4グラム原
子を下回ると、得られる蛍光体の粒度分布が狭くする効
果が少なく、10-2グラム原子を上回ると、20μmを
越える巨大粒子が増えると共に、得られる蛍光体の発光
輝度が低下する。
Further, the blending amount of the aluminum compound is
(Ln1-X,Ln 'x)2O31 x 10 for 1 mole-Four
~ 1 × 10-2Gram atom, preferably 6 × 10-Four~ 8 ×
10 -3A range of gram atoms is suitable, 10-FourGram Hara
If the particle size is below the range, the effect of narrowing the particle size distribution of the obtained phosphor is
There are few fruits, 10-2Beyond gram atom, 20μm
Luminescence of the obtained phosphor as the number of large particles exceeds
The brightness decreases.

【0013】硫黄原料の配合量は、少なくとも化学量論
的に(Ln1-x,Ln’x 2 2 Sなる組成式を満足す
る量よりも多い量が使用される。
The amount of the sulfur raw material compounded is at least stoichiometrically higher than the amount satisfying the composition formula (Ln 1-x, Ln ' x ) 2 O 2 S.

【0014】これら原料混合物の焼成は、空気中におい
て、1000〜1300℃、好ましくは1100〜12
00℃の温度範囲で、0.5〜5時間、好ましくは1〜
3時間焼成され、得られた焼成物は塩酸、硫酸等の無機
酸や水で洗浄し、乾燥後、篩分けして所望の希土類酸硫
化物蛍光体を得る。
The firing of these raw material mixtures is carried out in air at 1000 to 1300 ° C., preferably 1100 to 12
In the temperature range of 00 ° C., 0.5 to 5 hours, preferably 1 to
After firing for 3 hours, the obtained fired product is washed with an inorganic acid such as hydrochloric acid or sulfuric acid or water, dried, and sieved to obtain a desired rare earth oxysulfide phosphor.

【0015】なお、本発明の希土類酸硫化物蛍光体の製
造方法において、得られる蛍光体の粒度分布をより狭く
し、粗大粒子や微細粒子の生成を抑制するためには、用
いられる蛍光体原料の中、アルカリ金属炭酸塩とアルミ
ニウム化合物とを予め混合しておき、この混合物を残り
の蛍光体原料である希土類化合物及び硫化剤と混合して
焼成するのがより好ましい。
In the method for producing a rare earth oxysulfide phosphor of the present invention, in order to further narrow the particle size distribution of the obtained phosphor and suppress the formation of coarse particles and fine particles, the phosphor material used It is more preferable that the alkali metal carbonate and the aluminum compound are mixed in advance, and the mixture is mixed with the remaining rare earth compound which is the raw material of the phosphor and the sulfiding agent and then baked.

【0016】[0016]

【実施例】【Example】

〔実施例1〕Y2 3 を226.0g、Eu2 3 を1
5.1g混合して硝酸に溶解し、次いで、この溶液に蓚
酸を加えて共沈法で蓚酸塩を生成し、この蓚酸塩を10
00℃で60分間焼成して熱分解し、Y2 3 とEu2
3 との混晶酸化物を生成させた。この混晶酸化物にA
lCl3 ・6H2 Oを1.13g(Y2 3 とEu2
3 の総量1モル当り4.48×10-3グラム原子に相当
するアルミニウム含有)を水溶液の状態で混合し、乾燥
した後、これに硫黄104.0g、Na2 CO 3 (融
剤)72.0g及びK3 PO4 (焼成助剤)11.0g
を混合し、アルミナ坩堝に入れ、1200℃で1時間焼
成し、得られた焼成物を水により十分に洗浄した後、1
20℃で10時間乾燥して実施例1の蛍光体を得た。
 [Example 1] Y2O3226.0 g, Eu2O31
5.1g was mixed and dissolved in nitric acid, and then added to this solution.
An oxalate salt was produced by the coprecipitation method by adding an acid.
Yield 60 minutes by firing at 00 ℃ for thermal decomposition, Y2O3And Eu2
O3And a mixed crystal oxide of A in this mixed crystal oxide
lCl3・ 6H21.13 g of O (Y2O3And Eu2O
34.48 × 10 per 1 mol-3Equivalent to gram atom
Aluminum) to be mixed in an aqueous solution and dried.
After that, add 104.0 g of sulfur and Na to it.2CO 3(Melt
Agent) 72.0 g and K3POFour(Baking aid) 11.0 g
Are mixed and put in an alumina crucible and baked at 1200 ° C for 1 hour.
After the obtained baked product is thoroughly washed with water, 1
The phosphor of Example 1 was obtained after drying at 20 ° C. for 10 hours.

【0017】〔実施例2〕実施例1の配合原料を用い、
AlCl3 ・6H2 OとNa2 CO3 とを予め十分に混
合した後、これにY2 3 とEu2 3 との混晶酸化
物、硫黄及びK3 PO4 を混合する以外は、実施例1と
同様にして実施例2の蛍光体を得た。
[Example 2] Using the compounded raw material of Example 1,
Except that AlCl 3 .6H 2 O and Na 2 CO 3 are thoroughly mixed in advance, and then mixed crystal oxide of Y 2 O 3 and Eu 2 O 3 , sulfur and K 3 PO 4 are mixed. The phosphor of Example 2 was obtained in the same manner as in Example 1.

【0018】〔比較例1〕実施例1において、AlCl
3 ・6H2 Oの配合を省略した以外は、実施例1と同様
にして比較例1の蛍光体を得た。
[Comparative Example 1] In Example 1, AlCl
But omitting the 3 · 6H 2 O in formulation, to obtain a phosphor of Comparative Example 1 in the same manner as in Example 1.

【0019】〔比較例2〕実施例1において、72.0
gのNa2 CO3 の代わりに、36.7gのNaClを
用いた以外は、実施例1と同様にして比較例2の蛍光体
を得た。
[Comparative Example 2] In Example 1, 72.0
A phosphor of Comparative Example 2 was obtained in the same manner as in Example 1 except that 36.7 g of NaCl was used instead of g of Na 2 CO 3 .

【0020】(評価)実施例1、2及び比較例1、2の
蛍光体の粒度分布を測定したところ、表1の結果を得
た。蛍光体原料にアルカリ金属炭酸塩とアルミニウム化
合物を配合して製造した実施例1の蛍光体は、アルミニ
ウム化合物の配合を省略した比較例1の蛍光体、及び、
アルカリ金属炭酸塩を塩化ナトリウムに置換した比較例
2の蛍光体に比べて微細粒子や粗大粒子が少なく、粒度
分布が狭いことが分かる。また、蛍光体原料の調製にお
いて、炭酸ナトリウムと塩化アルミニウムとを予め混合
しておき、これを他の蛍光体原料と共に混合して製造し
た実施例2の蛍光体は実施例1に比べて粒度分布がより
狭いことが分かる。
(Evaluation) When the particle size distributions of the phosphors of Examples 1 and 2 and Comparative Examples 1 and 2 were measured, the results shown in Table 1 were obtained. The phosphor of Example 1 manufactured by mixing an alkali metal carbonate and an aluminum compound in the phosphor raw material is the phosphor of Comparative Example 1 in which the compound of the aluminum compound is omitted, and
As compared with the phosphor of Comparative Example 2 in which the alkali metal carbonate was replaced with sodium chloride, it was found that there were few fine particles and coarse particles and the particle size distribution was narrow. Further, in the preparation of the phosphor raw material, the phosphor of Example 2 manufactured by previously mixing sodium carbonate and aluminum chloride and mixing this with another phosphor raw material has a particle size distribution larger than that of Example 1. It turns out that is narrower.

【0021】なお、表1において、粒度分布の欄に示し
た−log(d84/d50)及び+log(d 16/d50)は、累積
重量分布の比を示したもので、それぞれ小粒子側の粒度
分布の広がり、及び、大粒子側の粒度分布の広がりの程
度を示す指標となる数値である。その数値が小さい程、
粒度分布が狭く微細粒子、粗大粒子がそれぞれ少ないこ
とを意味する。特に、大粒子側の粒度分布の広がりを示
す+log(d16/d50)の値が10%小さくなると、収率
が約2〜4%改善され、さらに、塗布特性も著しく改善
される。−log(d84/d50)の値も小さい方が塗布特性
が良い。
In Table 1, the column of particle size distribution is shown.
-Log (d84/ D50) And + log (d 16/ D50) Is cumulative
It shows the ratio of weight distribution, and the particle size on the small particle side.
The extent of the distribution spread and the size distribution of the large particles
It is a numerical value that serves as an index of the degree. The smaller the number,
The particle size distribution is narrow and there are few fine particles and coarse particles.
Means and. In particular, it shows the spread of the particle size distribution on the large particle side.
SU + log (d16/ D50If the value of) becomes 10% smaller, the yield
Is improved by about 2-4%, and coating properties are also significantly improved.
Is done. -Log (d84/ D50The smaller the value of), the coating characteristics
Is good.

【0022】[0022]

【表1】 [Table 1]

【0023】〔実施例3〜6及び比較例3〜5〕実施例
1の配合原料において、AlCl3 ・6H2 Oの配合量
のみを表2のように変更した以外、実施例1と同様にし
て実施例3〜6及び比較例3〜5の蛍光体を製造し、そ
れらの蛍光体の粒度分布及び発光輝度を測定した。発光
輝度は、各蛍光体を加速電圧20kVの電子線で励起し
た時の発光輝度について、実施例3の発光輝度を100
とした相対値として示した。
[Examples 3 to 6 and Comparative Examples 3 to 5] In the same manner as in Example 1, except that only the compounding amount of AlCl 3 .6H 2 O in the compounding raw material of Example 1 was changed as shown in Table 2. Thus, the phosphors of Examples 3 to 6 and Comparative Examples 3 to 5 were manufactured, and the particle size distribution and the emission brightness of these phosphors were measured. The emission brightness was 100 when the emission brightness of each phosphor was excited by an electron beam with an accelerating voltage of 20 kV.
Was shown as a relative value.

【0024】(評価)表2から分かるように、1×10
-2グラム原子を越える量のAlを添加した実施例7〜9
の蛍光体は、発光輝度は低下したが、粒度分布の狭い蛍
光体が得られた。一方、実施例3〜6の蛍光体は、微細
粒子及び粗大粒子が少なく、発光輝度も優れていること
が分かる。
(Evaluation) As can be seen from Table 2, 1 × 10
-Examples 7-9 with addition of Al in excess of -2 gram atom
Although the emission brightness of the phosphor of Example 1 was lowered, a phosphor having a narrow particle size distribution was obtained. On the other hand, it can be seen that the phosphors of Examples 3 to 6 have few fine particles and coarse particles and have excellent emission brightness.

【0025】[0025]

【表2】 [Table 2]

【0026】〔実施例10〕実施例1において、22
6.0gのY2 3 に代えて同量のGd2 3 を用い、
15.1gのEu2 3 に代えて1.2gのTb2 3
を用いた以外は、実施例1と同様にして実施例7の蛍光
体を製造した。
[Embodiment 10] In the first embodiment, 22
The same amount of Gd 2 O 3 was used instead of 6.0 g of Y 2 O 3 ,
Instead of Eu 2 O 3 of 15.1 g 1.2 g of Tb 2 O 3
A phosphor of Example 7 was manufactured in the same manner as Example 1 except that was used.

【0027】〔比較例2〕実施例10において、AlC
3 ・6H2 Oの配合を省略した以外は、実施例10と
同様にして比較例2の蛍光体を製造した。
[Comparative Example 2] In Example 10, AlC
but omitting the l 3 · 6H 2 O in formulation, to produce a phosphor of Comparative Example 2 in the same manner as in Example 10.

【0028】(評価)実施例10と比較例2の蛍光体の
粒度分布を測定したところ、表3の結果を得た。蛍光体
原料としてアルカリ金属炭酸塩とアルミニウム化合物と
を用いた実施例10の蛍光体は、アルミニウム化合物を
省略した比較例2の蛍光体に比べて粒度分布が狭く、微
細粒子や粗大粒子が少ないことが分かる。
(Evaluation) When the particle size distributions of the phosphors of Example 10 and Comparative Example 2 were measured, the results shown in Table 3 were obtained. The phosphor of Example 10 using an alkali metal carbonate and an aluminum compound as a phosphor raw material has a narrower particle size distribution and less fine particles or coarse particles than the phosphor of Comparative Example 2 in which the aluminum compound is omitted. I understand.

【0029】[0029]

【表3】 [Table 3]

【0030】〔実施例11〕実施例1〜9において、蛍
光体の付活剤原料としてEuの化合物と共に微量のTb
並びにSmの化合物を共付活剤原料として添加し、実施
例10と同様にして希土類酸硫化物蛍光体を製造したと
ころ、実施例10と同様に粒度分布の狭い蛍光体が得ら
れた。また、LnをLa又はLuに置換した場合におい
ても、得られる蛍光体の粒度分布は上記と同様に狭く、
微細粒子や粗大粒子が少なかった。
[Embodiment 11] In Embodiments 1 to 9, a small amount of Tb is used together with a compound of Eu as an activator raw material for the phosphor.
In addition, a Sm compound was added as a co-activator raw material to produce a rare earth oxysulfide phosphor in the same manner as in Example 10. As a result, a phosphor having a narrow particle size distribution was obtained as in Example 10. Even when Ln is replaced with La or Lu, the particle size distribution of the obtained phosphor is as narrow as the above,
There were few fine particles and coarse particles.

【0031】[0031]

【発明の効果】本発明は、上記の構成を採用することに
より、微細粒子や粗大粒子の含有率を低下させることが
でき、粒度分布の狭く、発光輝度の優れた希土類酸硫化
物蛍光体を得ることができるようになった。
According to the present invention, by adopting the above-mentioned constitution, it is possible to reduce the content of fine particles and coarse particles, to obtain a rare earth oxysulfide phosphor having a narrow particle size distribution and excellent emission brightness. You can get it.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式(Ln1-x,Ln' x ) 2 3 で表
される希土類酸化物又は加熱により上記一般式の希土類
酸化物を生成する化合物若しくは混合物、アルカリ金属
炭酸塩、アルミニウム化合物、及び、硫黄原料を混合し
て焼成することを特徴とする一般式(Ln1-x,
n’x 2 2 Sで表される希土類酸硫化物蛍光体の製
造方法。(但し、LnはLa、Y、Gd及びLuの中の
少なくとも1種、Ln’はEu、Sm及びTbの中の少
なくとも1種であり、xは0.001≦x≦0.2の条
件を満たす数である。)
1. A rare earth oxide represented by the general formula (Ln 1-x, Ln x ) 2 O 3 or a compound or mixture which produces a rare earth oxide of the above general formula by heating, an alkali metal carbonate, aluminum. A compound of the general formula (Ln 1-x, L
n 'x) a method of producing a rare-earth oxysulfide phosphor represented by 2 O 2 S. (However, Ln is at least one of La, Y, Gd, and Lu, Ln ′ is at least one of Eu, Sm, and Tb, and x is 0.001 ≦ x ≦ 0.2. It is the number to meet.)
【請求項2】 上記アルカリ金属炭酸塩と上記アルミニ
ウム化合物を予め混合した後、残りの上記原料と混合す
ることを特徴とする請求項1記載の希土類酸硫化物蛍光
体の製造方法。
2. The method for producing a rare earth oxysulfide phosphor according to claim 1, wherein the alkali metal carbonate and the aluminum compound are mixed in advance and then the remaining raw materials are mixed.
【請求項3】 上記アルカリ金属炭酸塩の配合量が上記
の希土類酸化物100重量部に対して10〜100重量
部であることを特徴とする請求項1記載の希土類酸硫化
物蛍光体の製造方法。
3. The production of a rare earth oxysulfide phosphor according to claim 1, wherein the content of the alkali metal carbonate is 10 to 100 parts by weight based on 100 parts by weight of the rare earth oxide. Method.
【請求項4】 上記アルミニウム化合物の配合量が上記
の希土類酸化物1モルに対して1×10-4〜1×10-2
グラム原子であることを特徴とする請求項1記載の希土
類酸硫化物蛍光体の製造方法。
4. The amount of the aluminum compound compounded is 1 × 10 −4 to 1 × 10 −2 with respect to 1 mol of the rare earth oxide.
The method for producing a rare earth oxysulfide phosphor according to claim 1, wherein the phosphor is a gram atom.
【請求項5】 上記希土類酸化物並びに希土類酸硫化物
の一般式中のxが、0.005≦x≦0.1の範囲にあ
ることを特徴とする請求項1記載の希土類酸硫化物蛍光
体の製造方法。
5. The rare earth oxysulfide fluorescence according to claim 1, wherein x in the general formula of the rare earth oxide and the rare earth oxysulfide is in the range of 0.005 ≦ x ≦ 0.1. Body manufacturing method.
JP18001294A 1994-08-01 1994-08-01 Production of rare earth oxide-sulfide fluorescence body Pending JPH0841453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18001294A JPH0841453A (en) 1994-08-01 1994-08-01 Production of rare earth oxide-sulfide fluorescence body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18001294A JPH0841453A (en) 1994-08-01 1994-08-01 Production of rare earth oxide-sulfide fluorescence body

Publications (1)

Publication Number Publication Date
JPH0841453A true JPH0841453A (en) 1996-02-13

Family

ID=16075919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18001294A Pending JPH0841453A (en) 1994-08-01 1994-08-01 Production of rare earth oxide-sulfide fluorescence body

Country Status (1)

Country Link
JP (1) JPH0841453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268691B1 (en) 1998-08-26 2001-07-31 Kabushiki Kaisha Toshiba Red emitting phosphor for cathode ray tube
KR100405182B1 (en) * 2000-07-07 2003-11-12 티디케이가부시기가이샤 Fluorescent Thin Film, Preparation Method and EL Panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268691B1 (en) 1998-08-26 2001-07-31 Kabushiki Kaisha Toshiba Red emitting phosphor for cathode ray tube
KR100405182B1 (en) * 2000-07-07 2003-11-12 티디케이가부시기가이샤 Fluorescent Thin Film, Preparation Method and EL Panel

Similar Documents

Publication Publication Date Title
KR880002599B1 (en) Method of manufacturing a green phosphor
JPS627958B2 (en)
US4180477A (en) Luminescent materials
JP2005054046A (en) Method for producing fluorophor
US3842012A (en) Method of manufacturing an oxide of yttrium and/or lanthanum and/or the lanthanides
US6830706B2 (en) Stable blue phosphor for plasma display panel applications
JPH0841453A (en) Production of rare earth oxide-sulfide fluorescence body
US6585911B2 (en) Method of making a borate phosphor having a discrete particle morphology
JPH0737613B2 (en) Method for producing rare earth oxysulfide phosphor
JP3205398B2 (en) Unactivated yttrium tantalate phosphor
JP2001234165A (en) Vacuum ultraviolet-excited fluorescent substance
JP2004263088A (en) Process for producing fluorescent substance
JP3209724B2 (en) Method for producing fine luminous phosphor powder and fine luminous phosphor powder
JPH09235547A (en) Production of rare earth oxide fluorescent material and rare earth oxysulfide fluorescent material
JP2875058B2 (en) Method for producing lanthanum / cerium / terbium phosphate phosphor
EP0426106B1 (en) Method for preparing a phosphor
US5938974A (en) Yttrium tantalate x-ray phosphors with reduced persistence
JP4406717B2 (en) Method for producing aluminate phosphor
JPH0726098B2 (en) Phosphor for cathode ray tube and cathode ray tube
JPH0578660A (en) Method for producing fluorescent substance of rare earth element
JP2002275462A (en) Fluorescent substance for electric lamp and method of producing the same
JP3226344B2 (en) Rare earth oxysulfide phosphor and high definition cathode ray tube using the same
US5900188A (en) Yttrium tantalate x-ray phosphors with reduced persistence
JPS59102978A (en) Phosphate fluorescent material and its preparation
JP2001081456A (en) Mixed flux for yttrium tantalate x-ray phosphor